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Abstract—To improve power system reliability, a protection 

mechanism is highly needed. Early detection can be used to 

prevent failures in the power transmission line (TL). A 

classification system method is widely used to protect against false 

detection as well as assist the decision analysis. Each TL signal 

has a continuous pattern in which it can be detected and classified 

by the conventional methods, i.e., wavelet feature extraction and 

artificial neural network (ANN). However, the accuracy resulting 

from these mentioned models is relatively low. To overcome this 

issue, we propose a machine learning-based on Convolutional 

Neural Network (CNN) for the transmission line faults (TLFs) 

application. CNN is more suitable for pattern recognition 

compared to conventional ANN and ANN with Discrete Wavelet 

Transform (DWT) feature extraction. In this work, we first 

simulate our proposed model by using Simulink® and Matlab®. 
This simulation generates a fault signal dataset, which is divided 

into 45.738 data training and 4.752 data tests. Later, we design 

the number of machine learning classifiers. Each model classifier 

is trained by exposing it to the same dataset. The CNN design, 

with raw input, is determined as an optimal output model from 

the training process with 100% accuracy. 

 
Keywords—fault detection, fault classification, transmission 

lines, convolutional neural network, machine learning 

I. INTRODUCTION 

HE power system transmission consists of three main 

parts, i.e., a transmission line, distribution line, and load. 

This system delivers electrical power from power 

generator to various loads including homes and industries. 

Power system transmission becomes more complex since new 

power resources have been implemented massively worldwide 

as nowadays, which is renewable energy generators. Many 

small renewable energy generators have been utilized instead 

of conventional power generator. The system transmission 

employing the renewable energy generators can be managed 

under “smart grid” scheme.  
System failure in the power system transmission makes 

major blackouts. Therefore, the unstable power system must be 
anticipated. The power system is a nonlinear system that 
operates in a continually changing environment; loads, 
generator connect-disconnected and operating parameters that 
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evolve [1]. A rapid protection scheme is highly needed to 
ensure the stability and sustainability of the power system. 
Commonly, the protection scheme uses fault detection and 
classification fault methods. These methods are essential 
things to avoid power system failure. When the fault occurs in 
the power system, the area containing an error (fault) will be 
isolated from the entire system.  

The general protection method uses a Bus bar with a 

specific calculation. When the detected fault exceeds the 

determined fault rate, it will disconnect the faulted area. To 

detect as well as cut-off (disconnect) the faulted zone, we need 

a particular algorithm embedded on a microprocessor-based 

relay or other devices that can measure three-phase voltages 

and currents [2]. In previous work [3], we have proposed a 

protective system based on automatic relay integrated with 

fault detection algorithm. It has been used to perform a 

disconnect fault area from a whole system. This FPGA-based 

digital protective relay can directly detect a fault area without 

automatically, it means, the proposed system does not 

necessary to send measurement data to the control center. 

Using this onsite protection scheme, the overall system 

response becomes faster, cost-efficient, low-cost maintenance 

budget.  However, in [3] can only detect the fault. To create a 

robust, accurate, and efficient TL system, a “fault 

classification” method must be applied. Thus, the TLFs can be 

mapped as well. Related studies, the protection scheme 

employs artificial intelligence (AI) to detect as well as classify 

the fault [4]. 

Machine learning can be applied to analysis the occurred 

fault in the system.  It has the ability to learn from training data 

so the power transmission system can find the fault location 

and classify the fault correctly. Moreover, machine learning 

can locate the fault direction [5]. We must consider many 

parameters of the fault classification. The machine learning 

capabilities can adapt these considered parameters by re-

training the new data (pre-trained model). Machine learning-

based fault classification is commonly used Artificial Neural 

Network (ANN) jointly with various extraction features, such 

as Discrete Fourier Transform (DFT) [6], Fast Fourier 

Transform (FFT), and Discrete Wavelet Transform (DWT) [7- 
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10]. The obtained data from extraction features are used to find 

fault by comparing the determined threshold. Later, the filtered 

data is used to train the machine learning model [11]. The 

difference point between CNN and ANN is the neuron 

connection (neuron network) on the system. 

Many of the practical applications of machine learning 

today use linear classifiers over hand-engineered features [12]. 

However, it is difficult to choose parameters and algorithms to 

obtain the best result. The machine learning algorithm consists 

of many hyperparameters that have different functions. The 

main purpose of determining hyperparameter manually is to 

find the model complexity that is useful for completing a task. 

By using the appropriate configuration, the training cost will 

be minimized. In addition, time to change the complex 

function to simpler functions (without reducing model 

performance) can be less. A practical way to find a suitable 

model is to increase the model capacity for certain training 

data continuously, so that an adequate final result can be 

obtained. This method can make the values not converge 

because of difficulty in optimization (failed training process). 

This problem will rarely occur if the model or algorithm is 

chosen correctly [13]. 

The convolutional neural network (CNN)-based algorithm 

can recognize a pattern accurately. Various researchers used it 

for pattern classification purposes. CNN uses signal 

convolution with filter/kernel [12]. This method requires 

minimal engineering by hand but needs a large amount of 

dataset and computing power.  

In this paper, we propose a method to detect and classify the 

fault without feature extraction and human tuning. We use the 

large dataset for training purpose to get a model that can 

represent the data. In this work, high accuracy classification in 

validation data reaches 100%. 
 

II. METHODS 

Fig. 1 shows the proposed method, it can be divided into 

two main steps: we first simulate the model to create datasets 

and then design the classifier for machine learning model.  

Fig. 2 depicts the conventional model of ANN for TLFs 

application, it has three parts: Input, Hidden layer, and Output. 

The input consists of three-phase voltages (Va, Vb, Vc) 

and currents (Ia, Ib, Ic). Then Hidden layer, and the last 

stage is output layer. There are 11 fault types, i.e., AG, BG, 

CG, AB, AC, BC, ABG, ACG, BCG, ABCG, and NON_Fault. 

The operation of ANN is not allowing the network to be 

deeper. It happens because of each neuron in the ANN 

architecture is connected to every other neuron. Then CNN 

was introduced CNN is similar to most neural network 

architecture, which is made of neurons that can be trained to 

gain “weight” and “bias,” according to the specification and 
application. The neurons of CNN are fully-connected to each 

other. CNN architecture mainly consists of three layers: (1) 

Convolutional layer, (2) Pooling layer, and (3) Fully-connected 

layer (neural network) [12]. CNN may contain one or more 

layers of these three layers (convolutional, pooling, or fully-

connected) with regards to the needs. The CNN technique is 

suitable for applications with intrinsic structures data.   
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Fig.1. Flowchart of the proposed method 
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Fig.2. Conventional model of Wavelet Energy ANN 

In this work, we used Simulink simulation and the Matlab 

approach. Through this fault simulation modeling, we obtained 

datasets that can represent faults on the TL. By using the 

classifier in machine learning system, we can detect as well as 

classify the fault types on transmission lines. Finally, we 

obtained the best performance of the machine learning model. 

The proposed can classify the test data with >95% accuracy. 

CNN is designed to process the entering data in the form of 

arrays. CNN can be classified into three types: (a) 1-D type for 

signals and sequential data; (b) 2-D type for audio images and 
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spectrograms, and (c) 3-D type for video or volumetric images. 

There are four main things to consider in creating a model 

from CNN, i.e., local connections, joint weights, collections, 

and number of layers [13]. 

In this paper, practical development for machine learning 

are used, the process is as follows: 1) select the metrics; 2) 

select the initial models; 3) development step; 4) select the 

hyperparameter, 5) select the needed data set, and 6) debug the 

model. The metric expected from our modeling can reach 95% 

accuracy level in the test data. Hopefully, the results of this 

training process will be better than the ANN classification 

model. We modified the model as in Fig. 2 to obtain the most 

optimal model of machine learning for TFLs application. 

B. Power System Model 

In this paper, we simulate the model suggested by IEEE Std 

C37.114-2004, as depicted in Fig. 3. With this power system 

model, we can determine the fault types as well as fault 

location. The technique used is one-ended impedance-based 

measurement techniques. The faults calculation can be done by 

observing the apparent impedance at the last point of the line 

transmission. All faults types detection must be done by 

measuring the voltage and current in each phase of the single 

line diagram. 

The power system model, as in Fig 3, is widely used for 

generating fault datasets for machine learning system [15] or 

ANN [16]. However, the power system is susceptible to a fault 

because of the fault resistance and load current change. Load 

current variations occur because of the dynamic load factor in 

several locations between two power generator sources. In this 

work, we used a power model using Matlab. It can compute 

the variations changes in load current over time. 
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Fig.3. Power system model suggested by IEEE std C37.114-2004 [2] 

 

A single line diagram, as depicted in Fig 3, is then simulated 

by using the Simulink software to get a fault signal. Table I 

shows the parameters used for power system simulation, 

including the value of Generator I and II, Transformer I and II, 

Load I to IV, Multimeter, Ts, and frequency standard used in 

Indonesia (50 Hertz). Later, we vary the input of the power 

system based on Table II, including fault location, resistance, 

and inception angle. Moreover, pre-fault angle and fault types 

have been varied. The faults on the output voltage and three-

phase currents are then stored in the dataset, and it will be 

named according to the fault label. This process is repeated 

continuously until all possible combinations of parameters 

have been carried out (Fig. 4). 

The fault type parameters as shown in Table III, are used as 

an input variable to the simulation models. In this work, we 

only used only one full-wave signal stored in the datasheet, 

even though there are more than one wave signals in the 

 

 

simulation. This work correlates with our previous work[17]. 

However, in [17], we focus on the effect of sampling variation 

in accuracy for TLs classification. We recommend the efficient 

sampling rate in the power measurement is 16700 Hz (334 

samplings/signal). 

TABLE I 

PARAMETERS OF POWER SYSTEM SIMULATION 

Power model Value 

Generator 1 & Generator 2 13.8 kV & 735 kV 

Transformer 1 13.8/735 kV 

Transformer 2 735/230kV 

Load 1 & Load 4 100 MW 

Load 2 & Load 3 330 Mvar (Reactive) 

Multimeter V (pu), I (pu/100MVA) 

Ts 5e-05 s 

Freq 50 Hz 

 

TABLE II 

PARAMETER VARIATION IN SIMULATION MODEL 

Model parameter 
Variation 

Train data Test data 

Fault Location (km) 

20, 40, 60, 80, 100, 

120, 140, 160, 180, 

200, 220, 240, 260, 

280 

50, 70, 90, 110, 

130, 150 

Fault Resistance 
5, 10, 15, 20, 25, 30, 

40, 50, 60 
5, 15, 30, 50 

Fault Inception 

angle (degrees) 

0, 30, 60, 90, 120, 

150, 180, 210, 240, 

270, 300, 330 

30, 60, 120, 180, 

240, 300 

Pre-fault angle 

(degrees) 
10, 20, 30 10, 20, 30 

Fault Type (IEEE 

C37.114-2004) 

AG, BG, CG, AB, 

AC, BC, ABG, ACG, 

BCG, ABCG, 

NON_Fault 

AG, BG, CG, AB, 

AC, BC, ABG, 

ACG, BCG, 

ABCG, NON_Fault 
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Fig.4. Flowchart of the dataset generation 
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Fig.5. Dataset for “AG” fault type (captured on Simulink) 

Fig. 5 illustrates a sample of the obtained dataset. The 

dataset is then reprocessed and stored in the Numpy array 

(*.npy) format by removing the fault parameter label. 

Numpy arrays are composed of the array one signal data with 

six channels sequential of voltage and current, the fault  

 

sequence is as follows: [Va Vb Vc Ia Ib Ic]. Then 

followed by array two labels fault data with binary format, as 

an example, no-fault type format is as follows [0 0 0 0 0 

0 0 0 0 0 1].  

A binary label with an array length of 11 is then composed. 

The number of fault types have generated of the sequence 

format, i.e., AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, 

ABCG, and NON_Fault as in Table II. In total, there are 

eleven labels represents 10 types of faults:  

• Line-to-Ground (LG) category, i.e., AG, BG, CG  

• Line-to-Line (LL) category, i.e., AB, BC, AC 

• Line-to-Line-to-Ground (LLG) category, i.e., ABG, 

ACG, BCG  

• Line-to-Line-to-Line-to-Ground (LLLG), i.e., ABCG 

• NON_Fault category. 

Fig. 5 shows the power model (single line diagram) used in 

this work refers to Fig. 3, while Fig. 6 visualizes the system 

block under Simulink simulation. The value of each block 

refers to Table II. 
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Fig.5. Single line diagram proposed power system model 

 

 
 

Fig.5. Three-phase series fault network in Simulink. The measurement is carried out in three nodes, i.e., Generator1 (B1), middle (B2), and (B3). However, in this 

work we used single terminal, that is G1 voltage and current and it will be stored as training data. We get “AG” fault data. 
 

C. Preprocessing 

Preprocessing data is made so that the dataset feature becomes 

simpler. By reducing the less essential data, the machine learning 

model can be more straightforward. The data input from 

preprocessing can eliminate the feature data that is less important for 
 

the classification process. Hence, the classification model can be 

made simpler. 

The normalization of datasets is commonly used in many machine 

learning. The process is by updating the normalized new data with the 

normalize x algorithm as Eq.1. The Matlab library used for 
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normalization process is based on arrays or vectors. Preprocessing 

normal results have the same size as the raw inputs. 

Wavelet is a process that converts data from the time 

domain to the frequency domain without erasing all data in the 

time domain [14]. Furthermore, the use of wavelets with multi-

resolution analysis can be used to divide signals at high 

frequencies because high-frequency signals tend to have more 

patterns. The signal is separated utilizing a pass filter with the 

configuration in Table III. (x − np.mean (x)) (np.max (x) − np.min (x))            (1) 

Note: 

np: number of data  

np.mean: the average of all data on the 0 axes  

np.max: the maximum values for each channel  

np.min: the minimum values for each channel  

 

The multi-resolution analysis makes data in the time 

domain still exist at each frequency. The results of Multi-

resolution DWT become the input of various types of 

algorithms used to classify faults. The cA4 value can be an 

ANN input to get the fault type [10], or by using wavelet 

energy from cD1/cD4 signals. Energy wavelets are used as an 

input of the ANN classifier model to classify faults. 

The Daubechies 4 (db4) can be selected as Mother 

wavelet because of provides better accuracy than other mother 

wavelets. Besides, it was commonly used for transient analysis 

in power system application [18]. The results of db4 are 

accurate enough to get fault signals [11]. 

 

TABLE III 

MULTI-RESOLUTION ANALYSIS OF DWT LEVEL 4 

Level Frequency Sample 

4 
0 to fn/16 27 cA4 

fn/16 to fn/8 27 cD4 

3 fn/8 to fn/4 54 cD3 

2 fn/4 to fn/2 88 cD2 

1 fn/2 to fn 170 cD1 

Fn = Sampling / windows (frequency) 

cA4 = Approximation coefficient 4 

cD4 = Coefficient Detail 4 

cD1 = Coefficient Detail 1 

D. CNN Model 

As described in Fig. 1, after the dataset have been 

generated, we design machine learning. In this work, we first 

 

used the default model of CNN as depicts in Fig. 6. The design 

step starts from the simplest model and then develops into a 

larger network. The training process and its implementation of 

classification are using Python 3.5 programming with the help 

of the TensorflowTM platform. 

TensorflowTM is a machine learning library made by Google 

used for numerical operations based on graphs. After the graph 

has been created, the session is then developed and executed. 

Later, the results are distributed on the CPU and GPU. The 

main components in TensorflowTM: 1) Variable: the session 

value used for weight and bias; 2) Nodes: arithmetic 

operations; 3) Tensor: signal passing from a node or signal 

passing to a node; 4) Placeholder: used to send data between 

our program and TensorflowTM graphs; and 5) Session: the 

point where the graph is run.  

Preprocessing is done so that the dataset features are 

simpler and can be completed with a simpler CNN class-file 

model. The preprocessing method is presented in Section II.C.  

Fig. 8 shows a default CNN, n_filter denotes the number of 

filters, CNN Layer is layers of the convolutional, pooling layer, 

and neural network, Conv_1D denotes a layer convolutional 

1D, n_neuron denotes the number of hidden units in fully-

connected layer. 

The CNN model is then variated into four categories 

depending on its input, i.e.,  

• Model with raw input (using architecture as in Fig. 8),  

• Preprocessing normalization,  

• Preprocessing DWT, and  

• Energy DWT with ANN.  

Fig. 9(a) is a CNN model with preprocessing normalization 

while Fig. 9(b) depicts a CNN model with preprocessing 

DWT. The Energy DWT with ANN used architecture as in 

Fig. 2. The performance of four models are then compared. 

Table IV shows the requirement of mentioned models.  

 
TABLE IV 

MODEL VARIATION OF MACHINE LEARNING 

Input layer CNN network variation fc network 

Raw CNN 1-5 layers 16-1024 fc  

Pre – Normalization CNN 1-5 layers 16-1024 fc  

Pre – MRA DWT CNN 1 layer 12-32 fc 

Energy DWT – ANN - 2- 3 layer 
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Fig 8. The modified CNN model: (a) CNN with preprocessing normalization dataset; (b) CNN with preprocessing MRA DWT dataset 

 

TABLE V 

HYPERPARAMETERS OF CNN 

Layer Input Filter size Stride Num Filter 
Activation 

function 
Out 

Convolution 334 × 6 2 1 same padding n_filter* Relu 334 × n_filter 
Maximum Pooling (max_pol) 334 × n_filter 2 None padding same Same as Convolution -  167 × n_filter 
fc1 Last max_pool N/A     Relu fc** 

fc2 fc**       Softmax 11 class 

334 × 6 means 334 samplings/signal with 6 signal channels. These signals represent multidimensional arrays 334 × 6 in size,  
and structure of [Va Vb Vc Ia Ib Ic] 

 

The hyperparameter of the CNN model variation is set as 

following: input size 334 × 6, maximum pool unit same as 

number of convolutional kernel unit, 2 × 1 filter size, and 1 

same padding. Each convolution unit using active Rectified 

linear unit (Relu) function, and in the fully-connected (fc) 

layer uses activation function Softmax with 11 classes output. 

The Hyperparameter is listed in Table V.  

The CNN model with Preprocessing DWT used MRA 

DWT D1, D4, and A4. While ANN model used Energy DWT 

D1 and D4. However, we used a narrow ANN model with 

fewer inputs and layers, hence the ANN can classify fault 

types with low-computation. This ANN model is then 

compared to CNN-based machine learning. 

III. RESULTS 

A. Dataset generation 

Table VI shows the detailed of the RAW dataset; it produces 

11 types of faults. Table VII shows the preprocessing 

normalization result. The db4 is selected as Mother Wavelet 

according to Ref. [11] recommendation. Multilevel 1-D is used 

because of this application for signal analysis. We select 

frequency sampling with sample 170 cD1 as in Table III. 

TABLE VI 

RESULT OF RAW DATASET 

Parameters Description 

Sampling frequency 16,700 Hz 

Number of samples in one signal 334 sampling 

Voltage signal 3 phases 

Current Signals 3 phases 

Number of Label faults 11 types 

 

TABLE VII 

RESULT OF PREPROCESSING NORMALIZATION 

Parameters Description 

Mother Wavelet db4 

Frequency sampling fn/2 to fn 

Multiresolution analysis Multilevel 1D level 4 

Frequency band 0 – fn/16 

Number of sampling per window 334 

The dataset is created from all combinations of existing 
training parameters, and it produces dataset with 45,738 
training data and 4,752 test data. The simulation results are in 
the form of an extension (*.mat) file with file names 
according to each parameter. Data is converted into several 
preprocessing and raw data files for training and testing, with 
labels and randomized sequences.  

In this work, we used two preprocessing units, first is 
Normalization as in Table VII, the second one is Multi-
resolution Analysis Discrete Wavelet Transform (MRA DWT) 
with parameters as in Table VIII. The fault signals are 
generated using algorithm as follow [19]: 

 

 Algorithm for fault generation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Fault length parameter = {} 
Fault resistance = {} 

Fault inception = {} 
  for i = 1 to fault length parameter 

    for i = 1 to fault resistance parameter 
      for i = 1 to fault inception parameter 

        input (combination of parameter) 
        run Simulink® power simulation 
        save (pre-fault + fault signal 
measure) 

repeat for every combination 

TABLE VIII 

RESULT OF PREPROCESSING DWT 

Parameters Description 

Sampling frequency 16,700 Hz, according to Ref. [17] 

Number of samples in one signal 334 sampling 

Signal channel 6 Channels  

Angle normalization 0 between channel 
 

Normalization method Zero mean and unit variance 

Fig. 8 visualizes a sample of data comparison between 
signal raw, preprocessing MRA DWT for dataset. In this 
sample, we used only two fault types due to limited space, that 
is BC type and ABG type. The method of dataset generation 
detail is elaborated in other paper [19]. 
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(b) 
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(d) 

 
(e)  

 

Fig 8. Generated dataset of BC and ABG fault types for various input signal: (a) RAW data; (b) Normalization; (c) MRA DWT D4; (d) MRA DWT D1; and (e) 

MRA DWT A4   
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MRA DWT produces a signal, which is a coefficient of each 

frequency distribution. The coefficient signal used is cD4, cD1, 

and Approximation 4 (A4). The width of each window is 170 and 

27. On the results of MRA DWT D4 signal, the frequency and 

time data do not disappear completely. But the output signal 

can be used to represent a pattern with 27 sample results for 

each window. This technique is one feature extraction to form 

the new signals that represent frequency and time domains. 

Reduction of input sampling from 334 to 27 makes the 

CNN classifier model is more straightforward. We can also 

reduce the number of layers or other techniques to reduce its 

capacity. This technique makes the training process, and 

classification is faster. As the ANN model, extracted feature 

Energy DWT D1 is used. DWT D1 signal is discrete data, each 

window has 170 samplings with 6 channels. All samples will 

be summed up by Eq. 2,  𝐸 = ∑ |𝑥(𝑛)|2𝑛1+170𝑛1               (2) 

Note: 

E: Energy wavelet 

n: Sampling 

B. Training Process 

Each model will have a trainable parameter that represents 

the capacity of the model. The higher the model capacity, the 

greater the ability to represent datasets, but models with large 

sizes require longer preprocessing times. Moreover, it is easier 

to overfit in the training data. Overfitting is a situation where 

the classification model is able to have high-accuracy on work,   

each machine learning model is named according to its training 

data but fails or low accuracy on new data. In this element 

architecture. The format of model is expressed as Eq.3, 

 
Name model = {Machine learning classifier 
model}_{input of preprocessing}_{architectural 

parameters}                  (3) 
 

For example, name of RAW input is CNN_raw_nfilter8-

16-drop0.8-fc.model, means a “CNN” model with 

“RAW” signal input and the CNN layer architecture consists 

of two layers with “8” filters on the 1st slayer, then “16” filters 

on the 2nd layer with dropout of “0.8”, and 32 hidden unit in 

the fully-connected layer.  

Preprocessing is placed between the input of the machine 

learning system and the CNN layer. The difference of the 

preprocess classifier model with the RAW classifier model is 

the addition of the normalization (DWT layer). It is involved 

between the input and the CNN layer.  

Afterward, performance comparisons were made for each 

classifier of the machine learning model. The most optimal 

model is a model with the fewest number of parameters, small 

capacity, but it still represents training data with the highest 

accuracy in the test data. 

Table IX lists the training data result from various models, 

that is: the CNN model with the RAW dataset, preprocessing 

normalization, MRA DWT preprocessing and ANN model by 

extracting Energy DWT features. 

 

 
TABLE IX 

COMPARISON RESULTS FOR EVERY EXPERIMENTS 

Preprocessing  

(input size) 

Number of filters in 

the CNN network 

Number of Neuron in 

the fully-connected 

layer 

Total Parameter 
Accuracy in 

training data 

Accuracy in 

test data 

Loss data during 

test validation 

Raw 4 16 10,934 0.9139 0.9276 0.22366 

Raw 17 144 410,776 0.9231 0.9386 0.19126 

Raw 17 1024 2,919,656 0.9349 0.9697 0.17727 

Raw 32 1024 5,484,971 0.932 0.969 0.18859 

Raw 96 1024 16,430,315 0.9376 0.939 0.2088 

Raw 4-8 16 11,079 0.9375 0.9346 0.21784 

Raw 17-32 32 87,752 0.9141 1 0.19306 

Raw 17-32 144 390,152 0.9487 0.9697 0.17512 

Raw 17-32 1024 1,475,387 0.9264 0.9697 0.18419 

Raw 4-8-17-32 32 23,432 0.9304 0.9695 0.21113 

Raw 8-17-32-72 144 225,660 0.9487 0.9697 0.18826 

Raw 17-32-72-144 144 464,096 0.9508 1 0.18831 

Raw 17-32-72-144 1024 3,135,776 0.9475 0.9697 0.17398  

Normalization 4 16 10,934 0.9139 0.9276 0.22366 

Normalization 17 144 410,776 0.9453 0.9394 0.18919 

Normalization 17 1024 2,919,656 0.9503 0.9697 0.18055 

Normalization 32 1024 5,484,971 0.9341 0.9697 0.18415 

Normalization 96 1024 16,430,315 0.9403 0.9697 0.17939 

Normalization 4-8 16 11,079 0.9069 0.9318 0.23383 

Normalization 17-32 32 87,752 0.9356 1 0.18661 

Normalization 17-32 144 390,152 0.9373 0.9697 0.18165 

Normalization 17-32 1024 2,766,152 0.9408 0.9697 0.18058 

Normalization 4-8-17-32 32 23,432 0.9268 0.9394 0.19107 

Normalization 8-17-32-72 144 225,660 0.9302 0.9394 0.19626 

Normalization 17-32-72-144 144 464,096 0.9365 0.9695 0.17436 

Normalization 17-32-72-144 1024 3,135,776 0.9402 0.9689 0.1893 
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CONTD. TABLE IX  

COMPARISON RESULTS FOR EVERY EXPERIMENTS 

Preprocessing  

(input size) 

Number of filters in 

the CNN network 

Number of Neuron in 

the fully-connected 

layer 

Total Parameter 
Accuracy in 

training data 

Accuracy in 

test data 

Loss data during 

test validation 

 MRA DWT D1 (170) 7 16 9,814 0.7707 0.7498 0.74988 

MRA DWT D1 (170) 17 32 46,856 0.9086 0.8664 0.8664 

MRA DWT D1 (170) 17 144 210,040 0.9224 0.8887 0.38701 

MRA DWT D1 (170) 49 144 602,136 0.9367 0.8611 0.44501 

MRA DWT D1 (170) 17-32 32 45,768 0.907 0.943 0.32229 

MRA DWT D1 (170) 17-32 144 201,224 0.9274 0.8843 0.30325 

MRA DWT D4 (27) 2 12 517 0.3925 0.4114 1.61717 

MRA DWT D4 (27) 4 16 1,151 0.7689 0.8011 0.54734 

MRA DWT D4 (27) 4 24 1,695 0.7878 0.8401 0.43306 

MRA DWT D4 (27) 16 32 7,771 0.9209 0.9501 0.24681 

MRA DWT D4 (27) 16 144 34,203 0.9344 0.9611 0.20475 

MRA DWT A4 (27) 2 12 517 0.8329 0.8537 0.33223 

MRA DWT A4 (27) 4 16 1,151 0.8632 0.888 0.27673 

MRA DWT A4 (27) 4 24 1,695 0.9133 0.8929 0.24619 

MRA DWT A4 (27) 16 32 7,771 0.9299 0.9346 0.2104 

MRA DWT A4 (27) 16 144 34,203 0.9277 0.9367 0.1085 

Energy DWT D1 24 443 0.7215 0.7548 0.80313 

Energy DWT D1 6-6 161 0.6456 0.6199 0.6456 

Energy DWT D1 12-12 383 0.6374 0.7186 0.86201 

Energy DWT D1 24-24 1,043 0.8001 0.7639 0.80014 

Energy DWT D1 6-12-6 281 0.4854 0.4493 1.49282 

Energy DWT D1 12-24-12 839 0.5832 0.5972 1.29485 

Energy DWT D1 24-24-24 1,643 0.6764 0.653 1.02303 

Energy DWT D4 24 443 0.6658 0.7553 0.73453 

Energy DWT D4 6-6 161 0.6833 0.733 0.84699 

Energy DWT D4 12-12 383 0.6711 0.7068 0.7637 

Energy DWT D4 24-24 1,043 0.6648 0.7466 0.74744 

Energy DWT D4 6-12-6 281 0.6332 0.7315 0.82771 

Energy DWT D4 12-24-12 839 0.6648 0.8076 0.7555 

Energy DWT D4 24-24-24 1,643 0.6635 0.7622 0.70488 

 

TABLE X 

COMPARISON RESULTS FOR THE BEST DATA FROM EVERY EXPERIMENTS 

Model Name Preprocessing Number of filters in the CNN network 
Number of Neuron in 

the fully-connected layer 
Total Parameter 

Accuracy in test 

validation 

ANN Energy DWT D4 (6) N/A 12-24-12 839 80.764% 

CNN MRA DWT D4 (27) 16 144 34,203 96.11% 

CNN Raw (334) 17-32 32 87,752 99.99% 

CNN Normalization (334) 17-32 32 87,752 100% 

From each model, we choose the best one and then select 
the most optimum model. The chosen model is 
CNN_norm_nfilter17-32-fc32.model, in line with 
the highest accuracy and the least capacity parameter. Even 
though CNN with preprocessing RAW also has a model that 
reaches almost 100% accuracy (99.99%), but the capacity is 
almost similar to the raw input. The model that has the same 
raw input can provide a more responsive system or faster 
classification. Hence for this reason, we select CNN with 
processing normalization. The least trainable parameters are in 
ANN; the accuracy is only 80% less than the other CNN 
models, which on average, produces accuracy above 90%. The 
preprocessing method requires computational resources, 
resulting in increasing the response time when the system is 
implemented. That is why the CNN model with MRA DWT is 
less accuracy than CNN with RAW data as well as CNN with 
normalization. 

CONCLUSION 

In the transmission line, the short current circuit must be 

quickly solved to avoid the fail of generation synchronism and 

power system blackouts. Machine learning technology has 

 

been widely applied in various consumer products today. This 

technology is able to form a classifier model without hardcode. 

But through a training process, making it suitable for fault 

classification applications that have varied fault patterns. In 

this paper, we generate a fault dataset in the power system 

using Simulink and Matlab. Faults are categorized into 11 

types. Based on the test, the CNN-based machine learning 

 

model capable of detecting and classifying faults on 

transmission lines with 100% accuracy in data validation. A 

combination of the preprocessing blocks can improve the CNN 

performance with lower complexity, then it can be used to 

classify data tests. The most optimal model with the least 

number of parameters and with the best accuracy will be 

implemented in hardware. 
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