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Abstract

Background: Stochastic optical reconstruction microscopy (STORM) and related methods achieves sub-diffraction-

limit image resolution through sequential activation and localization of individual fluorophores. The analysis of

image data from these methods has typically been confined to the sparse activation regime where the density of

activated fluorophores is sufficiently low such that there is minimal overlap between the images of adjacent

emitters. Recently several methods have been reported for analyzing higher density data, allowing partial overlap

between adjacent emitters. However, these methods have so far been limited to two-dimensional imaging, in

which the point spread function (PSF) of each emitter is assumed to be identical.

Methods: In this work, we present a method to analyze high-density super-resolution data in three dimensions,

where the images of individual fluorophores not only overlap, but also have varying PSFs that depend on the z

positions of the fluorophores.

Results and conclusion: This approach accurately analyzed data sets with an emitter density five times higher

than previously possible with sparse emitter analysis algorithms. We applied this algorithm to the analysis of data

sets taken from membrane-labeled retina and brain tissues which contain a high-density of labels, and obtained

substantially improved super-resolution image quality.

Background

In recent years, super-resolution optical imaging techni-

ques have been developed to overcome the diffraction

limit in fluorescence microscopy (Hell 2007; Huang et al.

2010). Among these techniques, methods based on sto-

chastic switching and localization of individual molecules,

such as stochastic optical reconstruction microscopy

(STORM) (Rust et al. 2006) and (fluorescent) photoacti-

vated localization microscopy ((F)PALM) (Betzig et al.

2006; Hess et al. 2006), achieve sub-diffraction-limit

resolutions by sequentially imaging and localizing fluores-

cent emitters in the sample. To ensure that fluorophores

can be precisely localized, typically a sparse subset of

fluorophores with non-overlapping images are activated

and imaged at any given instant. Iteration of this process

allows stochastically different subsets of fluorophores to

be switched on and localized. A super-resolution image is

then reconstructed from a large number of molecular

localizations.

Initially only emitters with well-isolated images were

considered in the analysis, with simple fitting algo-

rithms. Recently, several methods have been developed

to simultaneously fit densely distributed emitters, whose

images partially overlap with one or more neighbors

(Holden et al. 2011; Huang et al. 2011; Quan et al. 2011;

Cox et al. 2012). Additionally, approaches that use ideas

from the field of compressed sensing have also been ap-

plied to the analysis of densely distributed fluorophore

images (Zhu et al. 2012; Mukamel et al. 2012). These

methods are capable of analyzing images with a sub-

stantially higher emitter density with only a marginal

loss in localization accuracy. This development allows

super-resolution images to be acquired with a larger

number of localizations per frame, and hence at a higher

speed, which is particularly useful for imaging living

specimens and specimens with ultra-high labeling dens-

ity. To date, these methods have been limited to analyz-

ing two-dimensional (2D) images, in which the point

spread function (PSF) of all the emitters is assumed to
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be identical. It would be interesting to extend such

high-density analysis algorithms to 3D super-resolution

imaging which relies on PSFs with variable shapes to de-

termine the z-coordinates of the emitters (Huang et al.

2008; Juette et al. 2008; Pavani et al. 2009).

In this work we demonstrate an extension of the

DAOPHOT analysis method (Holden et al. 2011; Stet-

son 1987), which we term 3D-DAOSTORM, to the ana-

lysis of astigmatism-based 3D super-resolution data

where the z position of the emitter is encoded in the x

and y width of its PSF. 3D-DAOSTORM simultaneously

fits multiple overlapping images of adjacent emitters

with different PSF shapes. To validate the method ex-

perimentally, we applied this algorithm to analyze tissue

samples labeled with a lectin, Concanavalin-A (ConA).

We demonstrate that this lectin, which selectively labels

plasma and nuclear membranes, is useful for super-

resolution imaging of cellular morphology. Compared

to sparse emitter analysis algorithms based on single-

emitter fitting, 3D-DAOSTORM substantially increases

the localization density and improves the quality of the

super-resolution images.

Methods

3D-DAOSTORM algorithm

This algorithm attempts to fit overlapping images of

emitters simultaneously with multiple Gaussian peaks

using an approach similar to that employed by DAO-

PHOT, an algorithm previously developed for analyzing

images of stars (Stetson 1987). DAOPHOT has been re-

cently used to analyze 2D super-resolution data where

the PSFs of all emitters are assumed to have the same

shape, an approach termed DAOSTORM (Holden et al.

2011). Here we extend this approach to analyze

astigmatism-based 3D super-resolution data, where the

PSFs of emitters can be approximated by elliptical Gaus-

sians whose ellipticity depends on the z position of the

emitter.

The basic idea behind the DAOPHOT algorithm is to

fit the detected emitters in an image, and then examine

the residual image after subtracting the fit for evidence

of any undetected emitters. These emitters are then fit

simultaneously with the emitters identified in the previ-

ous cycle, and the process is repeated until there is no

further indication of undetected emitters in the residual

image. The primary differences between the original

DAOPHOT and the 3D-DAOSTORM algorithm devel-

oped here are as follows:

(1) DAOPHOT fits the image of every emitter with a

fixed-shape PSF. To extend the algorithm to the

analysis of astigmatism-based 3D super-resolution

data, where the PSFs of emitters vary with their z

position and can be modeled by elliptical Gaussians

with varying x and y widths, the images of individual

emitters are fit with:

bg þ he�2 x�x0ð Þ2=w2
xðzÞe�2 y�y0ð Þ2=w2

y ðzÞ ð1Þ

where wx and wy are pre-determined functions of z.

The dependence of wx and wy on z was determined

by fitting defocusing curves to images of single

emitters bound to a coverslip (Huang et al. 2008)

(2) The error in the fit is calculated using the

maximum likelihood estimator suitable for a Poisson

distribution of error as previously described

(Laurence et al. 2010; Mortensen et al. 2010; Smith

et al. 2010). This approach gives superior fitting

performance for data where the number of detected

photons is sufficiently low that the Gaussian

distribution of error assumed by least squares fitting

is not valid.

(3) The DAOPHOTalgorithm groups overlapping images

of emitters and simultaneously fits all of them

together. This approach involves deciding which

emitters overlap sufficiently to be grouped together. It

also requires solving a set of coupled linear equations

by inverting a matrix with (MxN)2 elements, where M

is the number of parameters that describe the PSF of

each emitter and N is the number of emitters whose

images overlap. As it is computationally expensive to

solve these coupled equations due to the poor scaling

of matrix inversion with matrix size, we thought to

simplify the problem by fitting each emitter

independently, but in an iterative fashion. We

accomplished this task by performing a single cycle of

fit improvement for each emitter independently, then

recalculating the overall fit image based on the

updated position of every identified emitter (details are

given below). This procedure is repeated until the

algorithm either converges or reaches a pre-

determined maximum number of cycles.

(4) Unlike the DAOPHOTalgorithm we do not include a

cubic spline term to correct for deviations in the PSF

from an idealized Gaussian. Including this term could

further improve the fitting accuracy.

The flow of operations of the algorithm is described

below:

0. Initialize the algorithm.

0.1. To start by fitting only the peaks from the brightest

emitters in the field of view, we first set a threshold

value for the peak height to be equal to 4x the user-

specified minimum peak height, h0 (h0 typically

equals 75 photons).

0.2. Set the residual image equal to the original image.
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1. New localization identification.

1.1. Identify pixels in the residual image that are

both greater than all neighboring pixels

within a user-specified radius (typically 5

pixels) and greater than the current peak

height threshold. Mark the center positions of

these peak pixels as new localizations, and

ignore a pixel if it has already been chosen

twice previously as a potential localization.

The latter criterion was added to avoid

getting trapped in an infinite, futile cycle of

first identifying a localization, then removing

it due to other screening criteria (such as

being too close to a neighbor), and then

identifying the same localization again in the

next cycle. We found empirically that

allowing at most two localizations per pixel

was a good compromise, which breaks the

repeated, futile localization addition cycle

without substantially restricting the addition

of valid localizations.

1.2. If no new localizations were identified and the

localization height threshold is at its minimum

value h0, then exit the algorithm and return the

current list of localizations.

1.3. If the localization threshold value is greater than

h0, decrease the localization height threshold

value by h0 in preparation for the next cycle of

localization identification.

1.4. Add the newly identified localizations that are at

least 1 pixel away from all current localizations

into the current list of localizations and flag them

as “running”. Even though it is possible that some

activated emitters are separated by less than a

single pixel, we do not attempt to discriminate

them as the signal-to-noise ratio of the images is

not high enough. Current localizations that are

closer than a user-specified distance (typically 5

pixels) of a newly identified localization are

flagged as “running” to indicate that further

refinement of their parameters may be necessary.

1.5. Set the parameter-dependent clamp values, Ck,

for all the localizations to the default values

(1000.0 for h 1.0 for x and y, 3.0 for wx and wx,

100.0 for bg and 0.1 for z) in preparation for the

parameter refinement in the next step.

2. Refining localization parameters.

2.1. For each localization, determine a fitting

neighborhood within which fitting to the image

is performed to refine localization parameters.

We calculate the neighborhood size (defined by

X and Y along the x and y directions) based on

the current wx and wy values of the localizations.

This neighborhood extends to twice wx or wx

from the localizations center position.

2.2. Calculate the fit image, f, from the list of

localizations by drawing an elliptical Gaussian for

each localization using Eq.1 and the current

fitting parameters. For reasons of efficiency, f is

only calculated within the fitting neighborhood

of the localizations as determined in step 2.1.

2.3. Calculate the fit error for each of the “running”

localizations using the following equation

(Laurence and Chromy 2010):

χ
2
MLE ¼ 2

X

N

i¼1

ðfi � giÞ � 2
X

N

i¼1;y 6¼0

gi lnð
fi
�

gi
Þ

Where fi is the value of the fit image at pixel fi in

the neighborhood of the localization, gi is the

actual image intensity at pixel i, and N is the

number of pixels in the fitting neighborhood. If

|current error – previous error|/current error is

less than a threshold (typically set to 1.0e-6), flag

the localization as “converged”.

2.4. For each “running” localization (i.e. those

localizations that have not converged as judged by

the convergence criteria in step 2.3) perform a

single cycle of fit optimization as described below.

2.4.1. Calculate the Jacobian (J) vector using the

following equation (Laurence and Chromy

2010)

Jk ¼ raχ
2
MLE ¼

@χ2MLE

@ak

¼ 2
X

N

i¼1

1�
gi

fi

� �

@fi
@ak

where J is a vector containing the first
derivatives of χMLE

2 with respect to each
parameter in the Gaussian that is fit to the
localization, and ak are the parameters
describing the Gaussian, which include the
background value, bg, the peak height h, the
centroid position of the peak in x and y, (x0,
y0), and the peak widths in x and y, (wx, wy).

2.4.2. Calculate the Hessian matrix (H) using the

following equation (Laurence and Chromy

2010)

Hkl ¼ raraχ
2
MLE ¼

@2
χ
2
MLE

@ak@al

¼ 2
X

N

i¼1

@fi
@ak

@fi
@al

gi

f 2i
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Note that we ignore the second derivative

terms in H as suggested in (Laurence and

Chromy 2010).

2.4.3. Calculate the parameter update vector U by

solving HU= J using the LAPACK function

dposv (Anderson et al. 1999). The vector U

describes how to best adjust each of the

parameters ak of the localization to reduce

the error in the fit.

2.4.4. Subtract the Gaussian peak calculated using

the current localization parameters from the

fit image f calculated in 2.2. As more cycles of

optimization are performed, more of the

localizations will have converged. To avoid

having to recalculate f for all of the

localizations since many of them will not have

changed, we subtract the localizations with

the “current parameters” from f in this step

and then add the localizations with the

“updated parameters” back to f in a later step

(step 2.4.8).

2.4.5. Update individual localization parameters (ak)

based on the parameter update vector U and

the parameter specific clamp value Ck using

the formula

akðnewÞ ¼ ak oldð Þ þ Uk=ð1þ
abs Ukð Þ

Ck
Þ

If the sign of Uk has changed since the

previous iteration, then Ck is first reduced

by a factor of 2. The Ck value suppresses

oscillations in the optimization as well as

damping excessively large corrections

(Stetson 1987). Initial values for each Ck of

the localization are set when the

localization is created (step 1.5).

2.4.6. Flag localizations that have a negative

background value, bg, peak height h, or

peak widths (wx, wy), as “bad”. These

localizations are ignored in subsequent

iterations of the fit, and removed from the

current list of localizations in step 3.1.

2.4.7. Adjust the size of the localization’s

neighborhood, X and Y , based on the

updated wx and wx parameters.

2.4.8. If the localization is not “bad” add it back

to the fit image calculated in 2.2 with the

updated parameters.

2.5. If there are still “running” localizations and

the maximum number of iterations (typically

set to 200) has not been reached, go to step

2.3.

3. Localization cleanup.

3.1. Construct a new localization list containing only

those localizations that are “converged” or

“running”, have a height (h) greater than 0.9h0
and have widths (wx, wy) greater than a user-

specified value (typically 0.5 pixels).

3.2. Remove all the localizations in this list whose

height is less than that of any neighboring

localizations within a user-specified distance

(typically 1 pixel). Such localizations tend to

be false localizations due to the limited signal-

to-noise ratio of our images. Nearby

localizations to the ones that are removed are

flagged as “running”.

3.3. Repeat step 2 (parameter refinement) with the

new list of localizations, then go to step 4. This

additional step is performed even if no

localizations are removed in step 3.2. It gives

localizations that may still be “running”

additional cycles to converge. In the event that

all the localizations have “converged”, this

repetition of step 2 will finish almost

immediately.

4. Update the residual image.

4.1. Estimate the background by subtracting the fit

image from the original image, then smoothing

the result with a 2D Gaussian with a sigma of 8

pixels. The smoothing helps to suppress noise in

the background image, and is justified under the

assumption that the actual background varies

smoothly across the image.

4.2. Calculate the new residual image.

4.2.1. Set the residual image equal to the original

image minus the fit image.

4.2.2. Compute the mean value of the residual

image.

4.2.3. Subtract the estimated background from

the residual image. This step flattens the

residual image in situations where the

background is not uniform across the

image. Flattening the residual image in turn

makes it easier to identify to new

localizations in subsequent iterations of the

algorithm.

4.2.4. Add the mean value from 4.2.2. back to the

residual image.
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5. Termination of the algorithm.Go to step 1 if the total

number of iterations has not been exceeded (typically

20). If the residual image is such that no new

localizations will be found, then the algorithm will

exit at step 1.2. If new localizations can still be found

in the residual image even after 20 iterations we

terminate anyway as we are most likely caught in an

infinite loop. For most of the images that we have

analyzed the total number of iterations performed is

less than 7.

The algorithm was implemented in a combination of

the C and Python languages. It is available for download

at http://zhuang.harvard.edu/software.html.

Generation of simulated STORM images

Simulated STORM images were generated with the fol-

lowing parameters, 20 photons/pixel background, a con-

stant 2000 photons per emitter, an overall camera gain

of 3, and a camera read noise of 2. These parameter

values are close to real experimental values. The emitters

were placed on the image with a uniform random distri-

bution in x and y. The z location of the localization was

randomly distributed in a range of 800 nm. Localization

widths (wx, wy) were calculated based on the z location

using the defocusing curve wx;y zð Þ ¼ wo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
z�cx;y
d

� �2
q

with wo= 2 pixels, cx= 150 nm, cy=− 150 nm,

d= 400 nm and z=− 400 nm to 400 nm. These values

are again close to real experimental values. The overall

image was generated as the sum of the elliptical Gauss-

ian functions associated with individual localizations

based on the above-described parameters. The noise due

to the EMCCD gain of the acquisition camera was mod-

eled with an exponential distribution.

Lectin labeling of retina and brain tissue samples

3–6 month old C57 mice were euthanized by asphyxi-

ation with CO2 following procedures approved by the

Harvard University Animal Care and Use Committees.

The eyes or brains were then dissected, fixed by

immersion in 4% paraformaldehyde (PFA), and select

areas of interest, such as retina or regions of the cerebral

cortex were further dissected. The fixed tissue was then

washed with phosphate buffered saline (PBS) and stored

in PBS at 4°C until use. Fixed tissue was incubated with

the Alexa-647 dye labeled lectin at a concentration of

0.25 mg/ml for 3–5 days at 4°C in a labeling buffer con-

taining PBS supplemented with 0.49 mM Mg2+ and

0.90 mM Ca2+. The tissue was then washed extensively

with the labeling buffer and fixed overnight with 2%

PFA, 0.2% Glutaraldehyde in the labeling buffer. The tis-

sue was sectioned at 50 nm (for 2D STORM imaging) or

100 nm (for 3D STORM imaging) thickness with a Leica

UC6 ultra-microtome. The tissue sections were trans-

ferred to cleaned coverslips and stored on coverslips at

room temperature prior to use. The following Alexa-647

labeled lectins were used in this study: Concanavalin A

(ConA, #C21421), Wheat Germ Agglutinin (WGA,

#W32466), Peanut lectin (PNA, #L32460) and Red Kid-

ney Bean lectin (PHA-L, #L32457), all purchased from

Invitrogen.

STORM imaging of the lectin-labeled brain and retina tissue

Flow channels containing the tissue samples were con-

structed by sandwiching two pieces of double stick tape

(3 M) between the coverslip with the tissue sections and

a microscope slide. The following imaging buffer was

added to the flow channel: 10 mM Tris, 50 mM NaCl,

0.1% Triton-X100, pH8.0 supplemented with 0.5 mg/ml

Glucose Oxidase (Sigma, G2133), 40 ug/ml Catalase

(Sigma, C100), 5% Glucose and 100 mM cysteamine

(Sigma 30070). For 3D STORM imaging, 1% (v/v) beta-

mercaptoethanol (Sigma, 63689) was used instead of

100 mM cysteamine. After the addition of the imaging

buffer, the flow channel was sealed with 5 minute epoxy

and placed on a custom microscope setup built for

STORM imaging. Epoxy sealed samples were imaged

within a few hours of preparation.

Low resolution conventional fluorescence images were

taken with a 2x air objective (Nikon, Plan Apo λ, 0.1NA)

first to locate the tissue sections on the coverslip and to

find the areas of interest. Once an area of interest was

identified, a high resolution conventional fluorescence

picture was taken with a 100x oil immersion objective

(Nikon, Plan Apo λ, 1.45NA), followed by a STORM

image.

STORM imaging was performed on a custom setup

built around a Nikon TiU inverted microscope (Huang

et al. 2008; Bates et al. 2007). Illumination of the Alexa-

647 dye was provided by a 300 mW 656 nm solid state

laser (Crystalaser, CL656-300). The 656 nm laser light

excites fluorescence from Alexa 647 and switches the

dye off rapidly. The same light also reactivates Alexa 647

back to the fluorescent state, but at a very low rate such

that only a small fraction of the dye molecules (~0.1%)

emit fluorescence at any given instant. When necessary,

a 50 mW 405 nm diode laser (Coherent, Cube-405) was

used to increase the dye activation rate (Dempsey et al.

2011). The output of the lasers was combined and

coupled into a single mode photonic fiber (NKT Pho-

tonics, LMA-8) for transmission to the STORM micro-

scope. Light from the fiber was collimated and focused

on the back-focal plane of the microscope objective. The

illumination was adjusted from epi-flourescence to total

internal reflection by translating the illumination beam

across the back-focal plane of the objective. Imaging was

performed with a 100x oil immersion objective (Nikon,
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Plan Apo λ , 1.45NA). The laser intensities at the sample

were ~1 kW/cm2 for the 656 nm laser light and ~20 W/

cm2 for the 405 nm laser light. The fluorescence signal

was recorded with an EMCCD camera (Andor, DU-897).

For 3D STORM images, a 1 m focal length cylindrical

lens was added to the optical path to provide astigma-

tism, such that the PSF of individual emitters appear el-

liptical with ellipticity depending on the z position of the

emitter (Huang et al. 2008). In addition the setup had an

infrared focus lock system that was used to stabilize the

distance between the microscope objective and the sam-

ple (Huang et al. 2008).

Results

To increase the imaging speed of 3D super-resolution

fluorescence microscopy, we developed a data analysis

algorithm, 3D-DAOSTORM, which can determine the

position of densely distributed emitters with overlapping

images and varying PSFs. Similar to the previously devel-

oped DAOSTORM approach (Holden et al. 2011), this

algorithm uses multiple rounds of peak identification,

fitting and subtraction to determine the positions of

emitters with partially overlapping images. However, un-

like previous dense-emitter analysis algorithms (Holden

et al. 2011; Huang et al. 2011; Cox et al. 2012), which

analyze 2D images where the PSF of individual emitters

are assumed to have an identical shape, 3D-

DAOSTORM can analyze emitters with varying PSF

shapes. In particular, we applied this algorithm to the

analysis of astigmatism-based 3D STORM data where

the PSFs of emitters can be modeled by an elliptical

Gaussian shape, and the x and y widths of the Gaussian

function, (wx, wy) vary with z position of the emitter. We

compare the performance of this algorithm on both

simulated and experimental data to two variations of a

sparse emitter analysis algorithm, which does not fit ad-

jacent emitters when their images overlap (Huang et al.

2008). In the first variation of the sparse emitter algo-

rithm (SEA.1) we applied a filter criteria based on the

image shape to select only those localizations which had

wx and wy values that were within a specified distance of

a previously determined defocusing curve. In the second

variation of the sparse emitter algorithm (SEA.2) no

image-shape-based filtering was applied.

We first compared the performance of the three algo-

rithms on simulated images, where the ground truth of

the emitter locations is known. In the simulated images,

the emitters were chosen to be randomly distributed in

x and y across the entire image and in z over a range of

800 nm. The emitter PSF was modeled as an elliptical

Gaussian. The various simulation parameters such as the

number of photons detected per emitter, the Gaussian

widths as a function of z , the image background, and

the camera noise were chosen to match what we typic-

ally measure in real STORM images. We quantitatively

compared the recall efficiency and localization accuracy

of the algorithms as a function of emitter density

(Figure 1).

ASEA.1 BSEA.2 3D-DAOSTORM C

D

-2)

 

E

 

-2)

F

-2)

 

Figure 1 Comparison of the 3D-DAOSTORM and sparse emitter analysis (SEA) algorithms on simulated data. (A) Analysis of simulated 3D

data using the sparse emitter analysis algorithm with image-shape-based filtering (SEA.1). The simulated images of emitters are shown in grey

scale and their actual locations are indicated by green ovals. The localizations identified by the analysis are marked by red ovals. The widths of

the ovals in x and y are drawn proportional to the simulated PSF widths of the emitters. The molecule density is 0.3 molecules / um2. (B, C) Same

as A, except that the analysis was performed using the sparse emitter analysis algorithm without any image-shape-based filtering (SEA.2) (B) and

the 3D-DAOSTORM algorithm (C). Scale bars: 4 pixels or 668 nm. (D) A comparison of the recall fraction for the three different analysis methods

on the simulated 3D STORM data. The recall fraction is defined as the fraction of the emitters that were identified by the algorithm. (E) A

comparison of the localization error in the xy plane for the three different analysis methods on the simulated 3D STORM data. (F) A comparison

of the z localization error for the three analysis methods. Data in (D-F) are extracted from ten 256 x 256 pixel images as shown in A-C.
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To visually compare the performance of the different

analysis algorithms, we overlaid the localizations

returned by the algorithms, represented by the red ovals

whose widths are proportional to those of the elliptical

Gaussian widths, (wx, wy)on the simulated PSFs of the

emitters (grey scale image), whose positions and widths

are marked by the green ovals (Figure 1A- C). Clearly,

all three algorithms can localize the well-isolated emit-

ters precisely, but the 3D-DAOSTORM algorithm per-

forms much better than the sparse emitter analysis

algorithm when it comes to identifying and localizing

nearby emitters with overlapping images. The sparse

emitter algorithm with image-shape-based filtering

(SEA.1) identifies substantially fewer emitters

(Figure 1A), while the sparse emitter algorithm without

any image-shape-based filtering (SEA.2) yields more in-

correct localizations (Fig. 1B).

Next, we quantitatively compared the performance of the

algorithms as a function of emitter density (Figure 1D- F).

We quantify the performance by two parameters: the recall

fraction and the localization accuracy. An emitter is consid-

ered recalled if the algorithm returns a localization within

30 nm of the true position of the emitter in x and y. Even at

a relatively low density of 0.1 emitters per um2, there is

already a substantial difference in the recall fraction be-

tween the 3D-DAOSTORM algorithm and the sparse emit-

ter analysis algorithms (Figure 1D). While the former

identified 95% of the emitters, the latter only found 80% of

the existing emitters. This difference increases rapidly as

the density of the emitter increases (Figure 1D). At a dens-

ity of 1.0 emitters per um2, the 3D-DAOSTORM algorithm

recalls approximately four times as many emitters as either

of the sparse emitter analysis algorithms. Compared to

SEA.1, relaxing the image-shaped-based filtering criterion

in SEA.2 did not substantially improve the recall fraction,

but instead primarily led to higher localization errors. The

reason is that fitting images whose shapes did not conform

to the predicted shapes of single molecules resulted in mis-

localizations that were sufficiently far away from the true

emitter positions that they were not considered recalled.

In addition to the recall fraction, we also compared

the localization accuracy of all three algorithms, defined

as the median xy distance between each localization and

the nearest true emitter position in the xy plane

(Figure 1E) or the median distance along the z direction

(Figure 1F). All the algorithms perform similarly up to a

density of 0.3 emitters per um2, at which point the

SEA.2 algorithm diverges substantially faster than the

SEA.1 and 3D-DAOSTORM algorithms, due to the large

number of incorrect localizations that SEA.2 generated

in regions where images of adjacent molecules overlap

(Figure 1B). At an emitter density of 1.0 per um2, the

localization error for the 3D-DAOSTORM algorithm is

only about 25% and 45% of that for the SEA.2 algorithm

in the xy plane and z direction, respectively. The

localization accuracies of the 3D-DAOSTORM and
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Figure 2 2D STORM images of mouse retina and cortex labeled with lectin – Alexa-647 conjugates. (A-D) Images are centered on the

outer plexiform layer (OPL) of the retina and oriented such that the outer nuclear layer (ONL) are to the right and the inner nuclear layer (INL) is

to the left. (A) PNA. (B) PHA-L lectin. (C) WGA lectin. (D) ConA lectin. (E) Cross-section profile of the region indicated by the small red rectangle

with the "e" next to it in the upper part of (D). The two membranes are separated by a distance of 53 nm and have a width of ~35 nm as

determined by multi-Gaussian fitting. (F) Image of a cortex region stained with ConA. All images were taken from lectin labeled tissue sections

that are 50 nm thick. Scale bars: 1 μm.
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SEA.1 algorithms remain similar. Hence, in the following

experimental tests, we compared 3D-DAOSTORM with

SEA.1.

To further test the performance of the 3D-

DAOSTORM algorithm on experimental samples, we

explored tissue samples labeled with fluorescent lectin

conjugates. Lectins bind to specific sugar groups that are

primarily found on glycosolated proteins and lipids (Sha-

ron and Lis 1972; Goldstein and Hayes 1978). As glyco-

solated moieties are more commonly found on cellular

membranes or in the extracellular matrix between cells,

we reasoned that lectins could be valuable super-

resolution labels for outlining cells and determining cel-

lular morphology in tissues. The ability to visualize cell
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Figure 3 3D STORM image of the outer plexiform layer of mouse retina labeled with the ConA – Alexa-647 conjugate. (A) A single

frame of the STORM data with localizations identified by the sparse emitter analysis algorithm (SEA.1) overlaid as red ovals. (B) Same as A except

that the localization were identified using the 3D-DAOSTORM algorithm. (C) STORM image resulting from analysis with the sparse emitter analysis

algorithm. The z-coordinates of the localizations are color-coded according to the colored scale bar. (D) STORM image of the same area resulting

from analysis with the 3D-DAOSTORM algorithm. (E) A zoom in of the area indicated by the white box in C. (F) A zoom in of the same area in D.

(G) Cross-section profile of the image areas in outlined in E and F by the red box with the letter "g" next to it. (H-I) Same as G for the areas

indicated by red lines in C and D with a letter "h" (H) and "i" (I) next to them. (J-K) XZ cross-section images of the area in C and D indicated by

the letter "j" (J) and "k" (K), respectively. Scale bars: 1 um in A and B, 4 um in C and D, 500 nm in E and F, 100 nm in J and K.
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morphology with super-resolution fluorescence micros-

copy is of interest since this approach could be used to

determine the connectivity between neurons, as well as

to determine the locations of cellular proteins in the

context of cellular membranes. Here, we tested four dif-

ferent lectins: concanavalin-A (ConA), wheat germ ag-

glutinin (WGA), peanut lectin (PNA) and red kidney

bean lectin (PHA-L), all of which were conjugated with

the Alexa-647 fluorescent dye.

We primarily focused on regions near the outer plexi-

form layer (OPL) of the retina, where the rod and cone

photo-detector cells synapse with the bipolar and horizon-

tal cells (Dowling and Boycott 1966; Kolb 1970).

Figure 2A-D shows the 2D STORM images of the OPL,

and nearby regions, from 50 nm thick retina tissue sec-

tions labeled with PNA, PHA-L, WGA, and ConA.

Among the four lectin labels, ConA appeared to be the

best in terms of giving a clean outline of the cell, as it pri-

marily labels the nuclear and cytoplasmic membranes of

the cell (Figure 2D). Two plasma membranes that were

separated by ~53 nm can easily be resolved in the STORM

images (Figure 2E). A similar quality of cell membrane la-

beling can be achieved in the cortical regions of the brain

with ConA (Figure 2F). The WGA lectin performed al-

most as well, but this lectin appeared to be somewhat less

specific, labeling many different structures inside the cell

in addition to the plasma membrane (Figure 2C). PNA

and PHA-L lectins did a poor job of outlining the cell

membranes except for the nuclei (Figure 2A-B). We thus

used ConA for the following experiments.

To test the 3D-DAOSTORM analysis algorithm, we per-

formed astigmatism-based 3D STORM imaging of

100 nm thick ConA-labeled retina sections by inserting a

cylindrical lens in to the imaging path (Huang et al. 2008).

We imaged a 42x42 μm area of the retina encompassing

the inner and outer nuclear layer as well as the outer

plexiform layer (Figure 3). Due to the high labeling density

of ConA and spontaneous switching of the Alexa-647 dye

from a dark to a fluorescent state under 656 nm illumin-

ation, the density of the activated Alexa-647 molecules at

any given frame was quite high even without the use of a

405 nm activation laser. As a result, the images of adjacent

emitters often overlap, and the sparse emitter analysis al-

gorithm could identify and localize only a fraction of the

emitters in each frame (Figure 3A). In comparison, the

3D-DAOSTORM algorithm localized substantially more

emitters per frame (5x on average) (Figure 3B). The

STORM image created using the 3D-DAOSTORM algo-

rithm therefore appears substantially denser and more

contiguous, and sometimes sharper than the image of the

same field of view generated using the sparse emitter ana-

lysis algorithm (Figure 3C-F). This improvement can be

seen in cross-sectional profiles of the membranes

(Figure 3G-I) where the profiles derived from 3D-

DAOSTORM are substantially smoother due to the

greater number of localizations that were included in the

histogram. In some cases, this reduction in noise allowed

us to resolve two adjacent membranes that could not be

resolved using the sparse emitter analysis algorithm

(Figure. 3G). A similar improvement can also be seen in

xz cross-sections of the cell membrane (Figure. 3J,K).

Again, the images from the 3D-DAOSTORM algorithm

are substantially less rugged due to the increased number

of localizations.

To quantify the image resolution, we determine two

parameters experimentally, the localization precision

and the localization density. The localization precision

of Alexa-647 in retinal tissue, measured as the spread of

repetitive localizations of the same dye molecules, was

found to be 10 nm in xy and 23 nm in z. These values

correspond to image resolutions of 23 nm in xy and

54 nm in z. In addition, we found the average distance

between neighboring localizations along the boundary

between two cells to be 30 nm, corresponding to a reso-

lution limit of 60 nm according to the Nyquist sample

theorem. If we were to achieve the same, 50 nm z reso-

lution through ultra-thin sectioning, the section thick-

ness should be no more than 25 nm according to the

Nyquist sampling theorem, which is 4 times smaller than

the 100 nm thickness used here. To reconstruct a large

volume of tissue would require 4 times as many sections,

which not only requires substantially longer total im-

aging time but is also subject to more sectioning loss

and section alignment errors.

Conclusions

Here we demonstrated a new algorithm, 3D-

DAOSTORM, for analyzing 3D super-resolution data

generated by STORM and related methods. 3D-

DAOSTORM allows densely distributed emitters with

partially overlapping images to be simultaneously loca-

lized by repeated cycles of peak identification, fitting and

subtraction. We validated the performance of this algo-

rithm both on simulated image data with realistic signal

and noise levels as well as on experimental data of ret-

inal tissue sections labeled with lectin-dye conjugates.

Compared to sparse analysis algorithms based on single-

emitter fitting, 3D-DAOSTORM allowed super-

resolution data with a 4–5 times higher density of emit-

ters per frame to be analyzed with similar localization

precision. This improvement will increase the imaging

speed of localization-based super-resolution fluorescence

microscopy by 4–5 fold.
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