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A High-Dynamic-Range-Based Approach for the
Display of Hyperspectral Images
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Abstract—This letter presents a new approach for hyperspectral
image visualization based on high-dynamic-range (HDR) image
processing. The proposed approach is inspired by techniques that
are used to display HDR images on low-dynamic-range media by
reducing the contrast, yet preserving the image detail. This is the
first time this concept is utilized for the display of hyperspec-
tral images. In the presented approach, an edge-preserving filter,
called the bilateral filter, is used to extract the base and detail
images, and the final image is reconstructed by reducing contrast
in the base image but preserving the detail, so that the significance
of the detail image is enhanced. It is shown that the proposed
approach improves the visual appearance and perceived detail of
hyperspectral images.

Index Terms—Bilateral filter, high dynamic range (HDR),
hyperspectral imaging, visualization.

I. INTRODUCTION

HYPERSPECTRAL imaging systems acquire visual data
in hundreds of spectral bands, resulting in a multidimen-

sional image with a large amount of spectral information. The
high spectral resolution provides an increased capability for
many image processing tasks with respect to standard imaging
systems [1]. However, visualization of the high-dimensional
data on traditional display devices, for practical applications,
requires dimensionality reduction. Typically, the high number
of image bands should be reduced to at most three channels so
that it becomes possible to map the components to the widely
used red–green–blue (RGB) color space. It is important to ob-
tain three appropriate channels that preserve visual information
and enable interpretability [2].

Linear projection methods, such as independent component
analysis [3] and principal component analysis [4], have been
presented in the literature to obtain the first three principal
bands that are assigned as R, G, and B channels. However,
in addition to relatively high computational complexity, these
approaches do not ensure that the constructed bands are ranked
according to image content. Improved linear spectral combi-
nation methods such as noise-adjusted principal component
analysis [5], interference and noise-adjusted principal compo-
nent analysis [5], and color matching function [6] have been
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also presented in the literature. In [7], it has been proposed to
fuse spectral bands using the weight obtained through bilateral
filtering, so that the weight of each band will be determined
according to the amount of detail included in that band.

Band selection approaches have been proposed in the litera-
ture to find suitable bands directly from the hyperspectral data.
One-bit transform [8], normalized information [9], mutual in-
formation [10], spectral information divergence [11], as well as
minimum estimated abundance covariance and linear prediction
[12] are several approaches that can be used for this purpose.

Multiresolution methods based, for instance, on pyramidal
decompositions [13], wavelet transforms [14], and Markov
random fields [15] have been also reported for the fusion of
hyperspectral image bands for display purposes.

This letter presents a new approach for hyperspectral image
visualization inspired by high-dynamic-range (HDR) image
processing techniques. The proposed approach is based on
the bilateral-filtering-based HDR image display procedure pre-
sented in [16].

II. METHODOLOGY

A. Bilateral Filtering

Bilateral filtering, which was originally presented in [17], is a
nonlinear filter that obtains the output as a weighted sum of the
input. The weights are determined according to the spatial dis-
tance and the intensity difference of neighborhood pixels. The
output of the bilateral filter for a pixel x can be formulated as

J(x) =
1

k(x)

∑

ξ

f(x, ξ)g (I(ξ)− I(x)) I(ξ) (1)

where ξ denotes the pixel within the region of support (filtering
neighborhood), f is a Gaussian operating in the spatial domain,
and g is a Gaussian operating in the intensity domain. The
Gaussian f ensures that pixels close in spatial distance get
higher weights, whereas pixels farther away get lower weights.
The Gaussian g ensures that pixels close in value (intensity dis-
tance) get higher weights, whereas pixels with large value dif-
ferences get lower weights. Here, k(x) is a normalization factor
that is equal to the sum of all weights and can be formulated as

k(x) =
∑

ξ

f(x, ξ)g (I(ξ)− I(x)) . (2)

The bilateral filter operates as an edge-preserving smoothing fil-
ter. The operation of the bilateral filter is demonstrated in Fig. 1.
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Fig. 1. Bilateral filtering (colors used to convey shape). From left to right:
input, spatial kernel f , influence of g for the central pixel, weight f × g for the
central pixel, and output [16].

Fig. 2. (a) University of Pavia band #17. (b) Base component. (c) Detail
component.

Fig. 3. HDR to low-contrast conversion.

B. Bilateral-Filtering-Based Decomposition

Bilateral filtering is used to decompose an image into a base
and a detail component. The base component (also referred to
as the large-scale component) is obtained by bilateral filtering
of the original image and therefore contains smooth parts and
preserved edges. This operation can be denoted by

Ibase = BF(I) (3)

where BF( ) represents bilateral filtering. The detail component
is obtained as the difference between the original image and the
base component in the form of

Idetail = I − Ibase = I − BF(I). (4)

It is seen that the original image is actually equal to the
sum of the base component and the detail component. This
process is shown for a sample band of the University of Pavia
hyperspectral image in Fig. 2.

C. Contrast Reduction Using Bilateral Filtering

As depicted in Fig. 3 for the display of HDR images on
conventional equipment, it is necessary to reduce the contrast.
If this is directly accomplished on the original image, the image
detail is lost as a result of the contrast-reduction process. There-
fore, recent approaches separate the original image into a base

component (with basically smooth changes, i.e., low spatial
frequency) and a detail component (with basically high spatial
frequency). The contrast of the base component is reduced,
whereas the contrast of the detail component is retained, so that
an enhanced contrast reduction is accomplished with preserved
detail.

Note that in order to preserve color balance, contrast reduc-
tion is performed in the intensity domain for color images [16].
Because contrast is a multiplicative effect, contrast reduction is
usually performed in the logarithmic domain [18]. For simplic-
ity, it is possible to use the base-10 logarithm. Therefore, the
intensity is first transformed into the logarithmic domain in the
form of

Ilog = log 10(I). (5)

Bilateral filtering is applied to the log intensity to extract the
base and detail components in the form of

Ilog,base =BF(Ilog) (6)

Ilog,detail = Ilog − Ilog,base. (7)

Contrast reduction is performed on the base component, and the
detail component is retained in the form of

Ilog,new = cf × Ilog,base + Ilog,detail (8)

to provide a low-contrast image with preserved detail. Here, cf
denotes the compression factor. Finally, the result is converted
from the logarithmic domain back into the linear domain, i.e.,

Inew = 10Ilog,new . (9)

For color images, this new intensity is combined with the
original color channels to obtain the contrast-reduced color
image.

III. HDR-BASED DISPLAY OF HYPERSPECTRAL IMAGES

Because hyperspectral images have multiple bands that are
typically combined for display purposes, it is possible to re-
gard the combined image to be similar to an HDR image in
terms of characteristic features. It is therefore proposed in this
letter to apply the HDR-based contrast-reduction approach of
HDR images to hyperspectral images. For simplicity, and ease
of interpretation, three HDR hyperspectral image bands are
constructed as the sum of hyperspectral bands falling into the
red, green, and blue wavelength ranges. This process can be
formulated as

RHDR =
∑

t∈R
HSI(t)

GHDR =
∑

t∈G
HSI(t)

BHDR =
∑

t∈B
HSI(t) (10)

where t is used as the band index of the hyperspectral image
HSI( ), and RHDR, GHDR, and BHDR are the HDR color
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Fig. 4. University of Pavia image. (a) Original image. (b) Proposed approach.

channels constructed for the hyperspectral image as the sum
of bands falling within the corresponding wavelength range.

For simplicity, the intensity channel is computed as the
average of color channels in the form of

IHDR = (RHDR +GHDR +BHDR)/3. (11)

The HDR intensity channel is used to obtain the new in-
tensity channel with reduced contrast and preserved detail, as
explained in Section II, which is denoted by ILDR. The new
intensity channel is then combined with the color components
to obtain the final reduced contrast hyperspectral image to be
used for display. For this purpose, it is possible to obtain a
pixelwise ratio factor in the form of

ratio = ILDR/IHDR. (12)

This ratio factor can be used to obtain the final low-dynamic-
range color channels in the form of

RLDR = ratio ×RHDR

GLDR = ratio ×GHDR

BLDR = ratio ×BHDR. (13)

Fig. 4 shows the proposed approach for the University of
Pavia hyperspectral image. Fig. 4(a) depicts the case if all corre-
sponding bands are simply averaged (i.e., using equal weights)
to obtain the color channels, and Fig. 4(b) shows the result of
the proposed approach. It is seen that the proposed approach
provides visually enhanced appearance and increased perceived
detail. The normalized average gradient computed over the
reconstructed images is obtained to be 0.1735 for the original
image provided in Fig. 4(a) and 0.2194 for the image obtained
with the proposed approach provided in Fig. 4(b). These values
confirm that the proposed approach retains increased detail in
the reconstructed image.

Fig. 5. Part of the University of Pavia image. (a) Original image. (b) Proposed
approach.

Fig. 6. Pavia Centre image. (a) Original image. (b) Proposed approach.

Fig. 5 shows an enlarged part of the University of Pavia
image to demonstrate that the proposed approach improves
visual appearance.

Fig. 6. presents results for the Pavia Centre hyperspectral
image. In this case, the normalized average gradient computed
over the reconstructed images is obtained to be 0.1708 for the
original image provided in Fig. 6(a) and 0.2328 for the image
obtained with the proposed approach provided in Fig. 6(b). It is
similarly observed that the proposed approach provides a supe-
rior result in terms of visual appearance and color presentation,
which is also confirmed by the quantitative evaluation carried
out using the average gradient values.

Note that the University of Pavia and Pavia Centre hyper-
spectral images are captured using the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor that has a spectral range
between 430 and 860 nm with a bandwidth of 4.0 nm. In the
results presented in Figs. 4–6, only hyperspectral bands that
fall into the blue, green, and red wavelengths are considered so
that the reconstructed images are close to images that would be
acquired using a color camera and, hence, are more suitable for
visual interpretation. Because of the properties of the ROSIS
sensor, these bands already make up about 80% of the totally
available hyperspectral bands.
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Fig. 7. Indian Pine image. (a) Original image. (b) Proposed approach.

It is possible to assign the entire range of hyperspectral bands
to the three color channels of the reconstructed image using the
proposed approach in a straightforward way, if desired, to make
use of the full hyperspectral data. Fig. 7 shows results obtained
for the Indian Pine data set, in this case, where the total data set
includes 220 hyperspectral bands, and these bands are equally
divided to be incorporated into the blue, green, and red channels
of the color images. The data are captured using the Airborne
Visible/Infrared Imaging Spectrometer and has a spectral range
between 400 and 2500 nm with a bandwidth of approximately
10 nm. Because all hyperspectral bands are used in the visual-
ization, the reconstructed colors do not correspond to real world
colors but are rather pseudocolors. Images provided in Fig. 7
again show that the proposed approach provides improved
visual appearance. In this case, the normalized average gradient
is 0.2558 for the original image, whereas it is obtained as
0.2768 for the image reconstructed with the proposed approach.

IV. CONCLUSION

A new method for the visualization of hyperspectral images
based on HDR imaging has been presented in this letter. It is
shown that the proposed approach can provide improved visual
appearance and increased detail perception. In this regard, this
letter introduces the concept of HDR-based image processing
for the purpose of enhanced visualization to the remote sensing
community. It is envisioned that the presented concept can be
improved by integrating it into enhanced band extraction/fusion
approaches, and it is also possible to investigate the utilization
of different HDR-based contrast-reduction approaches.
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