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In pedestrian detection methods, their high accuracy detection rates are always obtained at the cost of a large amount of false
pedestrians. In order to overcome this problem, the authors propose an accurate pedestrian detection system based on twomachine
learning methods: cascade AdaBoost detector and random vector functional-link net. During the o
ine training phase, the
parameters of a cascadeAdaBoost detector and randomvector functional-link net are trained by standard dataset.	ese candidates,
extracted by the strategy of a multiscale sliding window, are normalized to be standard scale and veri�ed by the cascade AdaBoost
detector and random vector functional-link net on the online phase. Only those candidates with high con�dence can pass the
validation. 	e proposed system is more accurate than other single machine learning algorithms with fewer false pedestrians,
which has been con�rmed in simulation experiment on four datasets.

1. Introduction

Nowadays, pedestrian detection has drawn the attention of
many researchers, due to its wide range of applications, such
as driver assistant system [1–3], intelligent video surveillance
system [4, 5], and victim rescue in case of emergency [6].
Numerous pedestrian detection algorithms have been pro-
posed during the past decades, based on di�erent techniques
and strategies [7–10].

Pedestrians have properties of both rigid and �exible
objects. Furthermore, the appearances of pedestrians are
easily a�ected by view angle, occlusion, apparel, scale, pose
variation, and illumination changes. All these issues have
made pedestrian detection become a hot issue and one of
the di�culties in the �elds of computer vision. In cur-
rent mainstream methods for pedestrian detection, machine
learning algorithms are adopted to distinguish and identify
pedestrians from candidates extracted by multiscale sliding
windows. However, high accuracy detection rates of these

algorithms are always obtained at the cost of a large amount of
false pedestrians.	ese experiments show that high accuracy
detection rates and low false positive rates are by no means
simultaneously guaranteed.

	e two-stage classi�er [11], proposed by Guo et al.,
can further reduce false positive rates and this system
has better performance than these single-stage algorithms.
However, the detection rates cannot be further increased
and maintained at a certain level as can these single-stage
algorithms. In this paper, a novel two-stage detecting system
is proposed based on a cascade AdaBoost detector [9]
and random vector functional-link net [12, 13]. 	ese two
algorithms can simultaneously deal with the normalized
candidates extracted by multiscale sliding windows, which
can guarantee the detecting e�ciency of the proposed system.
	ese processing results of the cascade AdaBoost detector
and random vector functional-link net are fused together,
as the �nal evaluation criteria of whether these candidates
are pedestrians or not. 	e cascade AdaBoost detector and
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random vector functional-link net are two of the signi�cant
high-e�cient machine learning algorithms. 	ey have both
been applied inmany research �elds, such asmultimedia pro-
cessing, natural language processing, biological information
processing, and network security.

	e proposed system can achieve high accuracy detection
rates on the basis of low false positive rates, which is
bene�ted from the joint promotion of the cascade AdaBoost
detector and random vector functional-link net. 	e high
performance of the proposed system has been demonstrated
on four datasets, with di�erent types, during our simulation
experiments. 	e remainder of the paper is organized as
follows.We start by introducing the structure of the proposed
system in Section 2, and the experimental comparison of
the proposed system with other state-of-the-art detectors is
demonstrated in Section 3. Finally, we summarize the char-
acteristics of the proposed system and discuss its superiority
over other detectors in Section 4.

2. Proposed Pedestrian Detection System

As there is seldom any single detector that can reach excellent
performance with high detection rate and few false positives
in complex scenarios, the proposed pedestrian detection
system is based onmachine learning algorithms.	e cascade
AdaBoost (CAB) detector [9] and random vector functional-
link (RVFL) net [12, 13] have been employed and combined to
enhance the corresponding performance of detection results.

2.1. System Architecture. 	e �ow chart of the proposed
pedestrian detection system is demonstrated in Figure 1. 	e
proposed system contains the o�-line training phase and the
on-line detecting phase. During the o�-line training phase,
the CAB detector and RVFL net are trained separately with
the given training dataset. Each training sample has the
same size, called the standard size, which is demonstrated
in Section 3. 	e CAB detector is trained as classi�cation
pattern, while RVFL net is trained as regression pattern.
For the classi�cation pattern of CAB detector, the positive
samples are labeled as 1 and negative samples are labeled as
0. During the training process of RVFL net with regression
pattern, the con�dence scale is limited in [0, 1].

During the on-line detecting phase, all the subimages are
generated bymultiscale sliding windows, and they are resized
to be the standard size as testing candidates. 	en the CAB
detector and RVFL net are employed to judge whether each
candidate is a pedestrian or not. 	e CAB detector estimates
whether each candidate is a pedestrian or not, and RVFL
net estimates a con�dence score for each candidate. 	eir
two results are combined to get the �nal matching score and,
�nally, only those candidates with higher matching scores
than the given threshold are regarded as pedestrians. 	e
details of the proposed system are as follows.

2.2. Feature Extraction. Feature extraction is a type of dimen-
sionality reduction that e�ciently represents the ROI region
of an image in the �elds of object detection and pattern
recognition algorithms. 	ese features are extracted as a

compact feature vector, for subsequent processing.	erefore,
e�ective image feature extraction is rather important, which
concerns �nal objection detection accuracy. Common fea-
tures extraction techniques include the RGB histogram, local
binary patterns (LBP) [14], histogram of oriented gradients
(HOG) [7], Haar-like feature, �rst-order image statistics (the
mean standard deviation, skewness, and kurtosis of pixel
intensities), second-order image statistics (the mean and
range of contrast, correlation, energy, and homogeneity) [15],
and Hu’s invariant matrix [16].

Past research has shown that, in the past researches,
Haar-like and LBP features have been used for detecting
faces, as they have desirable properties for representing �ne-
scale textures. And the HOG features, which can capture
the overall shape of an object, have been used for detecting
objects such as people and cars. In this paper, HOG features
are adopted to enhance the pedestrian detection performance
of the proposed system. In our experiment, the parameters
for the HOG feature extraction applied to the CAB detector
and RVFL net are the same. For our system, the normalized
candidates are divided into 16 × 16 pixel blocks; each block
contains 2 × 2 cells of 8 × 8 pixels; linear gradient voting into
9 orientation bins in (0∘, 180∘). 	erefore, the HOG features
for CAB detector and RVFL net can be extracted in one step.

2.3. Cascade AdaBoost Detector (CAB). 	e cascade
AdaBoost algorithm [9] is adopted, to detect object
categories whose aspect ratio does not signi�cantly vary.
	is algorithm consists of a series of classi�ers, where each
classi�er is an AdaBoost learner and its parameters are
adjusted utilizing a boosting algorithm.	e �ow chart of the
cascade AdaBoost algorithm is illustrated in Figure 2. 	e
expression of the cascade AdaBoost algorithm is formed as

�(x) = {1, �� (x) = 1, � = 1, . . . , �;0, otherwise, (1)

where x is sample inputs, � is the number of stages, and�� is
the strong classi�er of stage �, which can be represented as

�� (x) = {{{{{
1, �∑

�=1
���ℎ�� (x) ≥ 12

�∑
�=1

���;
−1, otherwise,

(2)

where� is the number of weak classi�ers of each stage, ℎ�� is
the �th weak classi�er, and ��� is the corresponding ensemble
weight of ℎ��. Suppose the total number of positive samples is�, and the minimum true positive rate is �; then the number
of positive samples to use at each stage is calculated by

�stage = ⌊ �1 + (� − 1) × (1 − �)⌋ , (3)

where ⌊⋅⌋ is the �oor function. 	e number of negative
samples for each stage is always set to be 2�stage, twice the
positive samples.

During the training process, a certain amount of positive
samples and negative images are required. 	e feature type
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Figure 1: Flow chart of the proposed pedestrian detection system. 	e proposed pedestrian detection system contains an o�-line training
phase and an on-line detecting phase.	ese parameters of CAB detector and RVFL net are trained on the o�-line training phase with training
samples. All these testing subimages are extracted and veri�ed to be targets or not during the on-line phase.

and number of stages are set and other function parameters,
which contain the minimum true positive and the maximum
false alarm rates, are �rst initialized. 	en, the parameters of
each stage are estimated with partial positive and negative
samples.

As mentioned above, true positives are usually not suf-
�ciently given and worth taking the time to verify through
the cascade stages. Furthermore, su�cient negative samples
should be provided to ensure the training phase is carried
out smoothly, and typical negative samples are supplied
containing background information of the images to be
detected. During the parameter estimation of each stage, the
AdaBoost learner is trained by adding features, until the
minimum true positive and the maximum false alarm rates
aremet.	e number of stages is determinedwith proper �nal
false positive and detection rates.

During the detection phase, as shown in Figure 2, all
subwindows of the image are extracted through a multiscale
sliding window. 	e structure of the cascade AdaBoost
re�ects that the vast majority of these subwindows are neg-
ative. As such, each stage of the cascade AdaBoost detector
rejects the large possible number of nonpedestrian windows
and lets potential targets pass to the next stage. Finally, only a
few of these subwindows accepted by all stages of the detector
are regarded as objects.

2.4. Random Vector Functional-Link (RVFL) Net. 	e ran-
dom vector functional-link net [12, 13] is a special case of the
single hidden layer feed-forward neural network.	e hidden
layer contains two di�erent types of nodes: input patterns
and enhancement patterns. Input patterns are simple linear
combinations of sample inputs. 	ese additional enhance-
ments can be represented as �(a��x + ��), where a� is the

weights of the input vector, �� is the threshold parameter for
the �th node, x = [�1, . . . , ��] is the sample inputs, and�(⋅) is the activation function. 	erefore, the RVFL net can
be interpreted as a mapping from �-dimensional space to(� + �)-dimensional space, where � is the dimensionality
of training sample inputs, and separately, � is the number of

additional enhancements.	e output of the RVFL net can be
represented as

� (x) = �∑
�=1

��� (a��x + ��) + �+�∑
�=�+1

����. (4)

For the random vector functional-link net, a� and ��
are randomly generated according to an appropriate given
distribution (e.g., Gaussian distribution). 	erefore, only the
weight vector B = [�1, �2, . . . , ��+�] needs to be learned,
which largely reduces the time cost of the training phase.	e
optimal weight vector B is obtained by minimization of the
system error

B = argmin{ 12"
	∑

=1

(#(
) − Bd
(
))2} , (5)

where " is the number of training samples, d = [�(a�1x +�1), . . . , �(a��x+��), �1, . . . , ��] is the enhanced pattern vector,
the subscript (%) is the sample index, and #(
) is the target
value of the %th training sample.

	e unique minimum of system error can be found by
a learning phase, such as the conjugate gradient approach
[17, 18]. If matrix inversion with the use of a pseudoinverse
is feasible, then the optimal weight vector B is obtained
by a single step, without any iteration. For this case, the
pseudoinverse of optimal weight vector B was estimated by
a single step in our experiments.

2.5. Matching Score Fusion. 	e proposed system deploys
CAB and RVFL net to get more accurate detection rate.
To obtain the �nal matching score for any subwindow, the
proposed system fuses their two results: classi�cation result�(x), represented by 0 or 1, from CAB and con�dence score�(x), represented by continuous valuewith the range of (0, 1),
from RVFL net. Subimages with high matching scores can be
accepted as objects. 	e function of matching score fusion is
de�ned as

"�nal (x) = � (x) + &� (x) . (6)
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Figure 2: Flow chart of the cascade AdaBoost detector. Each classi�er in cascade AdaBoost detector works independently, and the minimum
true positive and the maximum false alarm rates of these stages are the same. Only these subwindows accepted as true positives by all stages
of the detector are regarded as targets. “T” means that true candidates of these subwindows passed the veri�cation of each classi�er, and “F”
means that these false candidates are rejected by the corresponding classi�er.
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Figure 3: Performance comparison for RVFL net, with respect to hidden nodes. 	e �-axis of these two subimages represents the number
of hidden nodes, which varied from 10 to 200 with step size 10. 	e le� subimage is the training and testing RMSE and the right subimage is
corresponding training and testing times.

With proper activation function, the enhancement pat-
terns of RVFL net are more powerful than these input
patterns, as the output of enhancement patterns has nonlinear
correlation with sample inputs. During our experiment, only
enhancement patterns of RVFL net are employed, and the
activation function is set to be a sigmoid function. For this
case, the �nal match score "�nal(x) in (6) can be simpli�ed to
be

"�nal (x) = �∑
�=1

��� (a��x + ��) + &� (x) . (7)

3. Experiments

In this section, we compare our proposed two-stage detection
system with four of the latest state-of-the-art detectors. To

validate our proposed system, we have tested it on four pub-
licly available sequences, which are PET’09 S3.MF (Multiple
Flow) and PET’09 S0.CC (City Center) fromPET benchmark
[19], the “USC pedestrian set A” sequence from USC dataset
[20], and the INRIAPerson dataset [21].	e�rst two datasets
are consecutive frames captured by one �xed camera, while
the sequences of the latter two datasets are chosen from
di�erent scenarios. For the city center sequence, the �rst 100
frames are selected for testing, as the amount of this sequence
is quite large, while all sequences of the other three datasets
are adopted, during this experiment. For the INRIA dataset,
parts of these images are resized, to guarantee that these
pedestrians have similar size to the training dataset, as the
pedestrian size scale of this dataset varied greatly.

	e training data are the same for all these four testing
dataset, which are selected from the NITCA pedestrian
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Figure 4: Comparison of parameter pair (&, �). Each row of these subimages represents (detection rate/false positives per frame) curve for
each dataset, which are “Multiple Flow,” “City Center,” USC(A), and INRIA dataset in order from top to bottom.	e stage numbers � of these
three columns are 8, 12, and 16 in order from le� to right. Each subimage represents the performance of added con�dence & for given dataset
with stage number �.

dataset [22], with image size of 32 × 80 pixels. However, in
order to improve the performance of the proposed system,
600 nonpedestrian images from the Daimler dataset [23]
are added to the negative training dataset of the cascaded
AdaBoost algorithm. 	e number of positive training sam-
ples is 500 for the cascade AdaBoost algorithm while the
number of negative samples is twice that of the positives. For
RVFL net, the amount of positive and negative samples is the
same and is set to be 3000.

Figure 3 shows the training and testing accuracies and
times of RVFL net, with increasing number of hidden nodes
from 10 to 200, by the step of 10. All these results are estimated
by k-fold cross-validation [24]. During the cross-validation
process, the whole dataset is randomly partitioned into 10
equal size subsets, and one single subset is selected as the
validation data for testing the model, while the remaining
9 subsets are used as training data, on a case-by-case basis.
Finally, the number of hidden nodes is set to be 180, with
smooth and e�cient training accuracy and high capability of
generalization. When the number of hidden nodes is 180, the
testing time is just 0.056 s, although the training time reaches

1.18 s. 	erefore, the e�ciency of RVFL net is guaranteed,
during practical applications.

	e minimum true positive and the maximum false
alarm rates of CAB detector in our experiment are set to be
0.995 and 0.5, correspondingly. Figure 4 shows the (detection
rate/false positives per frame) curve of the proposed system
with the parameter pair (added con�dence & and stage num-
ber � of the CAB detector). 	e formulas of the pedestrian
detection rate (PDR) and false positives per frame (FPPF) are
demonstrated as follows:

PDR = '"'" + *� × 100%,
FPPF = *"�frame

× 100%, (8)

where '" is the number of pedestrian samples correctly
predicted to be pedestrians; *" is the number of nonpedes-
trian samples incorrectly predicted to be pedestrians; *�
is the number of pedestrian samples incorrectly predicted
to be nonpedestrians; �frame is the number of total frames
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Table 1: Pedestrian detection rate (%) and false positives per frame comparison of CAB-ELM and other state-of-the-art detectors.

Data sets Propose (low) Propose (high) CAB SVM GAB HF

Multiple Flow
PDR 94.55 94.72 94.39 94.22 61.55 78.99

FPPF 0.56 0.75 0.30 1.68 1.70 1.66

City Center
PDR 90.49 95.29 93.10 95.15 66.04 80.22

FPPF 0.46 1.80 0.71 0.960 1.43 1.50

USC
PDR 73.16 81.79 81.15 80.83 36.74 34.82

FPPF 0.24 0.88 0.34 0.91 0.34 0.42

INRIA
PDR 76.28 89.25 71.84 89.08 62.29 34.82

FPPF 0.59 9.24 3.54 9.55 0.89 0.42

(1) 	e number of cascade stages of CAB and CAB-RVFL is 12.
(2) (low) and (high) means two sets with (low/high) detection rates and corresponding false positives per frame.

Figure 5: Examples of the four datasets. 	e �rst row is four
samples of “Multiple Flow” dataset and the second row is “City
Center” dataset. For demonstrated samples of these two datasets,
each dataset has one pedestrian undetected due to the issue of heavy
occlusion.	e third row is USC(A) dataset and one false pedestrian
is classi�ed to be true positive target in the second subimage. 	e
last row is INRIA dataset and all of the pedestrians are identi�ed by
the proposed system without any false pedestrians.

of the corresponding dataset sequences. We have tested the
performance of added con�dence & with di�erent values{0, 0.2, 0.4, 0.6, 0.8, 1}. 	e curve of & = 0.8, 1 is very close to& = 0.6, which means that the performance of the proposed
system is beginning to stabilize when & is growing larger
than 0.6. 	e curve comparison of & = 0, 0.2, 0.4, 0.6 is
demonstrated in Figure 4. From all these 12 sub�gures, the
performance of & = 0.6 is superior to & = 0, 0.2, 0.4.
Moreover, when the stage number is 12, the results are better
than � = 8, 16, on the whole. Finally, the parameter pair
is set to be (0.6, 12). Note that the single RVFL net can be
regarded as a special case of the proposed systemwhen & = 0.
	erefore, the proposed system has better performance than
single RVFL net.

	e comparison results of the proposed system and
four other state-of-the-art detectors (CAB [9], SVM [7],
GAB [25], and HF algorithm [8]) are shown in Table 1.

In order to demonstrate the superiority of the proposed
system, two sets of detection rates and the corresponding
average number of false positives per frame of the proposed
system are shown in the �rst two columns of Table 1. 	e
second column shows high detection rates, at the cost of
more false positives. However, its number of false positives
per frame is still lower than SVM detector, in most cases.
For “Multiple Flow” dataset, the low PDR of the proposed
system is 94.55%, which is higher than those of the other
four detectors. 	e corresponding FPPF, 0.56, is the lowest
one among all these detectors. For “City Center” dataset, the
low PDR and corresponding FPPF of the proposed system
are 90.49% and 0.46, which are better than those for the
GABandHF algorithm.	ehighPDR reaches 95.29%,which
is more accurate than CAB and SVM, at the cost of a few
more false positives. For USC(A) dataset, the low PDR and
corresponding FPPF are better than those for GAB and HF
algorithm, and the high PDR and corresponding FPPF are
better than those for SVM detector. 	e CAB algorithm
has better performance of FPPF, while its detection rate is
worse than the high PDR of the proposed system. For the
INRIA dataset, the low PDR and corresponding FPPF of the
proposed system are better than those for CAB, GAB, and
HF algorithm, and the high PDR and corresponding FPPF
are better than those for SVM detector.

Parts of the experimental results of the proposed system
are depicted in Figure 5. During the detection results of these
examples, the overwhelming majority of these pedestrians
are detected with very few false pedestrians, through the
validation of the proposed system.

4. Conclusion

In this paper, we presented a novel two-stage pedestrian
detecting system based on a cascade AdaBoost detector and
random vector functional-link net. 	e proposed system
simultaneously enhances the detection accuracy and reduces
the false positive rate, which improves the comprehensive
performance for pedestrian detection. Numerous experiment
comparisons with other state-of-the-art algorithms on four
challenging datasets with di�erent types demonstrate that the
proposed system achieves favorable results, in terms of the
detection rate and false positive rate simultaneously.
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