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Abstract

Finding the stable models of a knowledge base is a signi�cant computational problem
in arti�cial intelligence. This task is at the computational heart of truth maintenance
systems, autoepistemic logic, and default logic. Unfortunately, it is NP-hard. In this
paper we present a hierarchy of classes of knowledge bases, 
1;
2; :::, with the following
properties: �rst, 
1 is the class of all strati�ed knowledge bases; second, if a knowledge
base � is in 
k, then � has at most k stable models, and all of them may be found in time
O(lnk), where l is the length of the knowledge base and n the number of atoms in �; third,
for an arbitrary knowledge base �, we can �nd the minimum k such that � belongs to 
k

in time polynomial in the size of �; and, last, where K is the class of all knowledge bases,
it is the case that

S
1

i=1

i = K, that is, every knowledge base belongs to some class in the

hierarchy.

1. Introduction

The task of computing the stable models of a knowledge base lies at the heart of three of
the fundamental systems in Arti�cial Intelligence (AI): truth maintenance systems (TMSs),
default logic, and autoepistemic logic. Yet, this task is intractable (Elkan, 1990; Kautz &
Selman, 1991; Marek & Truszczy�nski, 1991). In this paper, we introduce a hierarchy of
classes of knowledge bases which achieves this task in polynomial time. Membership in a
certain class in the hierarchy is testable in polynomial time. Hence, given a knowledge base,
the cost of computing its stable models can be bounded prior to the actual computation (if
the algorithms on which this hierarchy is based are used).

First, let us elaborate the relevance of computing stable models to AI tasks. We de�ne
a knowledge base to be a set of rules of the form

C �A1; :::; Am; not B1; :::; not Bn (1)

where C, all As, and all Bs are atoms in some propositional language. Substantial e�orts to
give a meaning, or semantics, to a knowledge base have been made in the logic programming
community (Przymusinska & Przymusinski, 1990). One of the most successful semantics for
knowledge bases is stable model semantics (Bidoit & Froidevaux, 1987; Gelfond & Lifschitz,
1988; Fine, 1989), which associates any knowledge base with a (possibly empty) set of
models called stable models. Intuitively, each stable model represents a set of coherent
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conclusions one might deduce from the knowledge base. It turns out that stable models
play a central role in some major deductive systems in AI. 1

1.1 Stable Models and TMSs

TMSs (Doyle, 1979) are inference systems for nonmonotonic reasoning with default as-
sumptions. The TMS manages a set of nodes and a set of justi�cations, where each node
represents a piece of information and the justi�cations are rules that state the dependencies
between the nodes. The TMS computes a grounded set of nodes and assigns this set to be
the information believed to be true at a given point in time. Intuitively, a set of believed
nodes is grounded if it satis�es all the rules, but no node is believed true solely on the basis
of a circular chain of justi�cations. Elkan (1990) pointed out that the nodes of a TMS
can be viewed as propositional atoms, and the set of its justi�cations as a knowledge base.
He showed that the task of computing grounded interpretations for a set of TMS justi�ca-
tions corresponds exactly to the task of computing the stable models of the knowledge base
represented by the set of TMS justi�cations.

1.2 Stable Models and Autoepistemic Logic

Autoepistemic logic was invented by Moore (1985) in order to formalize the process of an
agent reasoning about its own beliefs. The language of autoepistemic logic is a propositional
language augmented by a modal operator L. Given a theory (a set of formulas) T in
autoepistemic logic, a theory E is called a stable expansion of T i�

E = (T
S
fLF jF 2 Eg

S
f:LF jF =2 Eg)�

where T � denotes the logical closure of T . We will now restrict ourselves to a subset of
autoepistemic logic in which each formula is of the form

A1 ^ ::: ^Am ^ :LB1 ^ :::^ :LBn�!C (2)

where C, each of the As, and each of the Bs are propositional atoms. We call this subset
the class of autoepistemic programs. Every autoepistemic program T can be translated into
a knowledge base �T by representing the formula (2) as the knowledge base rule (1). Elkan
(1990) has shown that M is a stable model of �T i� there is an expansion E of T such
that M is the set of all positive atoms in E. Thus, algorithms for computing stable models
may be used in computing expansions of autoepistemic programs. The relationship between
stable model semantics and autoepistemic logic has also been explored by Gelfond (1987)
and Gelfond and Lifschitz (1988, 1991).

1.3 Stable Models and Default Logic

Default logic is a formalism developed by Reiter (1980) for reasoning with default assump-
tions. A default theory can be viewed as a set of defaults, and a default is de�ned as an
expression of the form

� : �1; :::; �n


(3)

1. In logic programming terminology, the knowledge bases discussed in this paper are called normal logic

programs.
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where �; , and �1; :::; �n are formulas in some �rst-order language. According to Reiter, E
is an extension for a default theory � i� E coincides with one of the minimal deductively
closed sets of sentences E0 satisfying the condition2 that for any grounded instance of a
default (3) from �, if � 2 E0 and :�1; :::;:�n =2 E, then  2 E0.

Now consider the subset of default theories that we call default programs. A default
program is a set of defaults of the form

A1 ^ :::^ Am : :B1; :::;:Bn

C
(4)

in which C, each of the As, and each of the Bs are atoms in a propositional language.

Each default program � can be associated with a knowledge base �� by replacing each
default of the form (4) with the rule (1).

Gelfond and Lifschitz (1991) have shown that the logical closure of a set of atoms E is
an extension of � i� E is a stable model of ��. Algorithms for computing stable models
can thus be used in computing extensions of Reiter's default theories.

� � �

The paper is organized as follows. In the next section, we de�ne our terminology.
Section 3 presents two algorithms for computing all stable models of a knowledge base.
The complexity of the �rst of these algorithms depends on the number of atoms appearing
negatively in the knowledge base, while the complexity of the other algorithm depends
on the number of rules having negative atoms in their bodies. In Section 4, we present
the main algorithm of the paper, called algorithm AAS. Algorithm AAS works from the
bottom up on the superstructure of the dependency graph of the knowledge base and uses
the two algorithms presented in Section 3 as subroutines. Section 5 explains how the AAS
algorithm can be generalized to handle knowledge bases over a �rst-order language. Finally,
in Sections 6 and 7, we discuss related work and make concluding remarks.

2. Preliminary De�nitions

Recall that here a knowledge base is de�ned as a set of rules of the form

C �A1; :::; Am; not B1; :::; not Bn (5)

where C, each of the As, and each of the Bs are propositional atoms. The expression to the
left of  � is called the head of the rule, while the expression to the right of  � is called
the body of the rule. Each of the As is said to appear positive in the rule, and, accordingly,
each of the Bs is said to appear negative in the rule. Rule (5) is said to be about C. A rule
with an empty body is called a unit rule. Sometimes we will treat a truth assignment (in
other words, interpretation) in propositional logic as a set of atoms | the set of all atoms
assigned true by the interpretation. Given an interpretation I and a set of atoms A, IA
denotes the projection of I over A. Given two interpretations, I and J , over sets of atoms

2. Note the appearance of E in the condition.
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A and B, respectively, the interpretation I + J is de�ned as follows:

I + J(P ) =

8>>><
>>>:

I(P ) if P 2 A nB
J(P ) if P 2 B nA
I(P ) if P 2 A

T
B and I(P ) = J(P )

unde�ned otherwise

If I(P ) = J(P ) for every P 2 A
T
B, we say that I and J are consistent.

A partial interpretation is a truth assignment over a subset of the atoms. Hence, a partial
interpretation can be represented as a consistent set of literals: positive literals represent
the atoms that are true, negative literals the atoms that are false, and the rest are unknown.
A knowledge base will be called Horn if all its rules are Horn. A model for a theory (set
of clauses) in propositional logic is a truth assignment that satis�es all the clauses. If one
looks at a knowledge base as a theory in propositional logic, a Horn knowledge base has a
unique minimal model (recall that a model m is minimal among a set of models M i� there
is no model m0 2M such that m0 � m).

Given a knowledge base � and a set of atoms m, Gelfond and Lifschitz de�ned what is
now called the Gelfond-Lifschitz (GL) transform of � w.r.t. m, which is a knowledge base
�m obtained from � by deleting each rule that has a negative literal not P in its body with
P 2 m and deleting all negative literals in the bodies of the remaining rules. Note that �m

is a Horn knowledge base. A model m is a stable model of a knowledge base � i� it is the
unique minimal model of �m (Gelfond & Lifschitz, 1988).

Example 2.1 Consider the following knowledge base �0, which will be used as one of the
canonical examples throughout this paper:

warm blooded  � mammal (6)

live on land  � mammal; not ab1 (7)

female  � mammal; not male (8)

male  � mammal; not female (9)

mammal  � dolphin (10)

ab1  � dolphin (11)

mammal  � lion (12)

lion  � (13)

m = flion;mammal;warm blooded; live on land; femaleg is a stable model of �0. Indeed,
�0m (the GL transform of �0 w.r.t. m) is

warm blooded  � mammal

live on land  � mammal

female  � mammal

mammal  � dolphin

ab1  � dolphin

mammal  � lion

lion  �
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and m is a minimal model of �0m .

A set of atoms S satis�es the body of a rule � i� each atom that appears positive in the
body of � is in S and each atom that appears negative in the body of � is not in S. A set
of atoms S satis�es a rule i� either it does not satisfy its body, or it satis�es its body and
the atom that appears in its head belongs to S.

A proof of an atom is a sequence of rules from which the atom can be derived. Formally,
we can recursively de�ne when an atom P has a proof w.r.t. a set of atoms S and a
knowledge base �:

� If the unit rule P � is in �, then P has a proof w.r.t. � and S.

� If the rule P �A1; :::; Am; not B1; :::; not Bn is in �, and for every i = 1; :::; n Bi is
not in S, and for every i = 1; :::; m Ai already has a proof w.r.t. � and S, then P has
a proof w.r.t. � and S.

Theorem 2.2 (Elkan, 1990; Ben-Eliyahu & Dechter, 1994) A set of atoms S is a stable
model of a knowledge base � i�

1. S satis�es each rule in �, and

2. for each atom P in S, there is a proof of P w.r.t � and S.

It is a simple matter to show that the following lemma is true.

Lemma 2.3 Let � be a knowledge base, and let S be a set of atoms. De�ne:

1. S0 = ;, and

2. Si+1 = Si
S
fP jP �A1; :::; Am; not B1; :::; not Bn is in �;

all of the A's belong to Si and none of the B's belong to Sg.

Then S is a stable model of � i� S =
S1
0 Si.

Observe that although every stable model is a minimal model of the knowledge base
viewed as a propositional theory, not every minimal model is a stable model.

Example 2.4 Consider the knowledge base

b  � not a

Both fag and fbg are minimal models of the knowledge base above, but only fbg is a stable
model of this knowledge base.

Note that a knowledge base may have one or more stable models, or no stable model at all.
If a knowledge base has at least one stable model, we say that it is consistent.

The dependency graph of a knowledge base � is a directed graph where each atom is a
node and where there is a positive edge directed from P to Q i� there is a rule about Q
in � in which P appears positive in the body. Accordingly, there is a negative edge from
P to Q i� there is a rule about Q in which P appears negative in the body. Recall that a
source of a directed graph is a node with no incoming edges, while a sink is a node with no
outgoing edges. Given a directed graph G and a node s in G, the subgraph rooted by s is
the subgraph of G having only nodes t such that there is a path directed from t to s in G.
The children of s in G are all nodes t such that there is an arc directed from t to s in G.
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Example 2.5 The dependency graph of �0 is shown in Figure 1. Negative edges are
marked \not." The children of mammal are lion and dolphin. The subgraph rooted by
on land is the subgraph that include the nodes lion, mammal, dolphin, ab1, and on land.

female

male

warm_blood

on_land

ab1
dolphin

not

not

not

lion

mammal

Figure 1: The dependency graph of �0

A knowledge base is strati�ed i� we can assign each atom C a positive integer iC such
that for every rule in the form of (5) above, for each of the As, iA � iC , and for each of
the Bs, iB < iC . It can be readily demonstrated that a knowledge base is strati�ed i� in
its dependency graph there are no directed cycles going through negative edges. It is well
known in the logic programming community that a strati�ed knowledge base has a unique
stable model that can be found in linear time (Gelfond & Lifschitz, 1988; Apt, Blair, &
Walker, 1988).

Example 2.6 �0 is not a strati�ed knowledge base. The following knowledge base, �1, is
strati�ed (we can assign ab2 and penguin the number 1, and each of the other atoms the
number 2):

live on land  � bird

fly  � bird; not ab2

bird  � penguin

ab2  � penguin
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The strongly connected components of a directed graph G make up a partition of its
set of nodes such that, for each subset S in the partition and for each x; y 2 S, there are
directed paths from x to y and from y to x in G. The strongly connected components are
identi�able in linear time (Tarjan, 1972).

female

male

warm_blood

on_land

ab1
dolphin

notlion

mammal

not

not

Figure 2: The super dependency graph of �0

The super dependency graph of a knowledge base �, denoted G�, is the superstructure of
the dependency graph of �. That is, G� is a directed graph built by making each strongly
connected component in the dependency graph of � into a node in G�. An arc exists from
a node s to a node v i� there is an arc from one of the atoms in s to one of the atoms in v

in the dependency graph of �. Note that G� is an acyclic graph.

Example 2.7 The super dependency graph of �0 is shown in Figure 2. The nodes in the
square are grouped into a single node.

3. Two Algorithms for Computing Stable Models

The main contribution of this paper is the presentation of an algorithm whose e�ciency
depends on the \distance" of the knowledge base from a strati�ed knowledge base. This
distance will be measured precisely in Section 4. We will �rst describe two other algorithms
for computing stable models. These two algorithms do not take into account the level of
\strati�ability" of the knowledge base, that is, they will still work in exponential time for
strati�ed knowledge bases. Our main algorithm will use these two algorithms as procedures.
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Given a truth assignment for a knowledge base, we can verify in polynomial time whether
it is a stable model by using Lemma 2.3. Therefore, a straightforward algorithm for comput-
ing all stable models can simply check all possible truth assignments and determine whether
each of them is a stable model. The time complexity of this straightforward procedure will
be exponential in the number of atoms used in the knowledge base. Below, we present two
algorithms that can often function more e�ciently than the straightforward procedure.

3.1 An Algorithm That Depends on the Number of Negative Atoms in the

Knowledge Base

Algorithm All-Stable1 (Figure 3) enables us to �nd all the stable models in time expo-
nential in the number of the atoms that appear negative in the knowledge base.

The algorithm follows from work on abductive extensions of logic programming in which
stable models are characterized in terms of sets of hypotheses that can be drawn as addi-
tional information (Eshghi & Kowalski, 1989; Dung, 1991; Kakas & Mancarella, 1991).
This is done by making negative atoms abductible and by imposing appropriate denials
and disjunctions as integrity constraints. The work of Eshghi and Kowalski (1989), Dung
(1991), and Kakas and Mancarella (1991) implies the following.

Theorem 3.1 Let � be a knowledge base, and let H be the set of atoms that appear negated
in �. M is a stable model of � i� there is an interpretation I over H such that

1. for every atom P 2 H, if P 2 I, then P 2M 0,

2. M 0 and I are consistent, and

3. M = I+M 0,

where M 0 is the unique stable model of �I .

Proof: The proof follows directly from the de�nition of stable models. Suppose M is a
stable model of a knowledge base �, and let H be the set of atoms that appear negative in
�. Then, by de�nition, M is a stable model of �M . But note that �M = �MH

. Hence, the
conditions of Theorem 3.1 hold for M , taking M 0 = M and I = MH . Now, suppose � is
a knowledge base and M = M 0 + I , where M 0 and I are as in Theorem 3.1. Observe that
�M = �I and, hence, since M 0 is a stable model of �I , M 0 is a stable model of �M . We
will show thatM is a stable model of �M . First, note that by condition 1, M �M 0. Thus,
M satis�es all the rules in �M and, if an atom P has a proof w. r. t. M 0 and �M , it has
also a proof w. r. t. M and �M . So, by Theorem 2.2, M is a stable model of �M and, by
de�nition, M is a stable model of �.

Theorem 3.1 implies algorithm All-Stable1 (Figure 3), which computes all stable
models of a knowledge base �. Hence, we have the following complexity analysis.

Proposition 3.2 A knowledge base in which at most k atoms appear negated has at most
2k stable models and all of them can be found in time O(nl2k), where l is the size of the
knowledge base and n the number of atoms used in the knowledge base.

Proof: Follows from the fact that computing �I and computing the unique stable model
of a positive knowledge base is O(nl).
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All-Stable1(�)
Input: A knowledge base �.
Output: The set of all stable models of �.

1. M := ;;

2. For each possible interpretation I for the set of all atoms that appear negative in �,
do:

(a) Compute M 0, the unique stable model of �I ;

(b) If M 0 and I are consistent, letM :=M
S
fM 0 + Ig;

3. ReturnM;

Figure 3: Algorithm All-Stable1

3.2 An Algorithm That Depends on the Number of Non-Horn Rules

Algorithm All-Stable2 (Figure 4) depends on the number of rules in which there are
negated atoms. It gets as input a knowledge base �, and, it outputs the set of all stable
models of �. This algorithm is based upon the observation that a stable model can be
built by attempting all possible means of satisfying the negated atoms in bodies of non-
Horn rules. Two procedures are called by All-Stable2: UnitInst, shown in Figure 5; and
NegUnitInst, shown in Figure 6. Procedure UnitInst gets as input a knowledge base � and
a partial interpretation m. UnitInst looks recursively for unit rules in �. For each unit rule
P �, if P is assigned false in m, it follows that m cannot be a part of a model for �, and
the procedure returns false. If P is not false in m, the procedure instantiates P to true in
the interpretation m and deletes the positive appearances of P from the body of each rule.
It also deletes from � all the rules about P and all the rules in which P appears negative.

Procedure NegUnitInst receives as input a knowledge base �, a partial interpretation
m, and a set of atoms Neg. It �rst instantiates each atom in Neg to false and then updates
the knowledge base to reect this instantiation. All the instantiations are recorded in m.
In case of a conict, namely, where the procedure tries to instantiate to true an atom that
is already set to false, the procedure returns false; otherwise, it returns true.

Proposition 3.3 Algorithm All-Stable2 is correct, that is, m is a stable model of a
knowledge base � i� it is generated by All-Stable2(�).

Proof: Suppose m is a stable model of a knowledge base �. Then, by Theorem 2.2, every
atom set to true in m has a proof w. r. t. m and �. Let S be the set of all non-Horn
rules whose bodies are satis�ed by m. Clearly, at some point this S is checked at step 3 of
algorithm All-Stable2. When this happens, all atoms that have a proof w. r. t. m and
� will be set to true by the procedure NegUnitInst (as can be proved by induction on the
length of the proof). Hence, m will be generated.

Suppose m is generated by All-Stable2(�). Obviously, every rule in � is satis�ed by
m (step 3.c.ii), and every atom set to true by NegUnitInst has a proof w. r. t. m and �
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All-Stable2(�)

Input: A knowledge base �.
Output: The set of all stable models of �.

1. M := ;;

2. Let � be the set of all non-Horn rules in �.

3. For each subset S of �, do:

(a) Neg = fP jnot P is in the body of some rule in Sg;

(b) �0 := �; m := ;;

(c) If NegUnitInst(�0; Neg;m), then

i. For each P such that m[P ] = null, let m[P ] := false;

ii. If m satis�es all the rules in �, then M :=M
S
fmg;

4. EndFor;

5. Return M ;

Figure 4: Algorithm All-Stable2

UnitInst(�; m)
Input: A knowledge base � and a partial interpretation m.
Output: Updates m using the unit rules of �. Returns false if there is a conict between
a unit rule and the value assigned to some atom in m; otherwise, returns true .

1. While � has unit rules, do:

(a) Let P � be a unit rule in �;

(b) If m[P ] = false, return false;

(c) m[P ] := true;

(d) Erase P from the body of each rule in �;

(e) Erase from � all rules about P ;

(f) Erase from � all rules in which P appears negative;

2. EndWhile;

3. Return true;

Figure 5: Procedure UnitInst
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NegUnitInst(�; Neg;m)
Input: A knowledge base �, a set of atoms Neg, and a partial interpretation m.
Output: Updates m assuming the atoms in Neg are false. Returns false if inconsistency is
detected; otherwise, returns true.

1. For each atom P in Neg

(a) m[P ] := false;

(b) Delete from the body of each rule in � each occurrence of not P ;

(c) Delete from � each rule in which P appears positive in the body;

2. EndFor;

3. Return UnitInst(�; m);

Figure 6: Procedure NegUnitInst

lion dolphin ab1 mammal warm b on land male female

S1 T F F T T T F T

S2 T F F T T T T F

Table 1: Models generated by Algorithm All-Stable2

(as is readily observable from the way NegUnitInst works). Hence, by Theorem 2.2, m is a
stable model of �.

Proposition 3.4 A knowledge base having c non-Horn rules has at most 2c stable models
and all of them can be found in time O(nl2c), where l is the size of the knowledge base and
n the number of atoms used in the knowledge base.

Proof: Straightforward, by induction on c.

Example 3.5 Suppose we call All-Stable2 with �0 as the input knowledge base. At
step 2, � is the set of rules (7), (8), and (9). When subsets of � which include both rules
(8) and (9) are considered at step 3, NegUnitInst will return false because UnitInst will
detect inconsistency. When the subset containing both rules (7) and (8) is considered, the
stable model S1 of Table 1 will be generated. When the subset containing both rules (7)
and (9) is considered, the stable model S2 of Table 1 will be generated. When all the other
subsets that do not contain both rules (8) and (9) are tested at step 3, the m generated will
not satisfy all the rules in � and, hence, will not appear in the output.

Algorithms All-Stable1 and All-Stable2 do not take into account the structure
of the knowledge base. For example, they are not polynomial for the class of strati�ed
knowledge bases. We present next an algorithm that exploits the structure of the knowledge
base.
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4. A Hierarchy of Tractable Subsets Based on the Level of Strati�ability
of the Knowledge Base

Algorithm Acyclic-All-Stable (AAS) in Figure 7 exploits the structure of the knowledge
base as it is reected in the super dependency graph of the knowledge base. It computes all
stable models while traversing the super dependency graph from the bottom up, using the
algorithms for computing stable models presented in the previous section as subroutines.

Let � be a knowledge base. With each node s in G� (the super dependency graph of
�), we associate �s, As, and Ms. �s is the subset of � containing all the rules about the
atoms in s, As is the set of all atoms in the subgraph of G� rooted by s, andMs is the set of
stable models associated with the subset of the knowledge base � which contains only rules
about atoms in As. Initially, Ms is empty for every s. The algorithm traverses G� from
the bottom up. When at a node s, it �rst combines all the submodels of the children of s
into a single set of models Mc(s). If s is a source, then Mc(s) is set to f;g

3. Next, for each
model m in Mc(s), AAS converts �s to a knowledge base �sm using the GL transform and
other transformations that depend on the atoms in m; then, it �nds all the stable models
of �sm and combines them with m. The set Ms is obtained by repeating this operation for
each m in Mc(s). AAS uses the procedure CartesProd (Figure 8), which receives as input
several sets of models and returns the consistent portion of their Cartesian product. If one
of the sets of models which CartesProd gets as input is the empty set, CartesProd will
output an empty set of models. The procedure Convert gets as input a knowledge base �,
a model m, and a set of atoms s, and performs the following: for each atom P in m, each
positive occurrence of P is deleted from the body of each rule in �; for each rule in �, if
not P is in the body of the rule and P 2 m, then the rule is deleted from �; if not P is
in the body of a rule and P =2 m, then, if P =2 s, not P is deleted from that body. The
procedure All-Stable called by AAS may be one of the procedures previously presented
(All-Stable1 or All-Stable2) or it may be any other procedure that generates all stable
models.

Example 4.1 Suppose AAS is called to compute the stable models of �0. Suppose further
that the algorithm traverses the super dependency graph in Figure 2 in the order flion,
dolphin, mammal, ab1, on land, warm blooded, female-maleg (recall that all the nodes in-
side the square make up one node that we are calling female-male or, for short, FM).
After visiting all the nodes except the last, we have Mlion = ffliongg, Mdolphin = f;g,
Mmammal = fflion;mammalgg, Mon land = fflion;mammal; onlandgg, Mwarm blooded =
fflion;mammal; warm bloodedgg. When visiting the node FM, we have after step 1.c that
Mc(FM) = Mmammal. So step 1.d loops only once, for m = flion;mammalg. Recall that
�FM is the knowledge base

female  � mammal; not male

male  � mammal; not female

3. Note the di�erence between f;g, which is a set of one model - the model that assigns false to all the

atoms, and ;, which is a set that contains no models.
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Acyclic-All-Stable(�)
Input: A knowledge base �.
Output: The set of all stable models of �.

1. Traverse G� from the bottom up. For each node s, do:

(a) Ms := ;;

(b) Let s1; :::; sj be the children of s.

(c) If j = 0, then Mc(s) := f;g;
else Mc(s) := CartesProd(fMs1; :::;Msjg);

(d) For each m 2Mc(s), do:

i. �sm := Convert(�s; m; s);

ii. M := All-Stable(�sm );

iii. If M 6= ;, then Ms :=Ms

S
CartesProd(ffmg;Mg);

2. Output CartesProd(fMs1; :::;Mskg), where s1; :::; sk are the sinks of G�.

Figure 7: Algorithm Acyclic-All-Stable (AAS)

CartesProd(M)
Input: A set of sets of modelsM.
Output: A set of models which is the consistent portion of the Cartesian product of the
sets inM.

1. IfM has a single element fEg, then return E;

2. M := ;;

3. Let M 0 2 M;

4. D := CartesProd(Mn fM 0g);

5. For each d in D, do:

(a) For each m in M 0, do:

If m and d are consistent, then M :=M
S
fm+ dg;

(b) EndFor;

6. EndFor;

7. Return M ;

Figure 8: Procedure CartesProd
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After executing step 1.d.i, we have �FMm set to

female  � not male

male  � not female

The above knowledge base has two stable models: ffemaleg and fmaleg. The Cartesian
product of the above set with flion;mammalg yields MFM = fflion;mammal; femaleg;
flion;mammal;malegg. At step 2, the Cartesian product of Mwarm blooded, Mon land, and
MFM is taken. Thus, the algorithm outputs fflion;mammal; on land; warm blooded; femaleg,
flion;mammal; on land; warm blooded;malegg, and these are indeed the two stable models
of �0. Note that algorithm AAS is more e�cient than eitherAll-Stable1 orAll-Stable2
on the knowledge base �0.

Theorem 4.2 Algorithm AAS is correct, that is, m is a stable model of a knowledge base
� i� m is generated by AAS when applied to �.

Proof: Let s0; s1; :::; sn be the ordering of the nodes of the super dependency graph by
which the algorithm is executed. We can show by induction on i that AAS, when at node
si, generates all and only the stable models of the portion of the knowledge base composed
of rules that only use atoms from Asi .

case i = 0: In this case, at step 1.d.ii of AAS, �sm = �s; thus, the claim follows from the
correctness of the algorithm All-Stable called in step 1.d.ii.

case i > 0: Showing that every model generated is stable is straightforward, by the induc-
tion hypothesis and Theorem 2.2. The other direction is: suppose m is a stable model
of �s; show that m is generated. Clearly, for each child s of si, the projection of m
onto As is a stable model of the part of the knowledge base that uses only atoms from
As. By induction, mc, which is the projection of m onto the union of As for every
child s of si, must belong to Mc(si) computed at step 1.c. Therefore, to show that m
is generated, we need only show that m0 = m�mc is a stable model of �simc

. This
is easily done using Theorem 2.2.

We will now analyze the complexity of AAS. First, given a knowledge base � and a
set of atoms s, we de�ne �̂s to be the knowledge base obtained from � by deleting each
negative occurrence of an atom that does not belong to s from the body of every rule.
For example, if � = fa �not b; c �not d; ag and s = fbg, then �̂s = fa �not b; c �ag.
While visiting a node s during the execution of AAS, we have to compute at step 1.d.ii all
stable models of some knowledge base �sm . Using either All-Stable1 or All-Stable2,
the estimated time required to �nd all stable models of �sm is shorter than or equal to the
time required to �nd all stable models of �̂s. This occurs because the number of negative
atoms and the number of rules with negative atoms in their bodies in �̂s is higher than
or equal to the number of negative atoms and the number of rules with negative atoms in
their bodies in �sm , regardless of what m is. Thus, if �̂s is a Horn knowledge base, we can
�nd the stable model of �̂s, and hence of �sm , in polynomial time, no matter what m is.
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If �̂s is not positive, then we can �nd all stable models of �̂s, and hence of �sm , in time
min(ln � 2k; ln � 2c), where l is the length of �̂s, n the number of atoms used in �̂s, c the
number of rules in �̂s that contain negative atoms, and k the number of atoms that appear
negatively in �̂s.

Then, with each knowledge base �, we associate a number t� as follows. Associate a
number vs with every node in G�. If �̂s is a Horn knowledge base, then vs is 1; else, vs is
min(2k; 2c), where c is the number of rules in �̂s that contain negative atoms from s, and
k is the number of atoms from s that appear negatively in �̂s. Now associate a number ts
with every node s. If s is a leaf node, then ts = vs. If s has children s1; :::; sj in G�, then
ts = vs � ts1 � ::: � tsj . De�ne t� to be ts1 � ::: � tsk , where s1; :::; sk are all the sink nodes in
G�.

De�nition 4.3 A knowledge base � belongs to 
j if t� = j.

Theorem 4.4 If a knowledge base belongs to 
j for some j, then it has at most j stable
models that can be computed in time O(lnj).

Proof: By induction on j. The dependency graph and the super dependency graph are
both built in time linear in the size of the knowledge base. So we may only consider the
time it takes to compute all stable models with the super dependency graph given.

case j = 1: � 2 
1 means that for every node s in G�, �̂s is a Horn knowledge base. In
other words, � is strati�ed, and therefore it has exactly one stable model. There are
at most n nodes in the graph. At each node, the loop in step 1.d is executed at most
once, because at most one model is generated at every node. Procedure Convert runs
in time O(ls), where ls is the length of �s (we assume that m is stored in an array
where the access to each atom is in constant time). Since, for every node s, �̂s is a
Horn knowledge base, �sm is computed in time O(lsn). Thus, the overall complexity
is O(ln).

case j > 1: By induction on n, the number of nodes in the super dependency graph of �.

case n = 1: Let s be the single node in G�. Thus, j = vs. Using the algorithms from
Section 3, all stable models of � = �s can be found in time O(lnvs), and � has
at most vs models.

case n > 1: Assume without loss of generality that G� has a single sink s (to get a
single sink, we can add to the program the rule P �s1; ::; sk, where s1; :::; sk are
all the sinks and P is a new atom). Let c1; :::; ck be the children of s. For each
child ci, �(ci), the part of the knowledge base which corresponds to the subgraph
rooted by ci, must belong to 
ti for some ti � j. By induction on n, for each
child node ci, all stable models of �(ci) can be computed in time O(lnti), and
�(ci) has at most ti stable models. Now let us observe what happens when AAS
is visiting node s. First, the Cartesian product of all the models computed at the
child nodes is taken. This is executed in time O(n� t1� :::�tk), and yields at most
t1 � ::: � tk models in Mc(s). For every m 2 Mc(s), we call Convert (O(ln)) and
compute all the stable models of �sm (O(lnvs)). We then combine them with m
using CartesProd (O(nvs)). Thus, the overall complexity of computing Ms, that
is, of computing all the stable models of �, is O(lnt1 � ::: � tk � vs) = O(lnj).
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Note that all strati�ed knowledge bases belong to 
1, and the more that any knowledge
base looks strati�ed, the more e�cient algorithm AAS will be.

Given a knowledge base �, it is easy to �nd the minimum j such that � belongs to 
j .
This follows because building G� and �nding c and k for every node in G� are polynomial-
time tasks. Hence,

Theorem 4.5 Given a knowledge base �, we can �nd the minimum j such that � belongs
to 
j in polynomial time.

Example 4.6 For all the nodes s in G�0
except FM, vs=1. vFM = 2. Thus, �0 2 
2. �1

is a strati�ed knowledge base and therefore belongs to 
1.

female

male

warm_blood

on_land

ab1
dolphin

notlion

mammal

not

not

bird

fly

penguin

ab2

not

Figure 9: The super dependency graph of �0
S
�1

The next example shows that step 5 of procedure CartesProd is necessary.

Example 4.7 Consider knowledge base �4:

a  � not b

b  � not a

c  � a

d  � b

e  � c; d

f  � c
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not

not

a b

dc

ef

Figure 10: Super dependency graph of �4

not

not

a
b

c

not

not

a
b

c

(1) (2)

notnot

Figure 11: Dependency graph (1) and super dependency graph (2) of �2
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The super dependency graph of �4 is shown in Figure 10. During the run of algorithm AAS,
Mab (the set of models computed at the node fa; bg) is set to ffa;:bg; f:a; bgg. When AAS
visits nodes c and d, we get Mc = ffa;:b; cg; f:a; bgg, Md = ff:a; b; dg; fa;:bgg. When
AAS visits node e, CartesProd is called on the input fMc;Mdg, yielding the output Me =
ffa;:b; cg; f:a; b; dgg. Note that CartesProd does not output any model in which both c
and d are true, because the models fa;:b; cg and f:a; b; dg are inconsistent and CartesProd
checks for consistency in step 5. When visiting node f , we getMf = ffa;:b; c; fg; f:a; bgg.
AAS then returns CartesProd(fMe;Mfg), which is ffa;:b; c; fg; f:a; b; dgg.

The next example demonstrates that some models generated at some nodes of the su-
per dependency graph during the run of AAS may later be deleted, since they cannot be
completed to a stable model of the whole knowledge base.

Example 4.8 Consider knowledge base �2:

a  � not b

b  � not a

c  � a; not c

The dependency graph and the super dependency graph of �2 are shown in Figure 11.
During the run of algorithm AAS, Mab (the set of models computed at the node fa; bg) is
set to ffag; fbgg. However, only fbg is a stable model of �2.

Despite the de�ciency illustrated in Example 4.8, algorithm AAS does have desirable
features. First, AAS enables us to compute stable models in a modular fashion. We can use
G� as a structure in which to store the stable models. Once the knowledge base is changed,
we need to resume computation only at the nodes a�ected by the change. For example,
suppose that after computing the stable models of the knowledge base �0, we add to �0

the knowledge base �1 of Example 2.6, which gives us a new knowledge base, �3 = �0
S
�1.

The super dependency graph of the new knowledge base �3 is shown in Figure 9. Now we
need only to compute the stable models at the nodes penguin, bird, ab2, y, and on land
and then to combine the models generated at the sinks. We do not have to re-compute the
stable models at all the other nodes as well.

Second, in using the AAS algorithm, we do not always have to compute all stable models
up to the root node. If we are queried about an atom that is somewhere in the middle of
the graph, it is often enough to compute only the models of the subgraph rooted by the
node that represents this atom. For example, suppose we are given the knowledge base
�2 and asked if mammal is true in every stable model of �2. We can run AAS for the
nodes dolphin, lion, and mammal | and then stop. If mammal is true in all the stable
models computed at the node mammal (i.e., in all the models in Mmammal), we answer
\yes", otherwise, we must continue the computation.

Third, the AAS algorithm is useful in computing the labeling of a TMS subject to
nogoods. A set of nodes of a TMS can be declared nogood, which means that all acceptable
labeling should assign false to at least one node in the nogood set.4 In stable models
terminology, this means that when handling nogoods, we look for stable models in which

4. In logic programming terminology nogoods are simply integrity constraints.
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at least one atom from a nogood is false. A straightforward approach would be to �rst
compute all the stable models and then choose only the ones that comply with the nogood
constraints. But since the AAS algorithm is modular and works from the bottom up,
in many cases it can prevent the generation of unwanted stable models at an early stage.
During the computation, we can exclude the submodels that do not comply with the nogood
constraints and erase these submodels from Ms once we are at a node s in the super
dependency graph such that As includes all the members of a certain nogood.

5. Computing Stable Models of First-Order Knowledge Bases

In this section, we show how we can generalize algorithm AAS so that it can �nd all stable
models of a knowledge base over a �rst-order language with no function symbols. The new
algorithm will be called First-Acyclic-All-Stable (FAAS).

We will now refer to a knowledge base as a set of rules of the form

C �A1; A2; :::; Am; not B1; :::; not Bn (14)

where all As, Bs, and C are atoms in a �rst-order language with no function symbols. The
de�nitions of head, body, and positive and negative appearances of an atom are the same
as in the propositional case. In the expression p(X1; :::; Xn), p is called a predicate name.

As in the propositional case, every knowledge base � is associated with a directed graph
called the dependency graph of �, in which (a) each predicate name in � is a node, (b)
there is a positive arc directed from a node p to a node q i� there is a rule in � in which
p is a predicate name in one of the Ais and q is a predicate name in the head, and (c)
there is a negative arc directed from a node p to a node q i� there is a rule in � in which
p is a predicate name in one of the Bis and q is a predicate name in the head. The super
dependency graph, G�, is de�ned in an analogous manner. We de�ne a strati�ed knowledge
base to be a knowledge base in which there are no cycles through the negative edges in the
dependency graph of the knowledge base.

A knowledge base will be called safe i� each of its rules is safe. A rule is safe i� all the
variables appearing in the head of the rule or in predicates appearing negative in the rule
also appear in positive predicates in the body of the rule. In this section, we assume that
knowledge bases are safe. The Herbrand base of a knowledge base is the set of all atoms
constructed using predicate names and constants from the knowledge base. The set of
ground instances of a rule is the set of rules obtained by consistently substituting variables
from the rule with constants that appear in the knowledge base in all possible ways. The
ground instance of a knowledge base is the union of all ground instances of its rules. Note
that the ground instance of a �rst-order knowledge base can be viewed as a propositional
knowledge base.

A model for a knowledge base is a subset M of the knowledge base's Herbrand base.
This subset has the property that for every rule in the grounded knowledge base, if all the
atoms that appear positive in the body of the rule belong to M and all the atoms that
appear negative in the body of the rule do not belong to M , then the atom in the head of
the rule belongs to M . A stable model for a �rst-order knowledge base � is a Herbrand
model of �, which is also a stable model of the grounded version of �.
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First-Acyclic-All-Stable(�)
Input: A �rst-order knowledge base �.
Output: All the stable models of �.

1. Traverse G� from the bottom up. For each node s, do:

(a) Ms := ;;

(b) Let s1; :::; sj be the children of s;

(c) Mc(s) := CartesProd(fMs1; :::;Msjg);

(d) For each m 2Mc(s) do

Ms :=Ms

S
all-stable(�s

S
fP �jP 2 mg)

2. Output CartesProd(fMs1; :::;Mskg), where s1; :::; sk are the sinks of G�.

Figure 12: Algorithm First-Acyclic-All-Stable (FAAS)

We now present FAAS, an algorithm that computes all stable models of a �rst-order
knowledge base. Let � be a �rst-order knowledge base. As in the propositional case, with
each node s in G� (the super dependency graph of �), we associate �s, As, and Ms. �s is
the subset of � containing all the rules about predicates whose names are in s. As is the
set of all predicate names P that appear in the subgraph of G� rooted by s. Ms are the
stable models associated with the sub{knowledge base of � that contains only rules about
predicates whose names are in As. Initially, Ms is empty for every s. Algorithm FAAS
traverses G� from the bottom up. When at a node s, the algorithm �rst combines all the
submodels of the children of s into a single set of models, Mc(s). Then, for each model
m in Mc(s), it calls a procedure that �nds all the stable models of �s union the set of all
unit clauses P � where P 2 m. The procedure All-Stable called by FAAS can be any
procedure that computes all the stable models of a �rst-order knowledge base. Because
procedure All-Stable computes stable models for only parts of the knowledge base, it
may take advantage of some fractions of the knowledge base being strati�ed or having any
other property that simpli�es computation of the stable models of a fraction.

Theorem 5.1 Algorithm FAAS is correct, that is, m is a stable model of a knowledge base
� i� m is one of the models in the output when applying FAAS to �.

Proof: As the proof of Theorem 4.2.

Note that the more that a knowledge base appears strati�ed, the more e�cient algorithm
FAAS becomes.

Example 5.2 Consider knowledge base �5:

warm blooded(X)  � mammal(X)

live on land(X)  � mammal(X); not ab1(X)

female(X)  � mammal(X); notmale(X)
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male(X)  � mammal(X); not female(X)

mammal(X)  � dolphin(X)

ab1(X)  � dolphin(X)

mammal(X)  � lion(X)

dolphin(flipper)  �

live on land(X)  � bird(X)

fly(X)  � bird(X); not ab2(X)

bird(X)  � penguin(X)

ab2(X)  � penguin(X)

bird(bigbird)  �

The super dependency graph of �5, G�5
, is the same as the super dependency graph of

the knowledge base �2 (see Figure 9). Observe that when at node mammal, for example,
in step 1.d the algorithm looks for all stable models of the knowledge base �0 = �mammal

S
f �dolphin(flipper)g, where �mammal =fmammal(X) �dolphin(X); mammal(X) �lion(X)g.
�0 is a strati�ed knowledge base that has a unique stable model that can be found e�ciently.
Hence, algorithm FAAS saves us from having to ground all the rules of the knowledge base
before starting to calculate the models, and it can take advantage of parts of the knowledge
base being strati�ed.

6. Related Work

In recent years, quite a few algorithms have been developed for reasoning with stable models.
Nonetheless, as far as we know, the work presented here is original in the sense that it
provides a partition of the set of all the knowledge bases into a hierarchy of tractable
classes. The partition is based on the structure of the dependency graph. Intuitively, the
task of computing all the stable models of a knowledge base using algorithm AAS becomes
increasingly complex as the \distance" of the knowledge base from being strati�ed becomes
larger. Next, we summarize the work that seems to us most relevant.

Algorithm AAS is based on an idea that appears in the work of Lifschitz and Turner
(1994), where they show that in many cases a logic program can be divided into two parts,
such that one part, the \bottom" part, does not refer to the predicates de�ned in the \top"
part. They then explain how the task of computing the stable models of a program can be
simpli�ed when the program is split into parts. Algorithm AAS, using the superstructure
of the dependency graph, exploits a speci�c method for splitting the program.

Bell et al. (1994) and Subrahmanian et al. (1995) implement linear and integer pro-
gramming techniques in order to compute stable models (among other nonmonotonic log-
ics). However, it is di�cult to assess the merits of their approaches in terms of complexity.
Ben-Eliyahu and Dechter (1991) illustrate how a knowledge base � can be translated into
a propositional theory T� such that each model of the latter corresponds to a stable model
of the former. It follows from this that the problem of �nding all the stable models of
a knowledge base corresponds to the problem of �nding all the models of a propositional
theory. Satoh and Iwayama (1991) provide a nondeterministic procedure for computing
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the stable models of logic programs with integrity constraints. Junker and Konolige (1990)
present an algorithm for computing TMS' labels. Antoniou and Langetepe (1994) introduce
a method for representing some classes of default theories as normal logic programs in such
a way that SLDNF-resolution can be used to compute extensions. Pimentel and Cuadrado
(1989) develop a label-propagation algorithm that uses data structures called compressible
semantic trees in order to implement a TMS; their algorithm is based on stable model se-
mantics. The algorithms developed by Marek and Truszczy�nski (1993) for autoepistemic
logic can also be adopted for computing stable models. The procedures by Marek and
Truszczy�nski (1993), Antoniou and Langetepe (1994), Pimentel and Cuadrado (1989), Ben-
Eliyahu and Dechter (1991), Satoh and Iwayama (1991), Bell et al. (1994), Subrahmanian
et al. (1995), and Junker and Konolige (1990) do not take advantage of the structure of
the knowledge base as reected in its dependency graph, and therefore are not e�cient for
strati�ed knowledge bases.

Sacc�a and Zaniolo (1990) present a backtracking �xpoint algorithm for constructing one
stable model of a �rst-order knowledge base. This algorithm is similar to algorithm All-

Stable2 presented here in Section 3 but its complexity is worse than the complexity of
All-Stable2. They show how the backtracking �xpoint algorithm can be modi�ed to
handle strati�ed knowledge bases in an e�cient manner, but the algorithm needs further
adjustments before it can deal e�ciently with knowledge bases that are very close to being
strati�ed. Leone et al. (1993) present an improved backtracking �xpoint algorithm for
computing one stable model of a Datalog: program and discuss how the improved algorithm
can be implemented. One of the procedures called by the improved algorithm is based on
the backtracking �xpoint algorithm of Sacc�a and Zaniolo (1990). Like the backtracking
�xpoint algorithm, the improved algorithm as is does not take advantage of the structure
of the program, i.e., it is not e�cient for programs that are close to being strati�ed.

Several tractable subclasses for computing extensions of default theories (and, hence,
computing stable models) are known (Kautz & Selman, 1991; Papadimitriou & Sideri,
1994; Palopoli & Zaniolo, 1996; Dimopoulos & Magirou, 1994; Ben-Eliyahu & Dechter,
1996). Some of these tractable subclasses are characterized using a graph that reects
dependencies in the program between atoms and rules. The algorithms presented in these
papers are complete only for a subclass of all knowledge bases, however. Algorithms for
computing extensions of strati�ed default theories or extensions of default theories that
have no odd cycles (in some precise sense) are given by Papadimitriou and Sideri (1994)
and Cholewi�nski (1995a, 1995b).

Algorithms for handling a TMS with nogoods have been developed in the AI commu-
nity by Doyle (1979) and Charniak et al. (1980). But, as Elkan (1990) points out, these
algorithms are not always faithful to the semantics of the TMS and their complexities have
not been analyzed. Dechter and Dechter (1994) provide algorithms for manipulating a TMS
when it is represented as a constraint network. The e�ciency of their algorithms depends
on the structure of the constraint network representing the TMS, and the structure they
employ di�ers from the dependency graph of the knowledge base.
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7. Conclusion

The task of computing stable models is at the heart of several systems central to AI,
including TMSs, autoepistemic logic, and default logic. This task has been shown to be
NP-hard. In this paper, we present a partition of the set of all knowledge bases to classes

1;
2; :::, such that if a knowledge base � is in 
k, then � has at most k stable models,
and they may all be found in time O(lnk), where l is the length of the knowledge base and
n the number of atoms in �. Moreover, for an arbitrary knowledge base �, we can �nd the
minimum k such that � belongs to 
k in time linear in the size of �. Intuitively, the more
the knowledge base is strati�ed, the more e�cient our algorithm becomes. We believe that
beyond strati�ed knowledge bases, the more expressive the knowledge base is (i.e. the more
rules with nonstrati�ed negation in the knowledge base), the less likely it will be needed.
Hence, our analysis should be quite useful. In addition, we show that algorithm AAS has
several advantages in a dynamically changing knowledge base, and we provide applications
for answering queries and implementing a TMS's nogood strategies. We also illustrate a
generalization of algorithm AAS for the class of �rst-order knowledge bases.

Algorithm AAS can easily be adjusted to �nd only one stable model of a knowledge
base. While traversing the super dependency graph, we generate only one model at each
node. If we arrive at a node where we cannot generate a model based on what we have
computed so far, we backtrack to the most recent node where several models were available
to choose from and take the next model that was not yet chosen. The worst-case time
complexity of this algorithm is equal to the worst-case time complexity of the algorithm for
�nding all stable models because we may have to exhaust all possible ways of generating a
stable model before �nding out that a certain knowledge base does not have a stable model
at all. Nevertheless, we believe that in the average case, �nding just one model will be
easier than �nding them all. A similar modi�cation of the AAS algorithm is required if we
are interested in �nding one model in which one particular atom gets the value true.

This work is another attempt to bridge the gap between the declarative systems (e.g.,
default logic, autoepistemic logic) and the procedural systems (e.g., ATMs, Prolog) of the
nonmonotonic reasoning community. It is argued that while the declarative methods are
sound, they are impractical since they are computationally expensive, and while the proce-
dural methods are more e�cient, it is di�cult to completely understand their performance
or to evaluate their correctness. The work presented here illustrates that the declarative
and the procedural approaches can be combined to yield an e�cient yet formally supported
nonmonotonic system.
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