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Abstract Tobacco (Nicotiana tabacum L.) is a species in
the large family of the Solanaceae and is important as an
agronomic crop and as a model system in plant biotechnol-
ogy. Despite its importance, only limited molecular marker
resources are available that can be used for genome analy-
sis, genetic mapping and breeding. We report here on the
development and characterization of 5,119 new and func-
tional microsatellite markers and on the generation of a
high-resolution genetic map for the tetraploid tobacco
genome. The genetic map was generated using an F2 map-
ping population derived from the intervarietal cross of
Hicks Broadleaf £ Red Russian and merges the polymor-
phic markers from this new set with those from a smaller
set previously used to produce a lower density map. The
genetic map described here contains 2,317 microsatellite
markers and 2,363 loci, resulting in an average distance
between mapped microsatellite markers which is less than
2 million base pairs or 1.5 cM. With this new and expanded

marker resource, a suYcient number of markers are now
available for multiple applications ranging from tobacco
breeding to comparative genome analysis. The genetic map
of tobacco is now comparable in marker density and resolu-
tion with the best characterized genomes of the Solanaceae:
tomato and potato.

Introduction

Tobacco (Nicotiana tabacum L.) is an important crop plant
(Davis and Nielsen 1999) and a member of the nightshade
(Solanaceae) family which is one of the largest and most
diverse within the angiosperms. This family harbors 3,000–
4,000 species (Olmstead et al. 2008; http://www.nhm.
ac.uk/research-curation/research/projects/solanaceaesource/
solanaceae), of which a considerable number are of major
economic importance as crop, vegetable or ornamental
species throughout the world such as potato (Solanum
tuberosum), tomato (Solanum lycopersicum), eggplant
(Solanum melonena), pepper (Capsicum species) and Petu-
nia (Petunia £ hybrida). Due to this and the fact that mem-
bers of the Solanaceae are also important model species for
systematics, plant biology, genetics and biotechnology, a
current objective is to elucidate the genome structure of its
most important species (Mueller et al. 2005; http://solge-
nomics.net/solanaceae-project) through various genome
sequencing initiatives and comparative genome analyses.

Currently, the best characterized species within the Sola-
naceae are tomato and potato for which a large amount of
information concerning their genome structure have been
generated. This includes high density genetic and physical
maps that contain several thousand anchored markers
(Tanksley et al. 1992; van Os et al. 2006; http://solge-
nomics.net). At present, genome sequencing eVorts for
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tomato and potato are approaching completion, with draft
sequences being available (http://solgenomics.net; http://
www.potatogenome.net). To obtain a more detailed picture
of genome evolution in the Solanaceae, genetic maps of a
number of other important species (e.g., pepper, eggplant)
have been generated, and these were aligned through the
mapping of conserved markers such as RFLP markers and
conserved ortholog sequences (COS) markers (Fulton et al.
2002; Wu et al. 2006) to the genome of tomato as a refer-
ence. These data have indicated that at the chromosomal
level, the Solanaceae genomes have undergone a number of
inversions and translocations during speciation (Tanksley
et al. 1992; Wu et al. 2009a, b), while at the gene sequence
and gene order level, it could be shown through compara-
tive BAC clone sequencing conducted in potato, eggplant,
pepper, and petunia that most genes are conserved in their
exon/intron structure and sequence order (Wang et al.
2008).

Beside the use of molecular markers for the characteriza-
tion of genome structure and organization, they are also
important tools for the development of new varieties
through marker assisted breeding (Xu 2010). Since the
level of polymorphism in elite material is frequently low, it
is important to have access to a large number of markers
(usually several thousand) so that in situations where a low
level of polymorphism exists between closely related lines/
varieties, suYcient polymorphic markers are still available
for the mapping of traits that are either qualitatively or
quantitatively inherited as well as for marker-assisted selec-
tion or marker-assisted backcrossing. While in many dip-
loid species (especially with a high level of polymorphism)
there is now a tendency to use single nucleotide polymor-
phism (SNP) for such applications (Ganal et al. 2009),
microsatellite markers are still the object of active marker
development eVorts in other species (Ren et al. 2009). In
polyploid species and in species with a low level of poly-
morphism such as tobacco, the current markers of choice
are still microsatellites or simple sequence repeat (SSR)
markers. SSR markers detect a higher level of polymor-
phism than other marker systems and they can be easily
scored even in polyploid species (Röder et al. 1998). Scor-
ing of SNP markers can be technically challenging in allo-
polyploid and autopolyploid species.

Tobacco is an allopolyploid species (n = 24) and shares
its basic chromosome number of n = 12 with many other
solanaceous species such as tomato, potato, pepper and
eggplant. The species is most likely the result of a tetra-
ploidization event (Lim et al. 2004; Clarkson et al. 2005)
involving Nicotiana sylvestris (S-genome) and a species
closely related to modern day Nicotiana tomentosiformis
(T-genome). With both genomes together, tobacco is at the
high end of genome sizes (4.5 Gbp) in the Solanaceae
(Arumuganathan and Earle 1991) and contains a large pro-

portion of repetitive sequences (Kenton et al. 1993;
Zimmerman and Goldberg 1977). Until recently, little
information was available in terms of genetic mapping and
molecular marker development in the Nicotiana species
(Lin et al. 2001; Rossi et al. 2001; Suen et al. 1997). This
changed with the generation of 637 microsatellite markers
and a Wrst version of a genetic map covering 1,920 cM and
282 markers (Bindler et al. 2007). However, this map was
not able to fully cover the tetraploid tobacco genome and
the number of markers, while suYcient for diversity analy-
ses (Moon et al. 2008), was still insuYcient for many
breeding purposes, although it was used for locating traits
responsible for the formation of certain tobacco leaf surface
exudates (Vontimitta et al. 2010). Recently a further study
was published (Wu et al. 2009c), concerning the compara-
tive mapping of the diploid ancestor of the T-genome
(N. tomentosiformis) and a related species to the S-genome
(N. acuminata) using 262 and 133 COS markers, respec-
tively, together with a set of microsatellite markers that
were mapped in these two species. The results from these
mapping studies revealed that the tetraploid tobacco
genome has undergone a number of chromosomal rear-
rangements compared to these diploid genomes. Further-
more, in the same study, with the COS markers that had
also been mapped in the tomato genome, it could be shown
that a number of reciprocal translocations and inversions
(>10) diVerentiate the ancestral tobacco genomes from the
tomato genome.

With respect to tobacco genome sequencing eVorts, the
tobacco genome initiative (TGI) (Gadani et al. 2003) aimed
at sequencing of more than 90% of the N. tabacum genomic
sequences containing open reading frames using methyl
Wltration technology (GeneThresher®), targeting unmethy-
lated gene-rich regions. More than 1.3 million genome sur-
vey sequences (GSS) are now available in GenBank or
through the public website http://www.pngg.org/tgi/. The
goals of the research reported here, were to exploit the TGI
sequences to generate a suYcient number of microsatellite
markers for saturating the tobacco genome and to produce a
high density, high resolution genetic map that could be
used for tobacco breeding purposes and for further analysis
of the tetraploid tobacco genome.

Materials and methods

DNA isolation and plant material

DNA was extracted from freeze-dried leaves of plants that
were grown in the greenhouse as previously described by
Bindler et al. (2007). Functionality tests of the developed
markers and an initial analysis of polymorphism were per-
formed using a panel of 16 tobacco varieties representing
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the main types of tobacco (Flue-cured, Burley, Oriental,
Dark, and others) plus single accessions representing
N. sylvestris and N. tomentosiformis (Table 1). Seeds for
this material were obtained from the germplasm collection
at Philip Morris International. The F2 population consisted
of the same 186 individual plants as published by Bindler
et al. (2007) and was originally provided by Dr. Ramsey
Lewis (North Carolina State University).

Processing of TGI sequence data and primer generation

A total of 1,379,067 raw sequences and 55,411 expressed
sequence tags (ESTs) obtained from the TGI (http://
www.pngg.org/tgi) were surveyed for the presence of
microsatellite sequences and further processed for primer
development for 5,500 candidate SSR loci. The sequences
and the corresponding quality Wles were initially prepared
by screening for vector and Escherichia coli contamination
and by removing redundant sequences using the cross
_match© program (http://www.phrap.org/). Sequences
containing microsatellite motifs with at least eight repeats
and a minimum match of 90% to the respective microsatel-
lite motif were identiWed using Tandem Repeat Finder
(Benson 1999) and BLAST (Altschul et al. 1990) searches.
Oligonucleotide primer pairs Xanking the respective micro-
satellite sequence were designed using the Primer 3.0 pro-
gram (Rozen and Skaletsky 2000). Non-redundant primers

were selected to be approximately 20 bases long, to have a
GC-content between 20 and 80%, and to have a melting
temperature between 57 and 63°C (optimum 60°C). A sec-
ond elimination step of potentially remaining duplicated
sequences was performed by checking primer sequences,
microsatellite motifs, and the cross_match© scores.

Primer testing

Forward primers were labeled with FAM, HEX or ROX for
fragment analysis on Applied Biosystems 3100 Genetic
Analyzers. The respective Xuorescent dyes were selected
according to the expected size of the PCR fragment of the
microsatellite marker. The FAM dye was used for frag-
ments between approximately 90 and 170 bp, the ROX dye
was used for fragments between approximately 170 and
207 bp and the HEX dye for fragments longer than 207 bp.
Testing of primer pairs for functionality and linkage map-
ping were performed in PCR volumes of 10 �l with an
annealing temperature of 55°C during 45 PCR cycles
according to Bindler et al. (2007).

Mapping

Two diVerent software packages were used for mapping of
the SSRs: Map Manager QTXb20 (Manly et al. 2001, http://
www.mapmanager.org) and JoinMap 3.0 (Plant Research
International BV, Wageningen, Netherlands). MapManager
was used for the main mapping procedure (settings: linkage
evaluation F2 intercross, search linkage criterion P = 0.05,
map function Kosambi, cross type line cross). The map
position of some dominantly scored markers generated in
the previous analysis and the phenotypic trait Xower colour
scored in the previous analysis (Bindler et al. 2007) were
optimized manually taking into consideration the number
of crossovers (as low as possible) and the length of the link-
age group (as short as possible). Grouping of markers and
traits as well as their segregation patterns were veriWed
using the JoinMap® 3.0 program (Van Ooijen and Voorrips
2001) with the following settings: used linkages with REC
smaller than 0.400 and LOD larger than 1.00, threshold for
removal of loci with respect to jumps in goodness-of-Wt
5.000, Kosambi mapping function. The Wnal map was
drawn using JoinMap.

Results

Microsatellite marker development from tobacco genomic 
sequences

A total of 1,379,067 raw sequences from the TGI and
55411 EST were analyzed for the presence of microsatellite

Table 1 List of accessions tested with 5,500 microsatellite primer
pairs

All accessions were obtained from the tobacco germplasm collection
of Philip Morris International

FC Flue-cured, SP speciality tobacco, A ancestral genome, OR Orien-
tal tobacco, BU Burley tobacco, DT Dark tobacco, CW cigar wrapper,
TN86 used for testing with the Wrst 2,100 primer pairs, Big Cuban used
for testing with the remaining 3,400 primer pairs

Hicks Broad Leaf MP FC

Red Russian MP SP

TW142 N. tomentosiformis A

TW138 N. sylvestris A

Prilep12-2/1 OR

Basma Xanthi OR

Izmir-Incekara TI1674 OR

TN 90 BU

Banket A1 BU

Kutsaga 35 FC

K326 FC

DacMataFina DT

Amarillo Parado DT

Criollo Misionero DT

AA 37 DT

TN86/Big Cuban BU/CW
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motifs using the set of bioinformatics tools described in
“Materials and methods”. After an initial screen of 288
primer pairs equally derived from ESTs and genomic
sequences, EST derived microsatellites were excluded from
further marker development due to the fact that in the
ESTs, most of the identiWed microsatellite markers con-
tained predominantly short repeats (<10 repeat motifs of
mainly trinucleotide repeat-types) with a lower than
expected level of polymorphism of the trinucleotide repeats
between the parents of the mapping population (11 vs. 36%
for the dinucleotide motifs from the genomic sequences).
Thus, the developed markers were predominantly derived
from single or low copy genomic sequences or introns. The
5,500 markers with the best primer design scores were
selected for subsequent marker testing. Approximately 60%
of the microsatellite markers contained predominantly TA
repeats, 22% contained predominantly GA repeats, 14%
contained predominantly GT repeats. The remaining 4%
harbored mixed repeat types that could not be assigned
clearly to any of the above types. 88% of the markers con-
tained 8 (minimum) to 25 repeating units while the others
were mostly larger and/or contained a mixture of repeat
types.

Testing microsatellite markers for functionality

In an initial analysis, 5,500 primer pairs were evaluated for
functionality on a test panel consisting of 16 diVerent
tobacco lines or varieties (Table 1). The panel included the
mapping parents of the Hicks Broadleaf £ Red Russian
population and for the assignment of markers to the diVer-
ent genomes, representative accessions of Nicotiana tomen-
tosiformis and Nicotiana sylvestris. From all 5,500 primer
pairs tested, more than 93% (5,119) were functional under
our analytical conditions. Functional markers were deWned
by no more than six ampliWed fragments with at least one
fragment in the size range deWned by the sequence used for
primer design. Based on the results of the primer pair tests
with the 16 sample panel, the markers were classiWed
according to their number of loci (1, 2, 3, 4 and multiple
loci), whereby the number of loci detected by the individual

primer pair was determined according to the number of
fragments ampliWed in the samples of the test panel, pro-
vided that all samples displayed comparable fragment num-
bers (supplementary material S1, Table 2). From all
functional primer pairs, 74% ampliWed only single frag-
ments, 22% ampliWed two and 4% more than two frag-
ments. Especially for those markers amplifying single
fragments, they were assigned to the two diVerent genomes
(T/S) based on the presence of an ampliWcation product in
the N. tomentosiformis or N. sylvestris accessions respec-
tively. All functional primer sequences and other relevant
data are available from the electronic supplementary
material (S2).

Mapping of the microsatellite markers in the Hicks 
Broadleaf £ Red Russian F2 population

A total of 2,415 (47%) of the functional markers were poly-
morphic between the parents of the mapping population.
These candidate markers were then analyzed on the entire
mapping population. 379 of these polymorphic markers
could not be mapped due to insuYcient data quality (low
stability, diYcult scoring due to strong stuttering, polymor-
phic between the parents but monomorphic within the map-
ping population) and thus had to be eliminated from the
mapping experiment. This left 2,036 mapped markers, rep-
resenting 37% of the newly identiWed primer pairs. Since
the same plants were used as in Bindler et al. (2007), the
282 previously mapped markers were also included in the
Wnal map.

With the 282 previously mapped markers (including the
morphological marker of Xower colour), 2,318 markers
detecting 2,363 loci were mapped on this high-resolution
genetic map of tobacco. All mapped markers together gen-
erated 24 clearly deWned linkage groups and the entire map
of the tobacco genome covered 3,270 cM (Fig. 1). Accord-
ing to the ampliWcation tests on the two samples from the
ancestral genomes, the markers were assigned to the two
diVerent genomes of tobacco. 38% of all functional markers
were assigned to the S-genome, 22% were assigned to the
T-genome and those remaining could not be assigned due

Table 2 Functionality and 
number of detected loci for the 
investigated 5,500 tobacco 
microsatellite markers

Functionality and loci 
detected per marker

Percent Mapped 
loci

Percent

1 Locus 3,789 68.9 1,533 75.3

2 Loci 1,111 20.2 435 21.4

3 Loci 143 2.6 54 2.7

4 Loci 36 0.7 12 0.6

Multiple loci (<7) 40 0.7 2 0.1

Non functional 381 6,9 0 0

5,500 100 2,036 100
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to lack of functionality in the ancestral genomes or because
of simultaneous ampliWcation from both genomes. In most
of the linkage groups, the markers could be attributed pre-

dominantly to one of the two genomes. Eleven linkage
groups could be clearly assigned to the S-genome and nine
linkage groups to the T-genome. Four linkage groups

Fig. 1 High-density genetic map of the tobacco genome. Red chromo-
somal segments were assigned to the T-genome. Blue chromosomal
segments were assigned to the S-genome. Numbers on the left side are

centiMorgan counted from the top of the chromosome. Numbers in
brackets behind marker name on the right side display the numbers of
additional cosegregating markers (§0.5 cM)
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consisted of both S- and T-genome speciWc markers mainly
grouped in diVerent parts of the respective linkage group.
These four linkage groups were stable up to very high
LOD-scores. On the S-genome linkage groups, 1,163 markers
were located covering 1,810 cM whereas on the T-genome
linkage groups, 1,200 markers covered 1,460 cM. On aver-
age, each linkage group is represented by 98 SSR markers
(Table 3). The marker density on the T-genome was higher
than on the S-genome due to the shorter genetic distances.

Only two linkage groups (9 and 11) showed major areas of
disturbed segregation as already observed previously
(Bindler et al. 2007).

With 186 F2 individuals, the generated map had an aver-
age resolution of approximately 0.27 cM per crossover and
a 90% probability of separating two markers that are
approximately 0.6 cM distant from each other, provided
that the scoring of the markers was accurate and determined
in most or all of the progeny plants. In order to determine

Fig. 1 continued
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the quality of the map, a number of control analyses were
performed. 5% of all data points generated throughout the
mapping were randomly checked and 5% of markers classi-
Wed as diYcult to score were selectively checked. Less than
0.05% of the re-checked data points had technical or other
problems in the data set. The Wnal quality check included

the speciWc re-analysis of all double crossing over in the
mapping data. After this analysis, 371 real double cross-
overs were still present considering all mapped markers
(Table 3). On average, approximately two-thirds of the
double crossovers within a chromosome were associated
with regions of low marker density and large genetic

Fig. 1 continued
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Fig. 1 continued
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distances between these markers. In addition, each linkage
group had one major region of markers separated by small
genetic distances whereby frequently a signiWcant number
of markers (up to 28) showed essentially no recombination
between each other (electronic supplementary material S3
and Fig. 1).

Although the largest distance between two markers is
still 16 cM and a number of markers are cosegregating, the
average marker distance of mapped markers is 1.41 cM
based on a genome size of 4,500 Mbp and a genetic dis-
tance of 3,270 cM. This is roughly equivalent to an average
distance of 2 million base pairs between individual mapped
SSR markers.

435 markers ampliWed two clearly deWned fragments in
the tetraploid N. tabacum genome (Table 2). In these cases
identiWcation of the homeologous linkage groups of the
T- and S-genome was not possible since both fragments
need to be polymorphic and mapped. For 389 markers
(89%) only one fragment was polymorphic and could be
mapped while the other fragment was monomorphic. Only
for 46 markers could both fragments be mapped. From
these, six duplicated loci were located on the same linkage
group and 40 mapped to diVerent linkage groups producing
inconsistent homeologous pair assignments.

Discussion

With the development of 5,119 new and functional micro-
satellite markers for the N. tabacum tobacco genome, the
number of available functional microsatellite markers has
increased nearly tenfold (from 637 to 5,756). This demon-
strates the value of the TGI sequences for development of
large numbers of SSR markers. Given a genome size of
approximately 4,500 Mbp for the tobacco genome, it is
estimated that the 5,736 markers increase the marker den-
sity to, on average, more than one available microsatellite
marker (4,500 Mbp/5,756 marker) per million base pairs
and now makes tobacco the species with the largest number
of tested SSR or sequence tagged markers in the Solana-
ceae. The tobacco genome was previously less well mapped
than species such as pepper and eggplant. It is now compa-
rable to tomato and potato in terms of number of available
sequence tagged markers. It also makes tobacco a species
for which more tested SSR markers are available compared
to other allopolyploid or autopolyploid plant species
(Cheng et al. 2009; Somers et al. 2004; Guo et al. 2007).

The established map in the Hicks Broadleaf £ Red
Russian F2 population is of high quality and high resolution.
Most of the observed and conWrmed double crossovers are

Table 3 Tobacco genetic map 
data displayed per linkage group

Linkage 
group (LG)

Genome Loci/LG LG length
(cM)

Average marker 
distance

Maximal marker
distance

Number of double 
crossing over

1 S 116 130 1.12 6.7 18

2 T 85 106 1.25 6.5 16

3 S 106 183 1.73 14.7 24

4 T 116 154 1.33 7 16

5 S 64 136 2.13 12 19

6 S 111 142 1.28 7.9 20

7 S 121 162 1.34 10.9 18

8 S 86 160 1.86 16 13

9 S/T 77 127 1.65 11.3 14

10 S 97 143 1.47 8.8 13

11 S 83 124 1.49 12 17

12 T 100 130 1.30 8.3 13

13 S/T 104 128 1.23 10.6 14

14 T 67 93 1.39 6.3 7

15 T 115 127 1.10 8 10

16 S 94 165 1.76 11.3 21

17 T 121 130 1.07 6.7 19

18 S 88 107 1.22 5.6 6

19 T 110 148 1.35 8.1 12

20 S 71 130 1.83 11.1 15

21 S/T 74 85 1.15 7.6 14

22 S/T 146 199 1.36 10.7 23

23 T 131 140 1.07 6.1 14

24 T 80 109 1.36 8.5 10

Presumed linkage group 
assignment

S, N. sylvestris; T, N. tomentosi-
formis
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present only in regions with a low marker density and
relatively large distances between markers. Furthermore,
skewed segregation patterns are found only in limited chro-
mosomal regions (chromosome 9 and 11). At an average
genetic resolution of 0.27 cM and with most markers being
scored in a codominant manner, the map is more accurate
than the current saturated tomato map consisting of approx-
imately half as many individuals (Tanksley et al. 1992;
Fulton et al. 2002; http://solgenomics.net).

With a total size of 3,270 cM, the genetic map has
increased by 1,350 cM compared to the previously pub-
lished map of 1,920 cM which was incomplete since not all
markers could be linked to each other (Bindler et al. 2007).
In the current map, all 2,318 markers could be attributed
unequivocally to the 24 linkage groups or chromosomes,
indicating that the map should cover the entire tobacco
genome, although the telomeres are not included in the map
due to the lack of suitable markers. Considering that
tobacco is an allotetraploid species with two genomes, each
segregating in a diploid inheritance mode, the genome
length of each genome in centiMorgan is comparable to the
full map of tomato of approximately 1,500 cM (Shirasawa
et al. 2010). The position of the centromeres of the 24
tobacco chromosomes is not known, although most chro-
mosomes show a single region with a considerable cluster-
ing of markers. In other Solanaceous species such as
tomato, such a marker cluster is usually associated with the
centromere and its constitutive heterochromatin (Tanksley
et al. 1992).

It is interesting to note that the vast majority (>90%) of
the developed markers are either speciWc to one of the
ancestral genomes or detect two loci (albeit usually only
one locus was polymorphic and could be mapped) indicat-
ing that the two genomes are signiWcantly diVerent from
each other and that in case two loci are identiWed, they
might be located at the same position on the homeologous
chromosomes. It was expected that the SSR markers for
which two loci could be mapped should lead to the identiW-
cation of the homeologous groups in the two genomes. This
was however not the case since only a very limited number
(46) of SSR markers were polymorphic on both chromo-
somes. Furthermore, in a number of cases linked marker
pairs that were polymorphic in both genomes were deW-
nitely not located on the same chromosome, indicating that
the two genomes have been rearranged in the current forms
of the N. tomentosiformis and N. sylvestris genomes and/or
after the speciation event which led to the generation of tet-
raploid tobacco. For both cases there is evidence based on
this study and the results of Wu et al. (2009c). There, it
could be shown that the N. tomentosiformis and N. acumi-
nata (a closely related species to N. sylvestris) have under-
gone a number of chromosomal rearrangements since their
separation. Based on the ampliWcation of genome-speciWc

markers in the two ancestral genomes of N. tomentosifor-
mis and N. sylvestris, followed by the assignment of these
markers to linkage groups in the current map, it is likely
that translocations have also occurred after the polyploidiza-
tion event since four linkage groups contain genome-speciWc
markers from both linkage groups. This is independently
supported by cytogenetic analyses (Lim et al. 2007) where
it could be shown by GISH (genomic in situ hybridization)
that numerous intergenomic translocations exist in natural
N. tabacum. It can also not be excluded that the S and T
genome may have undergone deletion of speciWc chromo-
somal segments since the polyploidization event (Lim et al.
2004; Doyle et al. 2008) and recent data (G.B. unpublished
data) suggest that on linkage group 9, some genes are
absent in the S-genome.

In terms of genetic mapping and molecular marker
assisted breeding, this map represents a signiWcant
improvement over existing marker resources. While it has
not been previously possible to identify polymorphic mark-
ers spread at roughly similar genetic distances over the
entire tobacco genome even in distantly related material, it
is now possible to identify suYcient (hundreds) of poly-
morphic markers in crosses within the four main tobacco
types: Burley, Flue-cured, Oriental and Dark, so that genes
and quantitative trait loci can be mapped with a marker
density/spacing which is suitable for marker-assisted breed-
ing (Xu 2010).

The SSR markers and the sequences from which they
have been derived will in the future be important tools to
further advance tobacco genome analysis, since they can be
used as anchor points in the physical mapping of bacterial
artiWcial chromosome (BAC) clones and as anchor points to
align the genetic map with a future genome sequence of
tobacco. Furthermore, since the SSR markers are located in
predominantly single copy sequences, the Xanking DNA
sequence from which the respective marker has been gener-
ated can be used to further align the tomato and potato
genome sequence to the tobacco genome via sequence
homology analysis, once their genome sequences are fully
available, and if sequence homology is suYcient.

Acknowledgments TraitGenetics is thankful to Doris Kriseleit,
Anika Küttner and Katja Wendehake for technical assistance and
Andreas Polley for providing the tools for the identiWcation of the
SSRs in the TGI sequences. In Philip Morris International, we
acknowledge Luca Rossi and Ferruccio Gadani for their support and
input during the project and Philip Morris International, for providing
the funding. In addition, we thank Florian Martin and Nicolas Sierro
from the Bioinformatics team as well as Audrey Cordier and Louis
Renaud from the Biotechnology team for their technical assistance.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
123

http://solgenomics.net


Theor Appl Genet (2011) 123:219–230 229
References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic
local alignment search tool. J Mol Biol 215:403–410

Arumuganathan K, Earle ED (1991) Nuclear DNA content of some
important plant species. Plant Mol Biol Rep 9:208–218

Benson G (1999) Tandem repeats Wnder: a program to analyze DNA
sequences. Nucleic Acids Res 27–2:573–580

Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L,
Gadani F, Donini P (2007) A microsatellite marker based linkage
map of tobacco. Theor Appl Genet 114:341–349

Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu
K (2009) Development and genetic mapping of microsatellite
markers from genome survey sequences in Brassica napus. Theor
Appl Genet 118:1121–1131

Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR
(2005) Long-term genome diploidization in allopolyploid Nicoti-
ana section Repandae (Solanaceae). New Phytol 168:241–252

Davis DL, Nielsen MT (1999) Tobacco—production. Chemistry and
Technology, Blackwell

Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS,
Wendel JF (2008) Evolutionary genetics of genome merger and
doubling in plants. Ann Rev Genet 42:443–461

Fulton TM, van der Hoeven R, Eannetta NT, Tanksley SD (2002) Iden-
tiWcation, analysis, and utilization of conserved ortholog set
markers for comparative genomics in higher plants. Plant Cell
14:1457–1467

Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke
M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, Lakey N (2003)
Large scale genome sequencing and analysis of Nicotiana taba-
cum: the tobacco genome initiative. In: Proceedings, 5èmes
Journées ScientiWques du Tabac de Bergerac—5th Bergerac To-
bacco ScientiWc Meeting, Bergerac, pp 117–130. http://www.alt-
adis-bergerac.com/pdf/5_JS_Bergerac.pdf

Ganal MW, Altmann T, Röder MS (2009) SNP identiWcation in crop
plants. Curr Opin Plant Biol 12:211–217

Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu
K, Shi B, Zhang T (2007) A microsatellite-based, gene rich link-
age map reveals genome structure, function and evolution in Gos-
sypium. Genome 176:527–541

Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Character-
ization of the Nicotiana tabacum L. genome by molecular cytoge-
netics. Mol Gen Genet 240:159–169

Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome
evolution in allotetraploid Nicotiana. Biol J of Linn Soc
82:599–606

Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbast-
ien MA, Leitch AR (2007) Sequence of events leading to near-
complete genome turnover in allopolyploid Nicotiana within Wve
million years. New Phytol 175:756–763

Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin
YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumba-
ginifolia/Nicotiana longiXora based on RFLP and RAPD mark-
ers. Theor Appl Genet 103:905–911

Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX,
cross platform software for genetic mapping. Mamm Genome
12:930–932

Moon HS, Nicholson JS, Lewis RS (2008) Use of transferable Nicoti-
ana tabacum L. microsatellite markers for investigating genetic
diversity in the genus Nicotiana. Genome 51:547–559

Mueller LA, Solow TH, Skwarecki B, Buels R, Binns J, Lin C, Wright
MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir
D, Tanksley SD (2005) The SOL Genomics Network: a compar-
ative resource for Solanaceae biology and beyond. Plant Physiol
138:1310–1317

Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia V, Col-
lier SM (2008) A molecular phylogeny of the Solanaceae. Taxon
57:1159–1181

Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H,
Kang H, Xie B, Gu X, Wang X, Du Y, Jin W, Huang S (2009) An
integrated genetic and cytogenetic map of the cucumber genome.
PLoS ONE 4:e5795. doi:10.1371/journal.pone.0005795

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy
P, Ganal MW (1998) A microsatellite map of wheat. Genetics
149:2007–2023

Rossi L, Bindler G, Pijnenburg H, Isaac PG, Giraud-Henry I, Mahe M,
Orvain C, Gadani F (2001) Potential of molecular marker analysis
for variety identiWcation in processed tobacco. Plant Var Seeds
14:89–101

Rozen S, Skaletsky H (2000) Primer3 on the www for general users
and for biologist programmers. Methods Mol Biol 132:365–386

Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura
Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H,
Fujishiro T, Yamada M, Isobe S (2010) An interspeciWc linkage
map of SSR and intronic polymorphism markers in tomato. Theor
Appl Genet. doi:10.1000-1344-37/s00122-01

Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite
consensus map for bread wheat (Triticum aestivum L). Theor
Appl Genet 109:1105–1114

Suen DF, Wang CK, Lin RF, Kao YY, Lee FM, Chen CC (1997)
Assignment of DNA markers to Nicotiana sylvestris chromo-
somes using monosomic alien addition lines. Theor Appl Genet
94:331–337

Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW,
Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB,
Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder
MS, Wing RA, Wu W, Young ND (1992) High density molecular
linkage maps of the tomato and potato genomes. Genetics
132:1141–1160

Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0. Software for cal-
culation of genetic linkage maps. Plant Research International,
Wageningen

van Os H, Andrzejewski s, Bakker E, Barrena I, Bryan GJ, Caromel B,
Ghareeb B, Isidore E, de jong W, van Koert P, Lefebvre V,
Milbourne D, Ritter E, van der Voort JN, Rousselle-Bourgeois F,
van Vliet J, Waugh R, Visser RG, Bakker J, van Eck HJ (2006)
Construction of a 10, 000-marker ultradense genetic recombina-
tion map of potato: providing a framework for accelerated gene
isolation and a genomewide physical map. Genetics 173:1075–
1087

Vontimitta V, Danehower DA, Steede T, Moon HS, Lewis RS (2010)
Analysis of a Nicotiana tabacum L. genomic region controlling
two leaf surface chemistry traits. J Agric Food Chem 58:294–
300

Wang Y, Diehl A, Wu FN, Vrebalov J, Giovannoni J, Siepel A, Tanksley
SD (2008) Sequencing and comparative analysis of a conserved
syntenic segment in the Solanaceae. Genetics 180:391–408

Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006)
Combining bioinformatics and phylogenetics to identify large
sets of single-copy orthologous genes (COSII) for comparative,
evolutionary and systematic studies: a test case in the euasterid
plant clade. Genetics 174:1407–1420

Wu FN, Eannetta NT, Xu YM, Durrett R, Mazourek M, Jahn MM,
Tanksley SD (2009a) A COSII genetic map of the pepper genome
provides a detailed picture of synteny with tomato and new in-
sights into recent chromosome evolution in the genus Capsicum.
Theor Appl Genet 118:1279–1293

Wu FN, Eannetta NT, Xu YM, Tanksley SD (2009b) A detailed syn-
teny map of the eggplant genome based on conserved ortholog set
II (COSII) markers. Theor Appl Genet 118:927–935
123

http://www.altadis-bergerac.com/pdf/5_JS_Bergerac.pdf
http://www.altadis-bergerac.com/pdf/5_JS_Bergerac.pdf
http://dx.doi.org/10.1371/journal.pone.0005795
http://dx.doi.org/10.1000-1344-37/s00122-01


230 Theor Appl Genet (2011) 123:219–230
Wu F, Eanetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N,
Tanksley SD (2009c) COSII genetics maps of two diploid Nicoti-
ana species provide a detailed picture of synteny with tomato and
insights into chromosome evolution in tetraploid N. tabacum.
Theor Appl Genet 120:809–827

Xu Y (2010) Molecular plant breeding. CAB International, Walling-
ford

Zimmerman JL, Goldberg RB (1977) DNA sequence organization in
tobacco. Chromosoma 59:227–252
123


	A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development
	Abstract
	Introduction
	Materials and methods
	DNA isolation and plant material
	Processing of TGI sequence data and primer generation
	Primer testing
	Mapping

	Results
	Microsatellite marker development from tobacco genomic sequences
	Testing microsatellite markers for functionality
	Mapping of the microsatellite markers in the Hicks Broadleaf  x  Red Russian F2 population

	Discussion
	Acknowledgments
	References


