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ABSTRACT A high efficiency and compact band-pass filter based on coplanar waveguide (CPW) is

investigated in this paper, which lower and upper cut-off frequencies of the proposed filter can be tuned

independently. In the proposed design, interdigital structure is used to filter the low frequency wave and

a quasi-spoof surface plasmon polaritons (Q-SSPPs) structure is designed for tuning the higher cut-off

frequency. The proposed Q-SSPPs structure contains only one cross-shaped element and keeps the similar

properties of periodic SSPPs structure. The operating principle of the proposed design is explained by field

distribution, dispersion curves, and equivalent circuits. The studies of vital parametric are carried out for

better understanding the influences of the concerning parameters on the tunability. The simulated results

indicate that the proposed design can obtain a wide bandwidth from 8.8 GHz to 17 GHz (about 63.6%) with

high transmission efficiency (|S11| < −15 dB and |S21| > −0.2 dB). A prototype of the proposed design is

fabricated and the measured results show good agreement with the simulated ones.

INDEX TERMS Band-pass filter, coplanar waveguide, quasi-spoof surface plasmon polaritons.

I. INTRODUCTION

As the band-pass filters play a vital role in communication

systems, many works based on the microstrip line have been

reported [1]–[6].Most of these designs implemented by open-

loop resonators [1], coupled-line [2] and slotline structure or

hybrid microstrip/CPW [3]–[6] had a limited controllability

in operating frequency and bandwidth. To tune the operat-

ing frequency or bandwidth, lumped elements were added

to these designs for realizing independent controllability of

frequencies [7]. However, the design is non-planar, complex

structure, and the cost of fabrication is high. Therefore, it is

technically very challenging in carrying out an independent

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

tunable band-pass filter with a low cost and compact planar

structure.

Spoof surface plasmon polaritons (SSPPs) have some

advantages in microwave or terahertz devices because of its

ability to confine the field in subwavelength size and tune the

high cut-off frequency by optimizing the geometrical param-

eters [8]–[14]. However, most of reported SSPP structures

use gradient corrugation grooves and specific flaring grounds

for field transmission and mode conversion [15]–[19], which

largely limits the miniaturization. In order to obtain the com-

pact size of SSPP-based devices, the half mode substrate

integrated waveguide (HMSIW)-based structure with corru-

gation grooves etched on the uppermetal layer [20] andCPW-

based structures with period holes etched on the metal line of

the CPW were proposed [21]–[24]. In [23], an independently
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FIGURE 1. (a) Geometry of the proposed band-pass filter. The yellow and
blue parts represent metal and substrate, respectively. (b) One
cross-shaped element etched on the middle line of CPW. (c) Interdigital
structure.

FIGURE 2. Simulated S-parameters of the proposed band-pass filter
when g = 0.1 mm, w = 3.3 mm, m = 0.55 mm, n = 0.3 mm, b = 1.5 mm,
s = 0.1 mm, w1 = 0.1 mm, l = 0.4 mm.

tunable band-pass filter was implemented using the SSPP and

CPW-based coupling structure, which had a good transmis-

sion efficiency with |S11| < −10 dB and |S21| > −1.6 dB

from 7.31 GHz to 10.51 GHz (about 35.9%), but the proposed

structure was still non-planar. Moreover, all the designs use

the periodic holes or grooves to obtain the features of SSPPs,

which are also not conduct to size miniaturization.

In this paper, a quasi-spoof surface plasmon polaritons

(Q-SSPP) design is proposed, which is based on CPW with

only one cross-shaped element etched on the middle metal

line. The dispersion properties of the proposed Q-SSPP

with one element are similar to the SSPP structure with

periodic elements. An interdigital structure is employed for

tuning the lower cut-off frequency of the bandpass filter.

To better understand the physical mechanisms, the dispersion

curves of periodic elements, simplified equivalent circuits

FIGURE 3. Simulated dispersion curves for the fundamental mode of the
periodic element with different element length b.

FIGURE 4. (a) The simulated electric field contour distribution on the x-y
plane at 12 GHz when b = 1.5 mm. (b) The magnitudes of electric field
flow on cross sections of the proposed Q-SSPPs based band-pass filter at
three different locations at 12 GHz when b = 1.5 mm. (c) The simulated
electric field arrows distribution on the x-y plane at 12 GHz when b =

1.5 mm. (d) The simulated magnetic field arrows distribution on the y-z
plane at 12 GHz when b = 1.5 mm.
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FIGURE 5. Equivalent circuit of the proposed band-pass filter structure.

and field distributions are carefully investigated. The numer-

ical simulations and experimental measurements verify the

characteristics of the proposed design. The proposed band-

pass filter has the following advantages: 1) the Q-SSPP struc-

ture contains only one cross-shaped element, which largely

minimizes the dimension of the filter; 2) the design has an

independent controllability at low and high cut-off frequen-

cies by modifying concerning parameters, 3) the simplified

equivalent circuit model is implemented to better understand

the design; 4) the design has a high transmission efficiency in

the pass band.

II. THEORY AND METHOD

The geometry of the proposed design is shown in Fig. 1(a),

which combines a Q-SSPP and interdigital structure based

on CPW to realize a high efficiency transmission in the pass-

band. TheQ-SSPP can tune the high cut-off frequency and the

tunability of low cut-off frequency is implemented by using

interdigital structure.

The proposed design is printed on the F4B substrate (rel-

ative permittivity εr = 2.65, loss tangent tan δ = 0.0015)

with the 0.5 mm thickness. The Q-SSPP is one cross-shaped

element etched on the middle metal line of a 50 � CPW

transmission line. The width and gap of the CPW line is w

and g, respectively. The sizes of the Q-SSPP are denoted

by n, m, and b, which presented in Fig. 1(b). To impress

the low-frequency band, an interdigital capacitor is added

into the element, which is shown in Fig. 1(c). The length,

width and gap of the interdigital structure are marked as l, w1

and s, respectively.

A. THE Q-SSPP AND CPW-BASED BAND-PASS FILTER

The proposed band-pass filter combines a Q-SSPP and an

interdigital structure based on CPW. The performance on

the simulated S-parameters is presented in Fig. 2, in which

g = 0.1 mm, w = 3.3 mm, m = 0.55 mm, n = 0.3 mm,

b = 1.5 mm, s = 0.1 mm, w1 = 0.1 mm, and l = 0.4 mm.

FIGURE 6. Simulated S-parameters of the proposed band-pass filter and
equivalent circuit model.

It is clearly to be seen that the proposed design has good

band-pass features.

The dispersion curves of periodic cross-shaped elements

with different length b are displayed in the Fig. 3. It is

clearly to be observed that the longer the length of ele-

ment is, the larger deviation from the CPW line the disper-

sion curves has, when m, n is fixed as 0.55 mm, 0.3mm,

respectively. Compared Fig. 3 with Fig. 2, it is seen that the

proposed Q-SSPPs band-pass filter has the almost same cut-

off frequency at high frequency with the periodic element.

Moreover, the simulated electric field contour distribution

on the x-y plane and magnitudes of electric field flows on

the cross sections at 12GHz when b is fixed as 1.5 mm are

demonstrated in Fig. 4 (a) and (b), which show the good

propagation property and excellent field confinement of the

proposed filter. Figure (c) and (d) show the electric field

arrows distribution on the x-y plane and magnetic field dis-

tribution on the y-z plane at 12 GHz when b is fixed as

1.5 mm, respectively. It is observed that the proposed Q-

SSPPs design converts the quasi-TEM mode to TM mode

successfully.
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FIGURE 7. Simulated |S11| (a) and |S21| (b) of the proposed band-pass
filter and l changes from 0.0 mm to 0.8 mm with the step 0.2 mm.

B. SIMPLIFIED EQUIVALENT CIRCUIT MODEL OF Q-SSPPS

BAND-PASS FILTER

In order to understand the physical mechanism, the proposed

band-pass filter is divided into three parts: 1) CPW feeding

part, 2) left conductor, which consists of T-shaped patch

and left eight fingers, 3) right conductor, which consists of

T-shaped patch and right nine fingers. A LC equivalent circuit

structure is shown in Fig. 5, where L1 and C1 are the equiv-

alent parameter of CPW feeding part. L2 is the inductance

of the T-shaped patch structure; C2 and C6 are the single

grounded capacitance of left and right conductor, respec-

tively. L3 and C3 are the self-inductance and self-capacitance

of left digital structure, respectively. Similarly, L4 and C4

are the self-inductance and self-capacitance of right digital

structure, respectively. Moreover, L5 is the mutual inductance

between digital structures and C5 is the interdigital capac-

itance. The values of L1 and C1 of CPW can be obtained

from [25] and can be presented as:

L1 = Z0

√
εre

c0
(1)

C1 =
L1

Z2
0

(2)

FIGURE 8. Simulated |S11| (a) and |S21| (b) of the proposed band-pass
filter and b changes from 1.1 mm to 1.9 mm with the step 0.2 mm.

where c0 is the velocity of light in frees pace, εre is the

effective dielectric constant and Z0 is the characteristic

impedance of the CPW. And the values of optimized equiva-

lent parameters of the proposed simplified LC circuit model

are calculated as: L1 = 0.23884 nH, C1 = 0.28269 pF,

L2 = 0.70786 nH, C2 = 0.01500 pF, L3 = 0.47504 nH,

C3 = 0.01763 pF, L4 = 0.49999 nH, C4 = 0.01772 pF,

L5 = 0.30043 nH, C5 = 0.39120 pF, C6 = 0.00498 pF

with the aid of Advanced Design System (ADS) commercial

software and formulas (1)-(2).

C. FILTER PERFORMANCE AND PARAMETRIC STUDIES

To better analyze the performance of the proposed design,

the vital parametric study is now conducted. As shown

in Fig. 6, the equivalent circuit model by ADS are well

agreement with the CST full-wave simulation results, which

verify the proposed concept. The simulated S-parameters of

the proposed design and l varies from 0.0 mm to 0.8 mmwith

the step 0.2 mm is shown in Fig. 7. It is clearly to be seen

that the low cut-off frequency can be tuned by the parameter

l, and the larger l is, the lower the low cut-off frequency

is. Similarly, the influences of the length of element (b) on
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FIGURE 9. Photograph of the fabricated band-pass filter.

FIGURE 10. Measured and simulated S-parameters of the.

resistance to the high frequency is displayed in Fig. 8. It is

obvious that the larger b is, the lower the high cut-off frequen-

cies are. Moreover, comparing the Fig. 3 with Fig. 8, we can

obtain that the high cut-off frequency agrees well with the

simulated periodic dispersion curves. Therefore, the proposed

design can independently control the low and high cut-off

frequencies by changing parameters l and b according to the

studies above.

III. EXPERIMENTAL VERIFICATION

A prototype based on F4B substrate is fabricated to validate

the performance of the proposed Q-SSPPs band-pass filter,

which displayed in Fig. 9. The F4B substrate has a thickness

of 0.5 mm with εr = 2.65, loss tangent tan (δ) = 0.0015.

The thickness of metallic strips is 0.018 mm. The dimensions

of fabricated Q-SSPPs band-pass filter are: g = 0.1 mm,

w = 3.3 mm, m = 0.55 mm, n = 0.3 mm, b = 1.5 mm,

s = 0.1 mm, w1 = 0.1 mm, l = 0.4 mm. The simulated

and measured results of the proposed design is presented

in Fig. 10, which shows the measured results agree well

with the simulated ones. The bandwidth of the proposed

filter is from 8.8 GHz to 17 GHz (for |S11| < −15 dB and

|S21| > −0.2 dB), about 63.6%, which is useful in microwave

integrated applications.

IV. CONCLUSION

In this paper, a compact and high efficiency band-pass filter

is proposed, which is based on the Q-SSPPs structure. The

operating principle of the proposed filter is explained by the

dispersion curves, field distributions, and equivalent circuits.

The low and high cut-off frequencies can be control by tun-

ing the releated vital parameters independently. A prototype

of the proposed design was fabricated, and the measured

results agree well with the simulated ones, which verifies

the proposed concept. Moreover, the proposed Q-SSPPs

band-pass filter contains only one cross-shaped element,

which extremely minimize the dimensions of the designs.
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