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Abstract

In this paper, we propose a new tractable framework for dealing with linear dynamical
systems affected by uncertainty, applicable to multi-stage robust optimization and stochastic
programming. We introduce a hierarchy of near-optimal polynomial disturbance-feedback con-
trol policies, and show how these can be computed by solving a single semidefinite programming
problem. The approach yields a hierarchy parameterized by a single variable (the degree of the
polynomial policies), which controls the trade-off between the optimality gap and the com-
putational requirements. We evaluate our framework in the context of two classical inventory
management applications, in which very strong numerical performance is exhibited, at relatively
modest computational expense.

1 Introduction

Multistage optimization problems under uncertainty are prevalent in numerous fields of engineering,
economics, finance, and have elicited interest on both a theoretical and a practical level from diverse
research communities. Among the most established methodologies for dealing with such problems
are dynamic programming (DP) Bertsekas [2001], stochastic programming Birge and Louveaux
[2000], robust control Zhou and Doyle [1998], Dullerud and Paganini [2005], and, more recently,
robust optimization (see Kerrigan and Maciejowski [2003], Ben-Tal et al. [2005a, 2006], Bertsimas
et al. [2010] and references therein).

In the current paper, we consider discrete-time, linear dynamical systems of the form

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k), (1)

evolving over a finite planning horizon, k = 0, . . . , T − 1. The variables x(k) ∈ R
n represent the

state, and the controls u(k) ∈ R
nu denote actions taken by the decision maker. A(k) and B(k) are

matrices of appropriate dimensions, describing the evolution of the system, and the initial state,
x(0), is assumed known. The system is affected by unknown1, additive disturbances, w(k), which
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are assumed to lie in a given compact, basic semialgebraic set,

Wk
def
= {w(k) ∈ R

nw : gj(w(k)) ≥ 0, j ∈ Jk} , (2)

where gj ∈ R[w] are multivariate polynomials depending on the vector of uncertainties at time k,
w(k), and Jk is a finite index set. We note that this formulation captures many uncertainty sets
of interest, such as polytopic (all gj affine), p-norms, ellipsoids, and intersections thereof. For now,
we restrict our description to uncertainties that are additive and independent across time, but our
framework can also be extended to cases where the uncertainties are multiplicative (e.g., affecting
the system matrices), and also dependent across time (please refer to Section 3.3 for details).

We assume that the dynamic evolution of the system is constrained by a set of linear inequalities,

{

Ex(k)x(k) + Eu(k)u(k) ≤ f(k), k = 0, . . . , T − 1,

Ex(T )x(T ) ≤ f(T ),
(3)

where Ex(k) ∈ R
rk·n, Eu(k) ∈ R

rk·nu ,f(k) ∈ R
rk for the respective k, and the system incurs

penalties that are piece-wise affine and convex in the states and controls,

h (k,x(k),u(k)) = max
i∈Ik

[

c0(k, i) + cx(k, i)T x(k) + cu(k, i)T u(k)
]

, (4)

where Ik is a finite index set, and c0(k, i) ∈ R, cx(k, i) ∈ R
n, cu(k, i) ∈ R

nu are pre-specified cost
parameters. The goal is to find non-anticipatory control policies u(0),u(1), . . . ,u(T − 1) that
minimize the cost incurred by the system in the worst-case scenario,

J = h (0,x(0),u(0)) + max
w(0)

[

h (1,x(1),u(1)) + . . .

+ max
w(T−2)

[

h (T − 1,x(T − 1),u(T − 1)) + max
w(T−1)

h (T,x(T ))
]

. . .
]

.

With the state of the dynamical system at time k given by x(k), one can resort to the Bellman
optimality principle of DP Bertsekas [2001] to compute optimal policies, u⋆(k,x(k)), and optimal
value functions, J⋆(k,x(k)). Although DP is a powerful technique as to the theoretical charac-
terization of the optimal policies, it is plagued by the well-known curse of dimensionality, in that
the complexity of the underlying recursive equations grows quickly with the size of the state-space,
rendering the approach ill suited to the computation of actual policy parameters. Therefore, in
practice, one would typically solve the recursions numerically (e.g., by multi-parametric program-
ming Bemporad et al. [2000, 2002, 2003]), or resort to approximations, such as approximate DP
Bertsekas and Tsitsiklis [1996], Powell [2007], stochastic approximation Asmussen and Glynn [2007],
simulation based optimization (Glasserman and Tayur [1995], Marbach and Tsitsiklis [2001]), and
others. Some of the approximations also come with performance guarantees in terms of the ob-
jective value in the problem, and many ongoing research efforts are placed on characterizing the
sub-optimality gaps resulting from specific classes of policies (the interested reader can refer to the
books Bertsekas [2001], Bertsekas and Tsitsiklis [1996] and Powell [2007] for a thorough review).

An alternative approach, originally proposed in the stochastic programming community (see
Birge and Louveaux [2000], Garstka and Wets [1974] and references therein), is to consider control
policies that are parametrized directly in the sequence of observed uncertainties, and typically
referred to as recourse decision rules. For the case of linear constraints on the controls, with
uncertainties regarded as random variables having bounded support and known distributions, and
the goal of minimizing an expected piece-wise quadratic, convex cost, the authors in Garstka and
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Wets [1974] show that piece-wise affine decision rules are optimal, but pessimistically conclude that
computing the actual parameterization is usually an “impossible task” (for a precise quantification
of that statement, see Dyer and Stougie [2006] and Nemirovski and Shapiro [2005]).

Disturbance-feedback parameterizations have recently been used by researchers in robust control
and robust optimization (see Löfberg [2003], Kerrigan and Maciejowski [2003, 2004], Goulart and
Kerrigan [2005], Ben-Tal et al. [2004, 2005a, 2006], Bertsimas and Brown [2007], Skaf and Boyd
[2008a,b], and references therein). In most of the papers, the authors restrict attention to the case
of affine policies, and show how reformulations can be done that allow the computation of the policy
parameters by solving convex optimization problems, which vary from linear and quadratic (e.g.
Ben-Tal et al. [2005a], Kerrigan and Maciejowski [2004]), to second-order conic and semidefinite
programs (e.g. Löfberg [2003], Ben-Tal et al. [2005a], Bertsimas and Brown [2007], Skaf and Boyd
[2008a]). Some of the first steps towards analyzing the properties of disturbance-affine policies
were taken in Kerrigan and Maciejowski [2004], Ben-Tal et al. [2005a], where it was shown that,
under suitable conditions, the resulting parametrization has certain desirable system theoretic
properties (stability and robust invariance), and that the class of affine disturbance feedback policies
is equivalent to the class of affine state feedback policies with memory of prior states, thus subsuming
the well-known open-loop and pre-stabilizing control policies.

With the exception of a few classical cases, such as linear quadratic Gaussian or linear ex-
ponential quadratic Gaussian2, characterizing the performance of affine policies in terms of ob-
jective function value is typically very hard. The only result in a constrained, robust setting
that the authors are aware of is our recent paper Bertsimas et al. [2010], in which it is shown
that, in the case of one-dimensional systems, with independent state and control constraints
(

Lk ≤ uk ≤ Uk, L
x
k ≤ xk ≤ Ux

k

)

, linear control costs and any convex state costs, disturbance-
affine policies are, in fact, optimal, and can be found efficiently. As a downside, the same paper
presents simple examples of multi-dimensional systems where affine policies are sub-optimal.

In fact, in most applications, the restriction to the affine case is done for purposes of tractability,
and almost invariably results in loss of performance (see the remarks at the end of Nemirovski and
Shapiro [2005]), with the optimality gap being sometimes very large. In an attempt to address this
problem, recent work has considered parameterizations that are affine in a new set of variables,
derived by lifting the original uncertainties into a higher dimensional space. For example, the
authors in Chen and Zhang [2009], Chen et al. [2008], Sim and Goh [2009] suggest using so-called
segregated linear decision rules, which are affine parameterizations in the positive and negative
parts of the original uncertainties. Such policies provide more flexibility, and their computation
(for two-stage decision problems in a robust setting) requires roughly the same complexity as that
needed for a set of affine policies in the original variables. Another example following similar ideas is
Chatterjee et al. [2009], where the authors consider arbitrary functional forms of the disturbances,
and show how, for specific types of p-norm constraints on the controls, the problems of finding the
coefficients of the parameterizations can be relaxed into convex optimization problems. A similar
approach is taken in Skaf and Boyd [2008b], where the authors also consider arbitrary functional
forms for the policies, and show how, for a problem with convex state-control constraints and convex
costs, such policies can be found by convex optimization, combined with Monte-Carlo sampling (to
enforce constraint satisfaction). Chapter 14 of the recent book Ben-Tal et al. [2009] also contains
a thorough review of several other classes of such adjustable rules, and a discussion of cases when
sophisticated rules can actually improve over the affine ones.

The main drawback of some of the above approaches is that the right choice of functional form

2These refer to problems that are unconstrained, with Gaussian disturbances, and the goal of minimizing expected
costs that are quadratic or exponential of a quadratic, respectively. For these, the optimal policies are affine in the
states - see Bertsekas [2001] and references therein.

3



for the decision rules is rarely obvious, and there is no systematic way to influence the trade-
off between the performance of the resulting policies and the computational complexity required
to obtain them, rendering the frameworks ill-suited for general multi-stage dynamical systems,
involving complicated constraints on both states and controls.

The goal of our current paper is to introduce a new framework for modeling and (approximately)
solving such multi-stage dynamical problems. While we restrict attention mainly to the robust,
mini-max objective setting, our ideas can be extended to deal with stochastic problems, in which
the uncertainties are random variables with known, bounded support and distribution that is either
fully or partially known3 (see Section 3.3 for a discussion). Our main contributions are summarized
below:

• We introduce a natural extension of the aforementioned affine decision rules, by considering
control policies that depend polynomially on the observed disturbances. For a fixed poly-
nomial degree d, we develop a convex reformulation of the constraints and objective of the
problem, using Sums-Of-Squares (SOS) techniques. In the resulting framework, polynomial
policies of degree d can be computed by solving a single semidefinite programming problem
(SDP), which, for a fixed precision, can be done in polynomial time Vandenberghe and Boyd
[1996]. Our approach is advantageous from a modelling perspective, since it places little
burden on the end user (the only choice is the polynomial degree d), while at the same time
providing a lever for directly controlling the trade-off between performance and computation
(higher d translates into policies with better objectives, obtained at the cost of solving larger
SDPs).

• To test our polynomial framework, we consider two classical problems arising in inventory
management (single echelon with cumulative order constraints, and serial supply chain with
lead-times), and compare the performance of affine, quadratic and cubic control policies. The
results obtained are very encouraging - in particular, for all problem instances considered,
quadratic policies considerably improve over affine policies (typically by a factor of 2 or 3),
while cubic policies essentially close the optimality gap (the relative gap in all simulations is
less than 1%, with a median gap of less than 0.01%).

The paper is organized as follows. Section 2 presents the mathematical formulation of the prob-
lem, briefly discusses relevant solution techniques in the literature, and introduces our framework.
Section 3, which is the main body of the paper, first shows how to formulate and solve the problem
of searching for the optimal polynomial policy of fixed degree, and then discusses the specific case
of polytopic uncertainties. Section 3.3 also elaborates on immediate extensions of the framework
to more general multi-stage decision problems. Section 5 translates two classical problems from
inventory management into our framework, and Section 6 presents our computational results, ex-
hibiting the strong performance of polynomial policies. Section 7 concludes the paper and suggests
directions of future research.

1.1 Notation

Throughout the rest of the paper, we denote scalar quantities by lowercase, non-bold face symbols
(e.g. x ∈ R, k ∈ N), vector quantities by lowercase, boldface symbols (e.g. x ∈ R

n, n > 1), and
matrices by uppercase symbols (e.g. A ∈ R

n·n, n > 1). Also, in order to avoid transposing vectors
several times, we use the comma operator ( , ) to denote vertical vector concatenation, e.g. with

3In the latter case, the cost would correspond to the worst-case distribution consistent with the partial information.
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x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , ym) ∈ R

m, we write (x,y)
def
= (x1, . . . , xn, y1, . . . , ym) ∈

R
m+n.

We refer to quantities specific to time-period k by either including the index in parenthesis,
e.g. x(k), J⋆ (k,x(k)), or by using an appropriate subscript, e.g. xk, J⋆

k (xk). When referring to
the j-th component of a vector at time k, we always use the parenthesis notation for time, and
subscript for j, e.g., xj(k).

Since we seek policies parameterized directly in the uncertainties, we introduce w[k]
def
= (w1, . . . ,wk−1)

to denote the history of known disturbances at the beginning of period k, and W[k]
def
= W1 × · · · ×

Wk−1 to denote the corresponding uncertainty set. By convention, w[0] ≡ {∅}.
With x = (x1, . . . , xn), we denote by R[x] the ring of polynomials in variables x1, . . . , xn, and

by Pd[x] the R-vector space of polynomials in x1, . . . , xn, with degree at most d. We also let

Bd(x)
def
=

(

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x1xn, x2

2, x2x3 . . . , xd
n

)

(5)

be the canonical basis of Pd[x], and s(d)
def
=

(

n+d
d

)

be its dimension. Any polynomial p ∈ Pd[x] is
written as a finite linear combination of monomials,

p(x) = p(x1, . . . , xn) =
∑

α∈Nn

pαxα = pTBd(x), (6)

where xα def
= xα1

1 xα2
2 . . . xαn

n , and the sum is taken over all n-tuples α = (α1, α2, . . . , αn) ∈ N
n

satisfying
∑n

i=1 αi ≤ d. In the expression above, p = (pα) ∈ R
s(r) is the vector of coefficients of

p(x) in the basis (5). In situations where the coefficients pα of a polynomial are decision variables,
in order to avoid confusions, we refer to x as the indeterminate (similarly, we refer to p(x) as a
polynomial in indeterminate x). By convention, we take p(∅) ≡ p0,0,...,0, i.e., a polynomial without
indeterminate is simply a constant.

For a polynomial p ∈ R[x], we use deg(p) to denote the largest degree of a monomial present
in p.

2 Problem Description

Using the notation mentioned in the introduction, our goal is to find non-anticipatory control
policies u0,u1, . . . ,uT−1 that minimize the cost incurred by the system in the worst-case scenario.
In other words, we seek to solve the problem:

min
u0

[

h0 (x0,u0) + max
w0

min
u1

[

h1 (x1,u1) + · · ·+

+ min
uT−1

[

hT−1 (xT−1,uT−1) + max
wT−1

hT (xT )
]

. . .
]

]

(7a)

(P ) s.t. xk+1 = Ak xk + Bk uk + wk, ∀ k ∈ {0, . . . , T − 1}, (7b)

Ex(k)xk + Eu(k)uk ≤ fk, ∀ k ∈ {0, . . . , T − 1}, (7c)

Ex(T )xT ≤ fT . (7d)

As already mentioned, the control actions uk do not have to be decided entirely at time period
k = 0, i.e., (P ) does not have to be solved as an open-loop problem. Rather, uk is allowed to depend
on the information set available4 at time k, resulting in control policies uk : Fk → R

nu , where Fk

consists of past states, controls and disturbances, Fk = {xt}0≤t≤k ∪ {ut}0≤t<k ∪ {wt}0≤t<k.

4More formally, the decision process uk is adapted to the filtration generated by past values of the disturbances
and controls.
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While Fk is a large (expanding with k) set, the state xk represents sufficient information for
taking optimal decisions at time k. Thus, with control policies depending on the states, one
can resort to the Bellman optimality principle of Dynamic Programming (DP) Bertsekas [2001],
to compute optimal policies, u⋆

k(xk), and optimal value functions, J⋆
k (xk). As suggested in the

introduction, the approach is limited due to the curse of dimensionality, so that, in practice,
one typically resorts to approximate schemes for computing suboptimal, state-dependent policies
Bertsekas and Tsitsiklis [1996], Powell [2007], Marbach and Tsitsiklis [2001].

In this paper, we take a slightly different approach, and consider instead policies parametrized
directly in the observed uncertainties,

uk : W0 ×W1 × · · · ×Wk−1 → R
nu. (8)

In this context, the decisions that must be taken are the parameters defining the specific functional
form sought for uk. One such example of disturbance-feedback policies, often considered in the
literature, is the affine case, i.e., uk = Lk · (1,w0, . . . ,wk−1), where the decision variables are the
coefficients of the matrices Lk ∈ R

nu×(1+k×nw), k = 0, . . . , T − 1.

In this framework, with (7b) used to express the dependency of states xk on past uncertainties,
the state-control constraints (7c), (7d) at time k can be written as functions of the parametric
decisions L0, . . . , Lk and the uncertainties w0, . . . ,wk−1, and one typically requires these constraints
to be obeyed robustly, i.e., for any possible realization of the uncertainties.

As already mentioned, this approach has been explored before in the literature, in both the
stochastic and robust frameworks (Birge and Louveaux [2000], Garstka and Wets [1974], Löfberg
[2003], Kerrigan and Maciejowski [2003, 2004], Goulart and Kerrigan [2005], Ben-Tal et al. [2004,
2005a, 2006], Bertsimas and Brown [2007], Skaf and Boyd [2008a]). The typical restriction to the
sub-class of affine policies, done for purposes of tractability, almost invariably results in loss of
performance Nemirovski and Shapiro [2005], with the gap being sometimes very large.

To illustrate this effect, we introduce the following simple example5, motivated by a similar case
in Chen and Zhang [2009]:

Example 1. Consider a two-stage problem, where w ∈ W is the uncertainty, with W =
{

w ∈
R

N : ‖w‖2 ≤ 1
}

, x ∈ R is a first-stage decision (taken before w is revealed), and y ∈ R
N is a

second-stage decision (allowed to depend on w). We would like to solve the following optimization:

minimize
x,y(w)

x

such that x ≥
N

∑

i=1

yi, ∀w ∈ W,

yi ≥ w2
i , ∀w ∈ W.

(9)

It can be easily shown (see Lemma 1 in Section 8.1) that the optimal objective in Problem (9)
is 1, corresponding to yi(w) = w2

i , while the best objective achievable under affine policies y(w)
is N , for yi(w) = 1, ∀ i. In particular, this simple example shows that the optimality gap resulting
from the use of affine policies can be made arbitrarily large (as the problem size increases).

Motivated by these facts, in the current paper we explore the performance of a more general
class of disturbance-feedback control laws, namely policies that are polynomial in past-observed

5We note that this example can be easily cast as an instance of Problem (P ). We opt for the simpler notation to
keep the ideas clear.
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uncertainties. More precisely, for a specified degree d, and with w[k] denoting the vector of all
disturbances in Fk,

w[k]
def
= (w0,w1, . . . ,wk−1 ) ∈ R

k·nw, (10)

we consider a control law at time k in which every component is a polynomial of degree at most d
in variables w[k], i.e., uj(k,w[k]) ∈ Pd[w[k]], and thus:

uk(w[k]) = Lk Bd(w[k]), (11)

where Bd(w[k]) is the canonical basis of Pd[w[k]], given by (5). The new decision variables become

the matrices of coefficients Lk ∈ R
nu·s(d), k = 0, . . . , T − 1, where s(d) =

(

k·nw+d
d

)

is the dimension
of Pd[w[k]]. Therefore, with a fixed degree d, the number of decision variables remains polynomially
bounded in the size of the problem input, T, nu, nw.

This class of policies constitutes a natural extension of the disturbance-affine control laws, i.e.,
the case d = 1. Furthermore, with sufficiently large degree, one can expect the performance of
the polynomial policies to become near-optimal (recall that, by the Stone-Weierstrass Theorem
Rudin [1976], any continuous function on a compact set can be approximated as closely as desired
by polynomial functions). The main drawback of the approach is that searching over arbitrary
polynomial policies typically results in non-convex optimization problems. To address this issue,
in the next section, we develop a tractable, convex reformulation of the problem based on Sum-Of-
Squares (SOS) techniques Parrilo [2000, 2003], Lasserre [2001].

3 Polynomial Policies and Convex Reformulations Using Sums-

Of-Squares

Under polynomial policies of the form (11), one can use the dynamical equation (7b) to express every
component of the state at time k, xj(k), as a polynomial in indeterminate w[k], whose coefficients are

linear combinations of the entries in {Lt}0≤t≤k−1. As such, with ex(k, j)T and eu(k, j)T denoting
the j-th row of Ex(k) and Eu(k), respectively, a typical state-control constraint (7c) can be written

ex(k, j)T xk + eu(k, j)T uk ≤ fj(k) ⇔

pcon
j,k (w[k])

def
= fj(k) − ex(k, j)T xk − eu(k, j)T uk ≥ 0, ∀w[k] ∈ W[k].

In particular, feasibility of the state-control constraints at time k is equivalent to ensuring that the
coefficients {Lt}0≤t≤k−1 are such that the polynomials pcon

j,k (w[k]), j = 1, . . . , rk, are non-negative
on the domain W[k].

Similarly, the expression (4) for the stage cost at time k can be written as

hk(xk,uk) = max
i∈Ik

pcost
i (w[k]),

pcost
i (w[k])

def
= c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]),

i.e., the cost hk is a piece-wise polynomial function of the past-observed disturbances w[k]. There-
fore, under polynomial control policies, we can rewrite the original Problem (P) as the following
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polynomial optimization problem:

min
L0

[

max
i∈I1

pcost
i (w[0]) + max

w0

min
L1

[

max
i∈I2

pcost
i (w[1]) + . . .

(PPOP) + max
wT−2

min
LT−1

[

max
i∈IT−1

pcost
i (w[T−1]) + max

wT−1

max
i∈IT

pcost
i (w[T ])

]

. . .
]

]

(12a)

s.t. pcon
j,k (w[k]) ≥ 0, ∀ k = 0, . . . , T, ∀ j = 1, . . . , rk, ∀w[k] ∈ W[k]. (12b)

In this formulation, the decision variables are the coefficients {Lt}0≤t≤T−1, and (12b) summarize all
the state-control constraints. We emphasize that the expression of the polynomial controls (11) and
the dynamical system equation (7b) should not be interpreted as real constraints in the problem
(rather, they are only used to derive the dependency of the polynomials pcost

i (w[k]) and pcon
j,k (w[k])

on {Lt}0≤t≤k−1 and w[k]).

3.1 Reformulating the Constraints

As mentioned in the previous section, under polynomial control policies, a typical state-control
constraint (12b) in program (PPOP) can now be written as:

p(ξ) ≥ 0, ∀ ξ ∈ W[k], (13)

where ξ ≡ w[k] ∈ R
k·nw is the history of disturbances, and p(ξ) is a polynomial in variables

ξ1, ξ2, . . . , ξk·nw
with degree at most d,

p(ξ) = pTBd

(

ξ
)

,

whose coefficients pi are affine combinations of the decision variables Lt, 0 ≤ t ≤ k − 1. It is easy
to see that constraint (13) can be rewritten equivalently as

p(ξ) ≥ 0, ∀ ξ ∈ W[k]
def
=

{

ξ ∈ R
k·nw : gj(ξ) ≥ 0, j = 1, . . . ,m

}

, (14)

where {gj}1≤j≤m are all the polynomial functions describing the compact basic semi-algebraic set
W[k] ≡ W0 × · · · ×Wk−1, immediately derived from (2). In this form, (14) falls in the general class
of constraints that require testing polynomial non-negativity on a basic closed, semi-algebraic set,
i.e., a set given by a finite number of polynomial equalities and inequalities. To this end, note that
a sufficient condition for (14) to hold is:

p = σ0 +
m

∑

j=1

σj gj , (15)

where σj ∈ R[ξ], j = 0, . . . ,m, are polynomials in the variables ξ which are furthermore sums
of squares (SOS). This condition translates testing the non-negativity of p on the set W[k] into a
system of linear equality constraints on the coefficients of p and σj , j = 0, . . . ,m, and a test whether
σj are SOS. The main reason why this is valuable is because testing whether a polynomial of fixed
degree is SOS is equivalent to solving a semidefinite programming problem (SDP) (refer to Parrilo
[2000, 2003], Lasserre [2001] for details), which, for a fixed precision, can be done in polynomial
time, by interior point methods Vandenberghe and Boyd [1996].

On first sight, condition (15) might seem overly restrictive. However, it is motivated by recent
powerful results in real algebraic geometry (Putinar [2003], Jacobi and Prestel [2001]), which,
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under mild conditions6 on the functions gj , state that any polynomial that is strictly positive on a
compact semi-algebraic set W[k] must admit a representation of the form (15), where the degrees
of the σj polynomials are not a priori bounded. In our framework, in order to obtain a tractable
formulation, we furthermore restrict these degrees so that the total degree of every product σj gj is

at most max
(

d,maxj

(

deg(gj)
)

)

, the maximum between the degree of the control policies (11) under

consideration and the largest degree of the polynomials gj giving the uncertainty sets. While this
requirement is more restrictive, and could, in principle, result in conservative parameter choices,
it avoids ad-hoc modeling decisions and has the advantage of keeping a single parameter that is
adjustable to the user (the degree d), which directly controls the trade-off between the size of the
resulting SDP formulation and the quality of the overall solution. Furthermore, in our numerical
simulations, we find that this choice performs very well in practice, and never results in infeasible
conditions.

3.2 Reformulating the Objective

Recall from our discussion in the beginning of Section 3 that, under polynomial control policies, a
typical stage cost becomes a piecewise polynomial function of past uncertainties, i.e., a maximum
of several polynomials. A natural way to bring such a cost into the framework presented before is
to introduce, for every stage k = 0, . . . , T , a polynomial function of past uncertainties, and require
it to be an upper-bound on the true (piecewise polynomial) cost.

More precisely, and to fix ideas, consider the stage cost at time k, which, from our earlier
discussion, can be written as

hk(xk,uk) = max
i∈Ik

pcost
i (w[k]),

pcost
i (w[k]) = c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]), ∀ i ∈ Ik.

In this context, we introduce a modified stage cost h̃k ∈ Pd[w[k]], which we constrain to satisfy

h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈ W[k], ∀ i ∈ Ik,

and we replace the overall cost for Problem (PPOP) with the sum of the modified stage costs. In
other words, instead of minimizing the objective (7a), we seek to solve:

min J

s.t. J ≥
T

∑

k=0

h̃k(w[k]), ∀w[T ] ∈ w[T ], (16a)

h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈ W[k], ∀ i ∈ Ik. (16b)

The advantage of this approach is that, now, constraints (16a) and (16b) are of the exact same
nature as (13), and thus fit into the SOS framework developed earlier. As a result, we can use
the same semidefinite programming approach to enforce them, while preserving the tractability of
the formulation and the trade-off between performance and computation delivered by the degree
d. The main drawback is that the cost J may conceivably, in general, over-bound the optimal cost
of Problem (P ), due to several reasons:

6These are readily satisfied when gj are affine, or can be satisfied by simply appending a redundant constraint
that bounds the 2-norm of the vector ξ
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1. We are replacing the (true) piece-wise polynomial cost hk with an upper bound given by the
polynomial cost h̃k. Therefore, the optimal value J of problem (16a) may, in general, be
larger than the true cost corresponding to the respective polynomial policies, i.e., the cost of
problem (PPOP).

2. All the constraints in the model, namely (16a), (16b), and the state-control constraints (12b),
are enforced using SOS polynomials with fixed degree (see the discussion in Section 3.1), and
this is sufficient, but not necessary.

However, despite these multiple layers of approximation, our numerical experiments, presented
in Section 6, suggest that most of the above considerations are second-order effects when compared
with the fact that polynomial policies of the form (11), are themselves, in general, suboptimal. In
fact, our results suggest that with a modest polynomial degree (3, and sometimes even 2), one can
close most of the optimality gap between the SDP formulation and the optimal value of Problem
(P ).

To summarize, our framework can be presented as the sequence of steps below:

Framework for computing polynomial policies of degree d

1: Consider polynomial control policies in the disturbances, uk(w[k]) = Lk Bd

(

w[k]

)

.
2: Express all the states xk according to equation (7b). Each component of a typical state xk

becomes a polynomial in indeterminate w[k], with coefficients given by linear combinations of
{Lt}0≤t≤k−1.

3: Replace a typical stage cost hk(xk,uk) = maxi∈Ik
pcost

i (w[k]) with a modified stage cost h̃k ∈

Pd[w[k]], constrained to satisfy h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈ W[k], ∀ i ∈ Ik.

4: Replace the overall cost with the sum of the modified stage costs.
5: Replace a typical constraint p(w[k]) ≥ 0, ∀w[k] ∈

{

ξ : gj(ξ) ≥ 0, j = 1, . . . ,m
}

(for either
state-control or costs) with the requirements:

p = σ0 +

m
∑

j=1

σjgj

(

linear constraints on coefficients
)

σj SOS, j = 0, . . . ,m.
(

m + 1 SDP constraints
)

deg(σj gj) ≤ max
(

d,max
j

(

deg(gj)
)

)

,

deg(σ0) = max
j

(

deg(σj gj)
)

.

6: Solve the resulting SDP to obtain the coefficients Lk of the policies.

The size of the overall formulation is controlled by the following parameters:

• There are O
(

T 2 · maxk(rk + |Ik|) · (maxk |Jk|) ·
(

T ·nw+d̂

d̂

)

)

linear constraints

• There are O
(

T 2·maxk(rk+|Ik|)·(maxk |Jk|)
)

SDP constraints, each of size at most
(

T ·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

• There are O
(

T ·
[

nu + T · maxk(rk + |Ik|) · (maxk |Jk|)
] (

T ·nw+d̂

d̂

)

)

variables
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Above, d̂
def
= max

(

d,maxj

(

deg(gj)
)

)

, i.e., the largest between d and the degree of any polynomial

gj defining the uncertainty sets. Since, for all practical purposes, most uncertainty sets considered
in the literature are polyhedral or quadratic, the main parameter that controls the complexity is d
(for d ≥ 2).

As the main computational bottleneck comes from the SDP constraints, we note that their
size and number could be substantially reduced by requiring the control policies to only depend
on a partial history of the uncertainties, e.g., by considering uk : Wk−q × Wk−q+1 × · · · × Wk−1,
for some fixed q > 0, and by restricting xk in a similar fashion. In this case, there would be

O
(

T · q ·maxk(rk + |Ik|) · (maxk |Jk|)
)

SDP constraints, each of size at most
(

q·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

, and only

O
(
∑

k |Jk|
)

SDP constraints of size
(

T ·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

.

3.3 Extensions

For completeness, we conclude our discussion by briefly mentioning several modelling extensions
that can be readily captured in our framework:

1. Although we only consider uncertainties that are “independent” across time, i.e., the history
w[k] always belongs to the Cartesian product W0 × · · · × Wk−1, our approach could be im-
mediately extended to situations in which the uncertainty sets characterize partial sequences.
As an example, instead of Wk, we could specify a semi-algebraic description for the history
W[k],

(w0,w1, . . . ,wk−1) ∈ W[k] =
{

ξ ∈ R
k×nw : gj(ξ) ≥ 0,∀ j ∈ J̃k

}

,

which could be particularly useful in situations where the uncertainties are generated by
processes that are dependent across time. The only modification would be to use the new
specification for the set W[k] in the typical state-control constraints (13) and the cost refor-
mulation constraints (16a), (16b).

2. While we restrict the exposition to uncertainties that are only affecting the system dynamics
additively, i.e., by means of equation (1), the framework can be extended to situations where
the system and constraint matrices, A(k), B(k), Ex(k), Eu(k),f(k) or the cost parameters,
cx(k, i) or cu(k, i) are also affected by uncertainty. These situations are of utmost practical
interest, in both the inventory examples that we consider in the current paper, but also in
other realistic dynamical systems. As an example, suppose that the matrix A(k) is affinely
dependent on uncertainties ζk ∈ Zk ⊂ R

nζ ,

A(k) = A0(k) +

nζ
∑

i=1

ζi(k)Ai(k),

where Ai(k) ∈ R
n×n,∀ i ∈ {0, . . . , nζ} are deterministic matrices, and Zk are closed, basic

semi-algebraic sets. Then, provided that the uncertainties wk and ζk are both observable in
every period7, our framework can be immediately extended to decision policies that depend
on the histories of both sources of uncertainty, i.e., uk(w0, . . . ,wk−1, ζ0, . . . , ζk−1).

7When only the states xk are observable, then one might not be able to simultaneously discriminate and measure
both uncertainties.
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3. Note that, instead of considering uncertainties as lying in given sets, and adopting a min-max
(worst-case) objective, we could accommodate the following modelling assumptions:

(a) The uncertainties are random variables, with bounded support given by the set W0 ×
W1 × . . .WT−1, and known probability distribution function F. The goal is to find
u0, . . . ,uT−1 so as to obey the state-control constraints (3) almost surely, and to mini-
mize the expected costs,

min
u0

[

h0 (x0,u0) + Ew0∼F min
u1

[

h1 (x1,u1) + . . .

+ min
uT−1

[

hT−1 (xT−1,uT−1) + EwT−1∼F hT (xT )
]

. . .
]

]

. (17)

In this case, since our framework already enforces almost sure (robust) constraint satis-
faction, the only potential modifications would be in the reformulation of the objective.
Since the distribution of the uncertainties is assumed known, and the support is bounded,
the moments exist and can be computed up to any fixed degree d. Therefore, we could
preserve the reformulation of state-control constraints and stage-costs in our framework
(i.e., Steps 2 and 4), but then proceed to minimize the expected sum of the polynomial
costs h̃k (note that the expected value of a polynomial function of uncertainties can be
immediately obtained as a linear function of the moments).

(b) The uncertainties are random variables, with the same bounded support as above, but
unknown distribution function F, belonging to a given set of distributions, F . The goal
is to find control policies obeying the constraints almost surely, and minimizing the
expected costs corresponding to the worst-case distribution F,

min
u0

[

h0 (x0,u0) + sup
F∈F

Ew0 min
u1

[

h1 (x1,u1) + · · ·+

min
uT−1

[

hT−1 (xT−1,uT−1) + sup
F∈F

EwT−1
hT (xT )

]

. . .
]

]

. (18)

In this case, if partial information (such as the moments of the distribution up to degree
d) is available, then the framework in (a) could be applied. Otherwise, if the only
information available about F were the support, then our framework could be applied
without modification, but the solution obtained would exactly correspond to the min-
max approach, and hence be quite conservative.

While these extensions are certainly worthy of attention, we do not pursue them here, and restrict
our discussion in the remainder of the paper to the original worst-case formulation.

4 Other Methodologies for Computing Decision Rules or Exact

Values

Our goal in the current section is to discuss the relation between our polynomial hierarchy and
several other established methodologies in the literature8 for computing affine or quadratic decision
rules. More precisely, for the case of ∩-ellipsoidal uncertainty sets, we show that our framework

8We are grateful to one of the anonymous referees for pointing out reference Ben-Tal et al. [2009], which was not
at our disposal at the time of conducting the research.
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delivers policies of degree 1 or 2 with performance at least as good as that obtained by applying
the methods in Ben-Tal et al. [2009]. In the second part of the section, we discuss the particular
case of polytopic uncertainty sets, where exact values for Problem (P ) can be found (which are
very useful for benchmarking purposes).

4.1 Affine and Quadratic Policies for ∩-Ellipsoidal Uncertainty Sets

Let us consider the specific case when the uncertainty sets Wk are given by the intersection of
finitely many convex quadratic forms, and have nonempty interior (this is one of the most general
classes of uncertainty sets treated in the robust optimization literature, see, e.g., Ben-Tal et al.
[2009]).

We first focus attention on affine disturbance-feedback policies, i.e., uk(w[k]) = Lk B1(w[k]), and
perform the same substitution of a piece-wise affine stage cost with an affine cost that over-bounds
it9. Finding the optimal affine policies then requires solving the following instance of Problem
(PPOP):

min
Lk ,zk,zk,0,J

J (19a)

J ≥
T

∑

k=0

(

zT
k w[k] + zk,0

)

, (19b)

zT
k B1(w[k]) ≥ c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]), (19c)

∀w[k] ∈ W[k], ∀ i ∈ Ik, ∀ k ∈ {0, . . . , T − 1},

zT
T B1(w[T ]) ≥ c0(T, i) + cx(T, i)T xT (w[T ]), (19d)

∀w[T ] ∈ W[T ], ∀ i ∈ IT ,

(PAFF)
(

xk+1(w[k+1]) = Ak xk(w[k]) + Bk uk(w[k]) + w(k),
)

(19e)

∀ k ∈ {0, . . . , T − 1},

fk ≥ Ex(k)xk(w[k]) + Eu(k)uk(w[k]), (19f)

∀w[k] ∈ W[k], ∀k ∈ {0, . . . , T − 1},

fT ≥ Ex(T )xT (w[T ]). (19g)

∀w[T ] ∈ W[T ].

In this formulation, the decision variables are {Lk}0≤k≤T−1, {zk}0≤k≤T and J , and equation (19e)
should be interpreted as giving the dependency of xk on w[k] and the decision variables, which can
then be used in the constraints (19c), (19d), (19f), and (19g). Note that, in the above optimization
problem, all the constraints are bi-affine functions of the uncertainties and the decision variables,
and thus, since the uncertainty sets W[k] have tractable conic representations, the techniques in
Ben-Tal et al. [2009] can be used to compute the optimal decisions in (PAFF).

Letting J⋆
AFF denote the optimal value in (PAFF), and with J⋆

d=r representing the optimal value
obtained from our polynomial hierarchy (with SOS constraints) for degree d = r, we have the
following result.

Theorem 1. If the uncertainty sets Wk are given by the intersection of finitely many convex
quadratic forms, and have nonempty interior, then the objective functions obtained from the poly-

9This is the same approach as that taken in Ben-Tal et al. [2009]; when the stage costs hk are already affine in
xk, uk, the step is obviously not necessary
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nomial hierarchy satisfy the following relation

J⋆
AFF ≥ J⋆

d=1 ≥ J⋆
d=2 ≥ . . .

Proof. See Section 8.3 of the Appendix.

The above result suggests that the performance of our polynomial hierarchy can never be worse
than that of the best affine policies.

For the same case of Wk given by intersection of convex quadratic forms, a popular technique
introduced by Ben-Tal and Nemirovski in the robust optimization literature, and based on using
the approximate S-Lemma, could be used for computing quadratic decision rules. More precisely,
the resulting problem (PQUAD) can be obtained from (PAFF) by using uk(xk) = Lk · B2(w[k]), and

by replacing zT
k B2(w[k]) and zT

T B2(w[T ]) in (19c) and (19d), respectively. Since all the constraints
become quadratic polynomials in indeterminates w[k], one can use the Approximate S-Lemma to
enforce the resulting constraints (See Chapter 14 in Ben-Tal et al. [2009] for details). If we let
J⋆

QUAD denote the optimal value resulting from this method, a proof paralleling that of Theorem 1
can be used to show that J⋆

QUAD ≥ J⋆
d=2, i.e., the performance of the polynomial hierarchy for d ≥ 2

cannot be worse than that delivered by the S-Lemma method.

In view of these results, one can think of the polynomial framework as a generalization of two
classical methods in the literature, with the caveat that (for degree d ≥ 3), the resulting SOS
problems that need to be solved can be more computationally challenging.

4.2 Determining the Optimal Value for Polytopic Uncertainties

Here, we briefly discuss a specific class of Problems (P ), for which the exact optimal value can be
computed by solving a (large) mathematical program. This is particularly useful for benchmarking
purposes, since it allows a precise assessment of the polynomial framework’s performance (note
that the approach presented in Section 3 is applicable to the general problem, described in the
introduction).

Consider the particular case of polytopic uncertainty sets, i.e., when all the polynomial functions
gj in (2) are actually affine. It can be shown (see Theorem 2 in Bemporad et al. [2003]) that piece-
wise affine state-feedback policies10 uk(xk) are optimal for the resulting Problem (P ), and that the
sequence of uncertainties that achieves the min-max value is an extreme point of the uncertainty
set, that is, w[T ] ∈ ext(W0)×· · ·×ext(WT−1). As an immediate corollary of this result, the optimal
value for Problem (P ), as well as the optimal decision at time k = 0 for a fixed initial state x0,
u⋆

0(x0), can be computed by solving the following optimization problem (see Ben-Tal et al. [2005a],

10One could also immediately extend the result of Garstka and Wets [1974] to argue that disturbance-feedback
policies uk(w[k]) are also optimal.
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Bemporad et al. [2002, 2003] for a proof):

min
uk(w[k]),zk(w[k]),J

J (20a)

J ≥
T

∑

k=0

zk(w[k]), (20b)

zk(w[k]) ≥ hk

(

xk(w[k]),uk(w[k])
)

, k = 0, . . . , T − 1, (20c)

(P )ext zT (w[T ]) ≥ hT

(

xT (w[T ])
)

, (20d)

xk+1(w[k+1]) = Ak xk(w[k]) + Bk uk(w[k]) + w(k), k = 0, . . . , T − 1, (20e)

fk ≥ Ex(k)xk(w[k]) + Eu(k)uk(w[k]), k = 0, . . . , T − 1, (20f)

fT ≥ Ex(T )xT (w[T ]). (20g)

In this formulation, non-anticipatory uk(w[k]) control values and corresponding states xk(w[k]) are
computed for every vertex of the disturbance set, i.e., for every w[k] ∈ ext(W0)×· · ·×ext(Wk−1), k =
0, . . . , T − 1. The variables zk(w[k]) are used to model the stage cost at time k, in scenario w[k].
Note that constraints (20c), (20d) can be immediately rewritten in linear form, since the functions
hk(x,u), hT (x) are piece-wise affine and convex in their arguments.

We emphasize that the formulation does not seek to compute an actual policy u⋆
k(xk), but

rather the values that this policy would take (and the associated states and costs), when the un-
certainty realizations are restricted to extreme points of the uncertainty set. As such, the variables
uk(w[k]),xk(w[k]) and zk(w[k]) must also be forced to satisfy a non-anticipativity constraint11,
which is implicitly taken into account when only allowing them to depend on the portion of the
extreme sequence available at time k, i.e., w[k]. Due to this coupling constraint, Problem (P )ext

results in a Linear Program which is doubly-exponential in the horizon T , with the number of vari-
ables and the number of constraints both proportional to the number of extreme sequences in the
uncertainty set, O

(
∏T−1

k=0 |ext(Wk)|
)

. Therefore, solving (P )ext is relevant only for small horizons,
but is very useful for benchmarking purposes, since it provides the optimal value of the original
problem.

We conclude this section by examining a particular example when the uncertainty sets take an
even simpler form, and polynomial policies (11) are provably optimal. More precisely, we consider
the case of scalar uncertainties (nw = 1), and

w(k) ∈ W(k)
def
= [wk, wk] ⊂ R, ∀ k = 0, . . . , T − 1, (21)

known in the literature as box uncertainty Ben-Tal and Nemirovski [2002], Ben-Tal et al. [2004].

Under this model, any partial uncertain sequence w[k]
def
= (w0, . . . , wk−1) will be a k-dimensional

vector, lying inside the hypercube W[k]
def
= W0 × · · · ×Wk−1 ⊂ R

k.

Introducing the subclass of multi-affine policies12 of degree d, given by

uj(k,w[k]) =
∑

α∈{0,1}k

ℓα (w[k])
α, where

k
∑

i=1

αi ≤ d, (22)

11In our current notation, non-anticipativity is equivalent to requiring that, for any two sequences (w0, . . . , wT−1)
and (ŵ0, . . . , ŵT−1) satisfying wt = ŵt,∀ t ∈ {0, . . . , k − 1}, we have ut(w[t]) = ut(ŵ[t]),∀ t ∈ {0, . . . , k}.

12Note that these are simply polynomial policies of the form (11), involving only square-free monomials, i.e., every

monomial, wα
[k]

def
=

Qk−1
i=0 w

αi

i , satisfies the condition αi ∈ {0, 1}.
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one can show (see Theorem 2 in the Appendix) that multi-affine policies of degree T −1 are, in fact,
optimal for Problem (P ). While this theoretical result is of minor practical importance (due to
the large degree needed for the policies, which translates into prohibitive computation), it provides
motivation for restricting attention to polynomials of smaller degree, as a midway solution that
preserves tractability, while delivering high quality objective values.

For completeness, we remark that, for the case of box-uncertainty, the authors in Ben-Tal et al.
[2009] show one can seek separable polynomial policies of the form

uj(k,w[k]) =

k
∑

i=1

pi(wi), ∀ j ∈ {1, . . . , nu}, ∀ k ∈ {0, . . . , T − 1},

where pi ∈ Pd[x] are univariate polynomials in indeterminate x. The advantage of this approach is
that the reformulation of a typical state-control constraint would be exact (refer to Lemma 14.3.4
in Ben-Tal et al. [2009]). The main pitfall, however, is that for the case of box-uncertainty, such a
rule would never improve over purely affine rules, i.e., where all the polynomials pi have degree 1
(refer to Lemma 14.3.6 in Ben-Tal et al. [2009]). However, as we will see in our numerical results
(to be presented in Section 6), polynomials policies that are not separable, i.e., are of the general
form (11), can and do improve over the affine case.

5 Examples from Inventory Management

To test the performance of our proposed policies, we consider two problems arising in inventory
management.

5.1 Single Echelon with Cumulative Order Constraints

This first example was originally discussed in a robust framework by Ben-Tal et al. [2005b], in the
context of a more general model for the problem of negotiating flexible contracts between a retailer
and a supplier in the presence of uncertain orders from customers. We describe a simplified version
of the problem, which is sufficient to illustrate the benefit of our approach, and refer the interested
reader to Ben-Tal et al. [2005b] for more details.

The setting is the following: consider a single-product, single-echelon, multi-period supply chain,
in which inventories are managed periodically over a planning horizon of T periods. The unknown
demands wk from customers arrive at the (unique) echelon, henceforth referred to as the retailer,
and are satisfied from the on-hand inventory, denoted by xk at the beginning of period k. The
retailer can replenish the inventory by placing orders uk, at the beginning of each period k, for a
cost of ck per unit of product. These orders are immediately available, i.e., there is no lead-time in
the system, but there are capacities on the order size in every period, Lk ≤ uk ≤ Uk, as well as on
the cumulative orders places in consecutive periods, L̂k ≤

∑k
t=0 ut ≤ Ûk. After the demand wk is

realized, the retailer incurs holding costs Hk+1 ·max{0, xk + uk −wk} for all the amounts of supply
stored on her premises, as well as penalties Bk+1 · max{wk − xk − uk, 0}, for any demand that is
backlogged.

In the spirit of robust optimization, we assume that the only information available about the
demand at time k is that it resides within an interval centered around a nominal (mean) demand
d̄k, which results in the uncertainty set Wk = {wk ∈ R :

∣

∣wk − d̄k

∣

∣ ≤ ρ · d̄k }, where ρ ∈ [0, 1] can
be interpreted as an uncertainty level.

With the objective function to be minimized as the cost resulting in the worst-case scenario, we
immediately obtain an instance of our original Problem (P ), i.e., a linear system with n = 2 states
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and nu = 1 control, where x1(k) represents the on-hand inventory at the beginning of time k, and
x2(k) denotes the total amount of orders placed in prior times, x2(k) =

∑k−1
t=0 u(t). The dynamics

are specified by

x1(k + 1) = x1(k) + u(k) − w(k),

x2(k + 1) = x2(k) + u(k),

with the constraints

Lk ≤ u(k) ≤ Uk,

L̂k ≤ x2(k) + u(k) ≤ Ûk,

and the costs

hk(xk, uk) = max
{

ck uk + [Hk, 0]
T xk, ck uk + [−Bk, 0]T xk

}

,

hT (xT ) = max
{

[HT , 0]T xT , [−BT , 0]T xT

}

.

We remark that the cumulative order constraints, L̂k ≤
∑k

t=0 ut ≤ Ûk, are needed here, since
otherwise, the resulting (one-dimensional) system would fit the theoretical results from Bertsimas
et al. [2010], which would imply that polynomial policies of the form (11) and polynomial stage
costs of the form (16b) are already optimal for degree d = 1 (affine). Therefore, testing for higher
order polynomial policies would not add any benefit.

5.2 Serial Supply Chain

As a second problem, we consider a serial supply chain, in which there are J echelons, numbered
1, . . . , J , managed over a planning horizon of T periods by a centralized decision maker. The j-
th echelon can hold inventory on its premises, for a per-unit cost of Hj(k) in time period k. In
every period, echelon 1 faces the unknown, external demands w(k), which it must satisfy from
the on-hand inventory. Unmet demands can be backlogged, incurring a particular per-unit cost,
B1(k). The j-th echelon can replenish its on-hand inventory by placing orders with the immediate
echelon in the upstream, j + 1, for a per-unit cost of cj(k). For simplicity, we assume the orders
are received with zero lead-time, and are only constrained to be non-negative, and we assume that
the last echelon, J , can replenish inventory from a supplier with infinite capacity.

Following a standard requirement in inventory theory Zipkin [2000], we maintain that, under
centralized control, orders placed by echelon j at the beginning of period k cannot be backlogged
at echelon j +1, and thus must always be sufficiently small to be satisfiable from on-hand inventory
at the beginning13 of period k at echelon j + 1. As such, instead of referring to orders placed by
echelon j to the upstream echelon j +1, we will refer to physical shipments from j +1 to j, in every
period.

This problem can be immediately translated into the linear systems framework mentioned be-
fore, by introducing the following states, controls, and uncertainties:

• Let xj(k) denote the local inventory at stage j, at the beginning of period k.

• Let uj(k) denote the shipment sent in period k from echelon j + 1 to echelon j.

13This implies that the order placed by echelon j in period k (to the upstream echelon, j + 1) cannot be used to
satisfy the order in period k from the downstream echelon, j − 1. Technically, this corresponds to an effective lead
time of 1 period, and a more appropriate model would redefine the state vector accordingly. We have opted to keep
our current formulation for simplicity.
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• Let the unknown external demands arriving at echelon 1 represent the uncertainties, w(k).

The dynamics of the linear system can then be formulated as

x1(k + 1) = x1(k) + u1(k) − w(k), k = 0, . . . , T − 1,

xj(k + 1) = xj(k) + uj(k) − uj−1(k), j = 2, . . . , J, k = 0, . . . , T − 1,

with the following constraints on the states and controls

uj(k) ≥ 0, j = 1, . . . , J, k = 0, . . . , T − 1, (non-negative shipments)

xj(k) ≥ uj−1(k), j = 2, . . . , J, k = 0, . . . , T − 1, (downstream order ≤ upstream inventory)

and the costs

h1

(

k, x1(k), u1(k)
)

= c1(k)u1(k) + max
{

H1(k)x1(k), −B1(k)x1(k)
}

, k = 0, . . . , T − 1

h1

(

T, x1(T )
)

= max
{

H1(T )x1(T ), −B1(T )x1(T )
}

,

hj

(

k, xj(k), uj(k)
)

= cj(k)uj(k) + Hj(k)xj(k), k = 0, . . . , T − 1

hj

(

T, xj(T )
)

= Hj(T )xj(T ).

With the same model of uncertainty as before, Wk =
[

d̄k(1− ρ), d̄k(1 + ρ)
]

, for some known mean
demand d̄k and uncertainty level ρ ∈ [0, 1], and the goal to decide shipment quantities uj(k) so as
to minimize the cost in the worst-case scenario, we obtain a different example of Problem (P ).

6 Numerical Experiments

In this section, we present numerical simulations testing the performance of polynomial policies
in each of the two problems mentioned in Section 5. In order to examine the dependency of our
results on the size of the problem, we proceed in the following fashion.

6.1 First Example

For the first model (single echelon with cumulative order constraints), we vary the horizon of the
problem from T = 4 to T = 10, and for every value of T , we:

1. Create 100 problem instances, by randomly generating the cost parameters and the con-
straints, in which the performance of polynomial policies of degree 1 (affine) is suboptimal.

2. For every such instance, we compute:

• The optimal cost OPT , by solving the exponential Linear Program (P )ext.

• The optimal cost P̄d obtained with polynomial policies of degree d = 1, 2, and 3, re-
spectively, by solving the corresponding associated SDP formulations, as introduced in
Section 3.

We also record the relative optimality gap corresponding to each polynomial policy, defined
as (P̄d − OPT )/OPT , and the solver time.

3. We compute statistics over the 100 different instances (recording the mean, standard devi-
ation, min, max and median) for the optimality gaps and solver times corresponding to all
three polynomial parameterizations.
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Table 1 and Table 2 record these statistics for relative gaps and solver times, respectively. The
following conclusions can be drawn from the results:

• Policies of higher degree decrease the performance gap considerably. In particular, while affine
policies yield an average gap between 2.8% and 3.7% (with a median gap between 2% and
2.7%), quadratic policies reduce both average and median gaps by a factor of 3, and cubic
policies essentially close the optimality gap (all gaps are smaller than 1%, with a median gap
smaller than 0.01%). To better see this, Figure 1 illustrates the box-plots corresponding to
the three policies for a typical case (here, T = 6).

• The reductions in the relative gaps are not very sensitive to the horizon, T . Figure 2(a)
illustrates this effect for the case of quadratic policies, and similar plots can be drawn for the
affine and cubic cases.

• The computational time grows polynomially with the horizon size. While computations for
cubic policies are rather expensive, the quadratic case, shown in Figure 2(b), shows promise
for scalability - for horizon T = 10, the median and average solver times are below 15 seconds.

6.2 Second Example

For the second model (serial supply chain), we fix the problem horizon to T = 7, and vary the
number of echelons from J = 2 to J = 5. For every resulting size, we go through the same steps 1-3
as outlined above, and record the same statistics, displayed in Table 3 and Table 4, respectively.
Essentially the same observations as before hold. Namely, policies of higher degree result in strict
improvements of the objective function, with cubic policies always resulting in gaps smaller than 1%
(see Figure 3(a) for a typical case). Also, increasing the problem size (here, this corresponds to the
number of echelons, J) does not affect the reductions in gaps, and the computational requirements
do not increase drastically (see Figure 3(b), which corresponds to quadratic policies).

All our computations were done in a MATLABR© environment, on the MIT Operations Research
Center computational machine (3 GHz IntelR© Dual Core Xeon R© 5050 Processor, with 8GB of RAM
memory, running Ubuntu Linux). The optimization problems were formulated using YALMIP
Löfberg [2004], and the resulting SDPs were solved with SDPT3 Toh et al. [1999].

We remark that the computational times could be substantially reduced by exploiting the
structure of the polynomial optimization problems (e.g., Nie [2009]), and by utilizing more suitable
techniques for solving smooth large-scale SDPs (see, e.g., Lan et al. [2009] and the references
therein). Such techniques are immediately applicable to our setting, and could provide a large speed-

Table 1: Relative gaps (in %) for polynomial policies in Example 1

Degree d = 1 Degree d = 2 Degree d = 3
T avg std mdn min max avg std mdn min max avg std mdn min max

4 2.84 2.41 2.18 0.02 9.76 0.75 0.85 0.47 0.00 3.79 0.03 0.12 0.00 0.00 0.91
5 2.82 2.29 2.52 0.04 11.22 0.62 0.71 0.39 0.00 3.92 0.02 0.09 0.00 0.00 0.56
6 3.09 2.63 2.36 0.01 9.82 0.69 0.89 0.25 0.00 3.47 0.03 0.10 0.00 0.00 0.59
7 3.25 2.95 2.58 0.13 15.00 0.83 0.99 0.43 0.00 4.79 0.06 0.17 0.00 0.00 0.93
8 3.66 3.29 2.69 0.03 18.36 1.06 1.17 0.74 0.00 5.81 0.10 0.17 0.00 0.00 0.99
9 2.93 2.78 2.12 0.05 11.56 0.80 0.86 0.55 0.00 3.39 0.07 0.13 0.00 0.00 0.61
10 3.44 3.60 2.09 0.00 18.20 0.76 1.16 0.26 0.00 5.76 0.05 0.12 0.00 0.00 0.74
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Figure 1: Box plots comparing the performance of different polynomial policies for horizon T = 6
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Figure 2: Performance of quadratic policies for Example 1 - (a) illustrates the weak dependency
of the improvement on the problem size (measured in terms of the horizon T ), while (b) compares
the solver times required for different problem sizes.

up over general-purpose algorithms (such as the interior point methods implemented in SDPT3),

Table 2: Solver times (in seconds) for polynomial policies in Example 1

Degree d = 1 Degree d = 2 Degree d = 3
T avg std mdn min max avg std mdn min max avg std mdn min max

4 0.47 0.05 0.46 0.38 0.63 1.27 0.10 1.27 1.13 1.62 3.33 0.21 3.24 3.01 4.03
5 0.58 0.06 0.58 0.46 0.75 2.03 0.20 1.97 1.69 2.65 7.51 0.91 7.27 6.58 12.08
6 0.73 0.11 0.72 0.62 1.50 2.29 0.22 2.28 1.87 3.26 18.96 2.54 18.25 16.07 31.86
7 0.88 0.08 0.87 0.72 1.07 3.08 0.23 3.10 2.47 3.67 48.83 5.63 47.99 40.65 74.09
8 1.13 0.12 1.11 0.94 1.92 4.79 0.32 4.75 3.97 5.96 157.73 20.67 153.91 126.15 217.80
9 1.53 0.17 1.51 1.27 2.66 7.65 0.51 7.65 6.10 9.59 420.75 60.10 411.09 334.71 760.13
10 1.31 0.15 1.30 1.07 2.19 14.77 1.24 14.80 11.81 18.57 1846.94 600.89 1640.10 1313.18 4547.09
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Figure 3: Performance of polynomial policies for Example 2. (a) compares the three policies for
problems with J = 3 echelons, and (b) shows the solver times needed to compute quadratic policies
for different problem sizes.

hence allowing much larger and more complicated instances to be solved.

7 Conclusions

In this paper, we have presented a new method for dealing with multi-stage decision problems af-
fected by uncertainty, applicable to robust optimization and stochastic programming. Our approach
consists of constructing a hierarchy of sub-optimal polynomial policies, parameterized directly in
the observed uncertainties. The problem of computing such an optimal polynomial policy can
be reformulated as an SDP, which can be solved efficiently with interior point methods. Fur-
thermore, the approach allows modelling flexibility, in that the degree of the polynomial policies
explicitly controls the trade-off between the quality of the approximation and the computational
requirements. To test the quality of the policies, we have considered two applications in inventory
management, one involving a single echelon with constrained cumulative orders, and the second
involving a serial supply chain. For both examples, quadratic policies (requiring modest computa-
tional requirements) were able to substantially reduce the optimality gap, and cubic policies (under
more computational requirements) were always within 1% of optimal. Given that our tests were
run using publicly-available, general-purpose SDP solvers, we believe that, with the advent of more
powerful (commercial) packages for interior point methods, as well as dedicated algorithms for

Table 3: Relative gaps (in %) for polynomial policies in Example 2

Degree d = 1 Degree d = 2 Degree d = 3
J avg std mdn min max avg std mdn min max avg std mdn min max

2 1.87 1.48 1.47 0.00 8.27 1.38 1.16 1.11 0.00 6.48 0.06 0.14 0.01 0.00 0.96
3 1.47 0.89 1.27 0.16 4.46 1.08 0.68 0.93 0.14 3.33 0.04 0.06 0.00 0.00 0.32
4 1.14 2.46 0.70 0.05 24.63 0.67 0.53 0.53 0.01 2.10 0.04 0.07 0.00 0.00 0.38
5 0.35 0.37 0.21 0.03 1.85 0.27 0.32 0.15 0.00 1.59 0.02 0.03 0.00 0.00 0.15
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Table 4: Solver times (in seconds) for polynomial policies Example 2

Degree d = 1 Degree d = 2 Degree d = 3
J avg std mdn min max avg std mdn min max avg std mdn min max

2 1.22 0.20 1.18 0.86 2.35 5.58 1.05 5.44 3.82 8.79 81.64 14.02 80.88 52.55 116.56
3 1.72 0.26 1.70 1.21 3.09 8.84 1.40 8.53 6.83 13.19 115.08 20.91 109.96 77.29 183.84
4 1.57 0.22 1.55 1.20 2.85 12.59 1.63 12.44 8.86 17.86 160.05 19.34 159.29 82.11 207.56
5 2.59 1.46 1.97 1.51 8.18 18.97 6.59 17.59 13.21 63.71 250.43 109.96 227.56 144.54 952.37

solving SOS problems, our method should have applicability to large scale, real-world optimization
problems.

8 Appendix

8.1 Suboptimality of Affine Policies

Lemma 1. Consider Problem (9), written below for convenience. Recall that x is a (first-stage)
non-adjustable decision, while y is a second-stage adjustable policy (allowed to depend on w).

minimize
x,y(w)

x

such that x ≥
N

∑

i=1

yi, ∀w ∈ W =
{

(w1, . . . , wN ) ∈ R
N : ‖w‖2 ≤ 1

}

, (23a)

yi ≥ w2
i , ∀w ∈ W. (23b)

The optimal value in the problem is 1, corresponding to policies yi(w) = w2
i , i = 1, . . . , N . Fur-

thermore, the optimal achievable objective under affine policies y(w) is N .

Proof. Note that for any feasible x,y, we have x ≥
∑N

i=1 yi ≥
∑N

i=1 w2
i , for any w ∈ W. Therefore,

with
∑N

i=1 w2
i = 1, we must have x ≥ 1. Also note that y⋆

i (w) = w2
i is robustly feasible for

constraint (23b), and results in an objective x⋆ = maxw∈W
∑N

i=1 w2
i = 1, which equals the lower

bound, and is hence optimal.
Consider an affine policy in the second stage, yAFF

i (w) = βi + αT
i w, i = 1, . . . , N . With e1

denoting the first unit vector (1 in the first component, 0 otherwise), for any i = 1, . . . , N , we have:

w = e1 ∈ W ⇒ βi + αi(1) ≥ 1

w = −e1 ∈ W ⇒ βi − αi(1) ≥ 1

}

⇒ βi ≥ 1.

This implies that xAFF ≥
∑N

i=1 yAFF
i (w) ≥ N +

∑N
i=1 αT

i w. In particular, with w = 0 ∈ W, we
have xAFF ≥ N . The optimal choice, in this case, will be to set αi = 0, resulting in xAFF = N .

8.2 Optimality of Multi-affine Policies

Theorem 2. Multi-affine policies of the form (22), with degree at most d = T − 1, are optimal for
problem (P ).

Proof. The following trivial observation will be useful in our analysis:

Observation 1. A multi-affine policy uj of the form (22) is an affine function of a given variable
wi, when all the other variables wl, l 6= i, are fixed. Also, with uj of degree at most d, the number

of coefficients ℓα is
(

k
0

)

+
(

k
1

)

+ · · · +
(

k
d

)

.
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Recall that the optimal value in Problem (P ) is that same as the optimal value in Problem
(P )ext from Section 4.2. Let us denote the optimal decisions obtained from solving problem (P )ext

by uext
k (w[k]),x

ext
k (w[k]), respectively. Note that, at time k, there are at most 2k such distinct

values uext
k (w[k]), and, correspondingly, at most 2k values xext

k (w[k]), due to the non-anticipativity
condition and the fact that the extreme uncertainty sequences at time k, w[k] ∈ ext(W[k]) =

ext(W0) × · · · × ext(Wk−1), are simply the vertices of the hypercube W[k] ⊂ R
k. In particular, at

the last time when decisions are taken, k = T − 1, there are at most 2T−1 distinct optimal values
uext

T−1(w[T−1]) computed.
Consider now a multi-affine policy of the form (22), of degree T −1, implemented at time T −1.

By Observation 1, the number of coefficients in the j-th component of such a policy is exactly
(

T−1
0

)

+
(

T−1
1

)

+ · · · +
(

T−1
T−1

)

= 2T−1, by Newton’s binomial formula. Therefore, the total nu · 2T−1

coefficients for uT−1 could be computed so that

uT−1(w[T−1]) = uext
T−1(w[T−1]), ∀ w[T−1] ∈ ext(W[T−1]), (24)

that is, the value of the multi-affine policy exactly matches the 2T−1 optimal decisions computed
in (P )ext, at the 2T−1 vertices of W[T−1]. The same process can be conducted for times k =
T − 2, . . . , 1, 0, to obtain multi-affine policies of degree at most14 T − 1 that match the values
uext

k (w[k]) at the extreme points of W[k].
With such multi-affine control policies, it is easy to see that the states xk become multi-affine

functions of w[k]. Furthermore, we have xk(w[k]) = xext
k (w[k]), ∀w[k] ∈ ext(w[k]). A typical state-

control constraint (7c) written at time k amounts to ensuring that

ex(k, j)T xk(w[k]) + eu(k, j)T uk(w[k]) − fj(k) ≤ 0,

∀w[k] ∈ W[k],

where ex(k, j)T ,eu(k, j)T denote the j-th row of Ex(k) and Eu(k), respectively. Note that the
left-hand side of this expression is also a multi-affine function of the variables w[k]. Since, by
our observation, the maximum of multi-affine functions is reached at the vertices of the fea-
sible set, i.e., w[k] ∈ ext(W[k]), and, by (24), we have that for any such vertex, uk(w[k]) =
uext

k (w[k]),xk(w[k]) = xext
k (w[k]), we immediately conclude that the constraint above is satisfied,

since uext
k (w[k]),x

ext
k (w[k]) are certainly feasible.

A similar argument can be invoked for constraint (7d), and also to show that the maximum
of the objective function is reached on the set of vertices ext(W[T ]), and, since the values of the
multi-affine policies exactly correspond to the optimal decisions in program (P )ext, optimality is
preserved.

8.3 Comparison with Other Methodologies

Theorem. If the uncertainty sets Wk are given by the intersection of finitely many convex quadratic
forms, and have nonempty interior, then the objective functions obtained from the polynomial hi-
erarchy satisfy the following relation:

J⋆
AFF ≥ J⋆

d=1 ≥ J⋆
d=2 ≥ . . . ,

Proof. First, note that the hierarchy can only improve when the polynomial degree d is increased
(this is because any feasible solutions for a particular degree d remain feasible for degree d + 1).
Therefore, we only need to prove the first inequality.

14In fact, multi-affine policies of degree k would be sufficient at time k
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Consider any feasible solution to Problem (PAFF) under disturbance-affine policies, i.e., any
choice of matrices {Lk}0≤k≤T−1, coefficients {zk}0≤k≤T and cost J , such that all constraints in
(PAFF) are satisfied.

Note that a typical constraint in Problem (PAFF) becomes

f(w[k]) ≥ 0, ∀w[k] ∈ W[k],

where f is a degree 1 polynomial in indeterminate w[k], with coefficients that are affine functions of
the decision variables. By the assumption in the statement of the theorem, the sets Wk are convex,
with nonempty interior, ∀ k ∈ {0, . . . , T − 1}, which implies that W[k] = W0 × · · · × Wk−1 is also
convex, with non-empty interior.

Therefore, the typical constraint above can be written as

f(w[k]) ≥ 0, ∀w[k] ∈
{

ξ ∈ R
k×nw : gj(ξ) ≥ 0, j ∈ J

}

,

where J is a finite index set, and gj(·) are convex. By the nonlinear Farkas Lemma (see, e.g.,
Proposition 3.5.4 in Bertsekas et al. [2003]), there must exist multipliers 0 ≤ λj ∈ R,∀ j ∈ J , such
that

f(w[k]) ≥
∑

j∈J

λjgj(w[k]).

But then, recall that our SOS framework required the existence of polynomials σj(w[k]), j ∈ {0}∪J ,
such that

f(w[k]) = σ0(w[k]) +
∑

j∈J

σj(w[k]) gj(w[k]).

By choosing σj(w[k]) ≡ λj , ∀ j ∈ J , and σ0(w[k]) = f(w[k])−
∑

j∈J λjgj(w[k]), we can immediately
see that:

• ∀ j 6= 0, σj are SOS (they are positive constants)

• Since gj are quadratic, and f is affine, σ0 is a quadratic polynomial which is non-negative,
for any w[k]. Therefore, since any such polynomial can be represented as a sum-of-squares
(see Parrilo [2003], Lasserre [2001]), we also have that σ0 is SOS.

By these two observations, we can conclude that the particular choice Lk,zk, J will also remain
feasible in our SOS framework applied to degree d = 1, and, hence, J⋆

AFF ≥ J⋆
d=1.
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