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Abstract: In this paper, a QR flyback converter using a self-driven active snubber (SDAS) was proposed
to solve the problem of voltage surge in the switch of QR flyback converters. In the proposed converter,
the SDAS consisting of a clamping capacitor and an active switch can be configured in parallel with
the main switch or transformer to reduce the voltage surge in the switch. To confirm the steady-state
characteristics of the QR flyback converter to which the proposed SDAS is applied, equivalent circuits
for each state were constructed, and the equations and characteristics for each state were determined.
A 60 W class small AC–DC adapter was constructed to confirm the effectiveness of the proposed
converter and the control circuit method, and the experimental results were analyzed. The size of the
experimental AC–DC adapter was 74× 29× 23 mm, and it had a high power density of 20 W/in3 or
more. The experimental circuit was limited to the high power conversion efficiency of up to 91.56%,
and the maximum voltage surge in the switch was approximately 450 V. One of the reasons for such
high efficiency is the SDAS circuit, which sufficiently reduces the voltage surge of the QR flyback switch,
compared with the RCD clamp circuit, and does not consume power in principle.

Keywords: quasi-resonant flyback converter; synchronous rectifier; active clamping switch; RCD
snubber; valley switching; active snubber; self-driven active snubber

1. Introduction

Recently, due to the rapid development of the IT field, low-power energy consump-
tion and high-efficiency power conversion devices are required. Following the trend of
miniaturization and lightweight electronic devices, research is being actively conducted
to increase the efficiency of power converters and reduce their weight. To reduce the size
and weight of power supply devices, high-frequency switching has become an important
design criterion. A switching power supply is a device that converts an input voltage into
a stable output voltage, and appropriate circuit development is required depending on
the application field and output capacity. For output powers of less than 150 W, flyback
converters are most commonly used to achieve miniaturization and low manufacturing
cost. In addition, since a transformer is used, multiple outputs can be comprised, and input
and output isolation is possible [1,2].

Recently, with the introduction of the quasi-resonant (QR) flyback control method, the
switching loss is reduced, and efficiency is increased compared with conventional flyback
converters, resulting in a broader range of applications. The power conversion efficiency
can be increased by reducing the turn-on loss to reduce the switching loss. However, in the
case of an isolated switching power supply such as a QR flyback converter, a turn-off surge
in voltage simultaneously occurs across the switch due to internal parasitic components.
This high-voltage surge increases the rated voltage of the switch and becomes a major cause
of deterioration in the reliability of the product. To reduce high-voltage switch surges, an
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RCD-structured snubber using a resistor–capacitor–diode can be used across the primary
and secondary sides of the transformer or the switch. The RCD snubber has the advantage
of having a simple structure and easy design, but it also generates heat in the resistance
element and lowers the power conversion efficiency of the converter because the entire
energy resulting from the high surge in voltage is consumed in the resistor.

Another way to reduce the voltage surge in the switch is to apply an active clamp
circuit by configuring the auxiliary switch in series with the clamp capacitor separately
from the main switch. In this case, one of the methods to clamp the main switch voltage
to a constant voltage is by introducing a signal in the drive signal of the main switch that
is opposite to that of the auxiliary switch. However, this active clamp method cannot be
applied to all flyback converter methods and only applies to converters operating in the
boundary current mode (BCM), in which the transformer magnetizing inductor current
is at the boundary at zero but not applicable to the quasi-resonant (QR) flyback method,
which operates in discontinuous conduction mode (DCM) [3,4].

Figure 1 shows the basic circuit of a QR flyback converter with an RCD snubber.
Figure 1a shows a converter in which the secondary side of the transformer is composed of
a diode rectifier, while Figure 1b shows a converter composed of a synchronous rectifier
circuit using MOSFET instead of a diode. In Figure 1a, the main switch of the converter is
S, and the resistance Rs, capacitor Cs, and diode Ds of the RCD snubber are in parallel with
the transformer T1, and the surge energy due to the resonance of the transformer leakage
inductor LK and the switch parasitic capacitor CR is consumed in the RCD snubber circuit.
In Figure 1b, the main switch of the converter is S1, and the synchronous rectifier switch SR
replaces the diode rectifier on the secondary side of the transformer T1. Figure 2 shows the
operating waveform in a steady state. Figure 2a is the voltage and current waveform of the
diode rectifier, and Figure 2a is the driving signal and the voltage and current waveform of
the MOSFET synchronous rectifier. In the QR flyback converter, the magnetizing current
of the transformer increases linearly from zero during the turn-on period of the switch
because it operates at the DCM and the continuous conduction mode (CCM). During
the turn-off period, a voltage surge is generated during damping resonance due to the
transformer leakage inductor and the parasitic capacitor of the switch. Although the RCD
snubber circuit absorbs some of the surge current, the remaining current still generates a
voltage surge in the switch. At this time, the voltage surge of the switch reaches maximum
point, and the voltage surge can cause breakdown of the switch [5]. The secondary-side
rectifier current linearly decreases, and after it becomes zero, the resonance resulting from
magnetizing inductance LM and the switch parasitic capacitor CR starts, and the main
switch is turned on at the valley, where the switch resonance voltage is lowest owing to the
QR flyback control signal. In the case of the synchronous rectifier, the synchronous rectifier
switch SR is turned on while the rectifier current flows. For the synchronous rectifier switch
SR, a MOSFET with low on-resistance is selected to reduce the conduction loss. As shown
in Figure 2, since the main switch voltage of the QR flyback converter is turned on when
it reaches the lowest point due to resonance, the turn-on loss is reduced, thus reducing
switching loss and enabling high-efficiency power conversion. However, since a voltage
surge is generated when the switch S is turned off, this problem cannot be fundamentally
solved by adding an RCD snubber circuit [6–8].

In this paper, a QR flyback converter using a self-driven active snubber (SDAS) is
proposed to mitigate the problem of the high switch-turn-off voltage in the QR flyback
converter. The proposed converter clamps the voltage surge of the switch to a constant
voltage during turn-off operation owing to the SDAS composed of a clamping capacitor
and an active switch, and since the active switch drive signal is controlled by the secondary-
side current of the transformer, a separate control circuit is not required. In addition, the
proposed converter has the advantage of using a switch with a low voltage rating due to the
reduced turn-off voltage surge and using the conventional QR flyback control IC. For the
design of its major components, the steady-state operation characteristics were analyzed,
and the simulation and experimental results were compared. To confirm the effectiveness
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of the proposed converter and the control circuit method, a 60 W class miniaturized
AC–DC adapter was constructed, and the experimental results were analyzed. The size
of the experimental AC–DC adapter was 74× 29× 23 mm, the power density was about
20 W/in3, and the target maximum efficiency was over 90% [9–11].
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2. QR Flyback DC–DC Converter with SDAS
2.1. Basic Circuit Structure of QR Flyback Converter with SDAS

Figure 3 shows the basic circuit of the QR flyback converter with the SDAS proposed
in this paper. In Figure 3a, the SDAS is configured in parallel with the main switch, while in
Figure 3b, the SDAS is configured in parallel with the transformer. In this figure, the main
switch is S1, and the synchronous rectifier switch SR replaces the existing diode rectifier on
the secondary side of the transformer T1. The SDAS circuit consists of a clamp switch S2
and a clamp capacitor CL in series. Transformer T2 is a current transformer (CT) that detects
secondary-side current and generates driving signals for the synchronous rectifier switch
SR and the clamp switch S2. Therefore, since the two switches SR and S2 are turned on and



Energies 2023, 16, 1068 4 of 21

off by the secondary-side current signal of the transformer, they are driven independently
of the external PWM control signal. The clamp capacitor CL absorbs the surge energy
caused by the resonance of the transformer leakage inductor LK and the switch parasitic
capacitor CR. In the conventional active clamp-type flyback converter, the location of the
main switch S1, the clamp switch S2, and the clamp capacitor CL are the same as the circuit
proposed in this paper, but the clamp switch S2 serves as a complementary switch to the
main switch, so the QR flyback characteristics are not satisfied. Therefore, the conventional
active-clamp flyback converter has different steady-state operation characteristics from the
QR flyback converter configured with the SDAS in parallel. Since QR flyback converters
are relatively widely applied in the design and manufacturing of small-capacity converters,
several manufacturers have released control IC models. In this paper, while maintaining
the basic characteristics and design environment of the existing QR flyback converter,
we proposed a circuit method capable of high-efficiency power conversion by actively
removing the voltage surge of the switch to lower the rated voltage of the switch and
reducing the conduction loss of the switch [12–16].
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Figure 3. QR flyback DC–DC converter with SDAS: (a) QR flyback converter with SDAS in parallel
with main switch; (b) QR flyback converter with SDAS in parallel with transformer.

Figure 4 is an equivalent circuit to that in Figure 3a with the transformer T1 removed.
Figure 4a is the equivalent circuit with the clamp capacitor CL, and Figure 4b is the equivalent
circuit converted to the clamping constant voltage VCL instead of the clamp capacitor. Trans-
former T1 is represented by the leakage inductor LK and magnetizing inductor LM, and all
switches are assumed to be ideal switches without loss. The resonant capacitor CR placed
in parallel with the main switch S1 is the parasitic capacitor of the switch. The output load
resistance and the output capacitor are assumed to be constant voltage in a steady state. In
addition, in this study, to simplify the analysis and design, the equivalent circuit in Figure 4a
was used as a basis for the steady-state analysis and design of major components [16,17].
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Figure 4. Equivalent circuit of QR flyback converter with self-driving active snubber: (a) equivalent
circuit of QR flyback converter with diode rectifier; (b) equivalent circuit of QR flyback converter
with synchronous rectifier.
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2.2. Steady-State Analysis

Figure 5 shows the operating waveform for the equivalent circuit in Figure 4. Figure 5a
shows the switch voltage of the converter turned on in the second valley, whereas Figure 5b
shows the switch voltage turned on in the first valley. As can be seen, when the converter
operates in a steady state, its state is divided into six operating states for one cycle. In this
case, the turn-off timing of the switch is different, but the waveform for each state is the
same. The operation mechanism in each state of the converter operating under a steady
state is described below [18,19].
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time [ns]Figure 5. Steady-state operating waveform of QR flyback converter with SDAS: (a) steady-state
operating waveform of a QR flyback converter with two valley voltages; (b) steady-state operating
waveform of a QR flyback converter with one valley voltage.

First, in state 1, the main switch S1 is turned on at time t0, the secondary-side current
of the transformer becomes zero, and the auxiliary switch S2 and the synchronous rectifier
switch SR are turned off. The equivalent circuit of state 1 is shown in Figure 6. As can
be seen in Figures 5 and 6, the input voltage is applied to the magnetizing inductor LM
and the leakage inductor LK, and the current constantly increases from zero, as shown
in Equation (1). Assuming that the main switch voltage is equal to that in Equation (2),
and the clamp capacitance is large, the clamp voltage is equal to the turn-off steady-state
voltage of the main switch shown in Equation (3). The switch voltage of the synchronous
rectifier is determined using Equation (4), and the current is determined with Equation (5).
When the main switch S1 is turned off at time t1, the magnetizing current iM becomes IL1,
and state 1 ends [20,21].

isw(t) = iM(t) = iR(t) =
(

VIN
LR + LM

)
t (1)

vDS1(t) = 0 (2)

vCL(t) = VC0 = VIN + NVo (3)
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NvD(t) = −(VIN + NVo) (4)

iSR(t)
N

= 0 (5)
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When the main switch S1 is turned off at time t1, state 2 starts, and the equivalent
circuit is shown in Figure 7. At time t1, the initial value of the magnetizing current iM is
IL1, and the magnetizing inductor LM and the switch equivalent capacitor CR resonate, as
shown in Equation (6). The switch resonant voltage is determined with Equation (7). At this
time, the characteristic impedance Zr and the resonant angular velocity ωr are calculated
using Equation (8). When the resonance voltage of the main switch S1 becomes equal to the
clamp capacitor voltage VCL, the time becomes t2, the maximum value of the magnetizing
current iM becomes IL2, and state 2 ends.

iM(t) = iR(t) =
(

VIN
Zr

)
sinωrt + IL1cosωrt (6)

vDS1(t) = IL1Zrsinωrt + VIN(1− cosωrt) (7)

Zr =

√
LM
CR

ωr =
1√

LMCR
(8)
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At time t2, when the magnetizing current LM flows through the internal diode of the
clamp switch, state 3 starts, and the equivalent circuit in this state is shown in Figure 8. At
time t2, the initial value of magnetizing current LM is IL2, the magnetizing inductor LM
and the clamp capacitor CL resonate, and the magnetizing current iM is determined with
Equation (9). The clamp capacitor resonant voltage is provided by Equation (10). At this
time, the characteristic impedance ZR and the resonant angular velocity ωR are determined
using Equation (11). When the clamp current iCL becomes larger than the magnetizing
current iM, the magnetizing current becomes IL3, the time becomes t3, and state 3 ends.
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iCL(t) = iM(t) = iR(t) =
(

VIN −VC2

ZR

)
sinωRt + IL2cosωRt (9)

vCL(t) = IL2ZRsinωRt + VIN(1− cosωRt) + VC2 (10)

ZR =

√
LM
CL

ωR =
1√

LMCL
(11)
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At time t3, as the resonance current of the clamp current iCL becomes larger than the
magnetizing current iM, the remaining current flows through the rectifier on the secondary
side of the transformer. When the synchronous rectifier switch SR and the clamp auxiliary
switch S2 are turned on with the rectifier current, state 4 starts, and the equivalent circuit in
this state is shown in Figure 9. At time t3, the initial value of the resonance current iCL is
IL3, the leakage inductor LK and the clamp capacitor CL resonate, and the clamp capacitor
current is as shown in Equation (12). The clamp capacitor resonant voltage is calculated
using Equation (13). The secondary-side current starts at zero due to resonance and
performs zero-current switching (ZCS); thus, its waveform is a sinusoidal wave reflecting
the resonance. At this time, the characteristic impedance ZO and the resonant angular
velocity ωO are expressed in Equation (15). When the magnetization current iM and the
clamp capacitor current iCL become equal, the secondary rectifier current becomes zero,
and the time becomes t4, and state 4 ends [22,23].

iCL(t) = iR(t) =
(

VIN + NVO −VC3

Zo

)
sinωot + IL3cosωot (12)

vCL(t) = IL3Zosinωot− (VIN + NVO −VC3)cosωot + (VIN + NVO) (13)

iSR(t)
N

= IL3(1− cosωot)− NVo

LM
t−
(

VIN + NVO −VC3

Zo

)
sinωot (14)

Zo =

√
LR
CL

ωo =
1√

LRCL
(15)

At time t4, the magnetizing current iM and the clamp current iCL become equal,
the secondary rectifier current becomes zero, and state 5 begins. The equivalent circuit
in this state is shown in Figure 10. When the synchronous rectifier switch SR and the
clamp auxiliary switch S2 are turned off with the rectifier current, the initial value of
the resonance current iCL is IL4 at time t4. The magnetizing inductor LM and the clamp
capacitor CL resonate, as shown in the figure, and the clamp capacitor current is calculated
with Equation (16). The clamp capacitor resonant voltage is calculated using Equation (17).
At this time, the characteristic impedance ZR and the resonant angular velocity ωR are
expressed in Equation (18). When the magnetizing current iM and the clamp current iCL
become zero, the time becomes t5, and state 5 ends.
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iCL(t) = iM(t) = iR(t) =
(

VIN −VC4

ZR

)
sinωRt + IL4cosωRt (16)

vCL(t) = IL4ZRsinωRt + VIN(1− cosωRt) + VC4 (17)

ZR =

√
LM
CL

ωR =
1√

LMCL
(18)
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At time t5, when the magnetizing current iM, the clamp current iCL, and the secondary
rectifier current become zero, state 6 starts, and its equivalent circuit is shown in Figure 11.
At time t5, the initial value of the turn-off voltage of the main switch is VC5, and the
magnetizing inductor LM and the switch equivalent capacitor CR resonate, as shown in the
figure. The magnetizing current is determined using Equation (19), and the switch resonant
voltage is expressed in Equation (20). At this time, the characteristic impedance Zr and
the resonant angular velocity ωr are found using Equation (21). When the switch voltage
reaches the lowest point VC6 due to resonance, it becomes time t6, and at this time, if the
switch is turned on by the control circuit, the turn-on loss can be minimized.
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Figure 12 shows a simplified resonant equivalent circuit with the components consti-
tuting the resonant circuit for each state equivalent circuit. The initial current and voltage
values for each resonant equivalent circuit are shown [24,25].

iM(t) = iR(t) = iSW(t) =
(

VIN −VC5

Zr

)
sinωrt (19)

vDS1(t) = (VC5 −VIN)cosωrt + VIN (20)

Zr =

√
LM
CR

ωr =
1√

LMCR
(21)
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To find the appropriate value of the clamp capacitor, the voltage of the magnetizing
inductor LM is obtained using Equation (22). During states 4 and 5, the voltage value is
NVo, and the maximum current value is I+M. Assuming that the time of state 2–5 is twice
the resonance time of the leakage inductor LK and the clamp capacitor CL, Equation (23)
is used. The clamp capacitor value can be obtained from Equation (24). At this time, the
maximum voltage value of the clamp capacitor is determined using Equation (25).

vM(t) = LM
diM(t)

dt
(22)

NVo = LM

(
I+M

2× 2π
√

LKCL

)
(23)
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CL =
1

LK

(
LM I+M

4πNVo

)2

(24)

VCL = VIN + NVo (25)

3. Design of QR Flyback DC–DC Converter with SDAS
3.1. Optimal Design Process for Major Devices

The electrical specifications shown in Table 1 were determined for the design of
the SDAS-applied QR flyback converter proposed in this paper. The input voltage was
AC 90–264 V, the output voltage was set at 12 V, and the maximum output was set at
60 W. Since the AC–DC power supply of less than 75 W is not subject to the IEC 61000-3-2
limitation of current harmonics, the PFC circuit was not used. The size of the power supply
device was 29 mm in width, 23 mm in height, and 74 mm in length, and the volume at this
time was less than 50 cc.

Table 1. Design conditions for QR flyback converter with SDAS.

Parameter Symbol Value Unit

Input voltage range VIN 90–264 Vac
Output voltage Vo 12 Vdc

Maximum output power Po max 60 W
Maximum output current Io max 5.0 A

Case size W × H × L 29× 23× 74 mm
Efficiency η 90 %

The winding ratio of the transformer is calculated with Equation (26), and Vc is the
voltage that is converted from the output voltage to the primary-side voltage. Kc is the design
margin coefficient. In this design, the secondary winding of the transformer was determined
as the minimum natural number, so 5 was selected. Since the QR flyback converter always
operates in a discontinuous current mode, the entire energy stored in the magnetizing inductor
LM is delivered to the output Po. Therefore, the magnetizing inductor LM is expressed using
Equation (26). The maximum duty rate dmax appears at the lowest input voltage and is shown
in Equation (28). The RMS values of the current in the primary and secondary windings of
the transformer are determined with Equations (29) and (30). Equation (24) can be used for
the clamp capacitor, and the result is shown in Equation (31). For the clamp capacitor value,
68 nF was selected, which is the closest standard value [26–30].

N =
N1

N2
=

KcVc

Vo
=

1.5× 50
12

= 6.3 (26)

LM =
2 Po

I2
R fsw

=
2× 70

2.52 × 83k
= 260 µH (27)

dmax =
IpkLM fsw

VIN min
=

2.5× 269µ× 83k
90
√

2
= 0.42 (28)

I1 rms = Ipk

√
dmax

3
= 2.5

√
0.42

3
= 0.94 A (29)

I2 rms = NIpk

√
1− dmax

3
= 2.5× 6.3

√
1− 0.42

3
= 6.93 A (30)

CL =
1

5.3µ

(
260µ× 2.5

4π × 6.4× 13

)2
= 73 nF (31)

3.2. Circuit Simulation Results

To verify the design results of the QR flyback converter using the SDAS designed in the
previous section, a circuit simulation was performed using PSIM 11.0, and the simulation
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circuit diagram is shown in Figure 13. In the figure, the previously designed values were
used for the main components of the converter, and the main switches and transformers
were modeled as ideal components. To stabilize the output voltage, a valley-switching
PWM control circuit suitable for the QR flyback converter was designed. Figure 14 is the
waveform results of the PSIM simulation when the converter operated in a steady state. In
Figure 14a, the input voltage was DC 320 V, and the load resistance was 5 Ω; in Figure 14b,
the input voltage was DC 320 V, and the load resistance was 2.4 Ω. These values correspond
to approximately 30 W and 60 W of output power [31].
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In the figure, shown from the top, the operating waveforms refer to the main switch
voltage vDS1, the magnetizing inductor current iM, the clamp capacitor current iCL, the
switch drive voltage vGS1,2, the transformer secondary rectifier current iSR, and the switch
current iS. As can be seen from this figure, when the DC input voltage was 320 V, the
switch was turned on at the lowest point of the valley. As the power load increased, the
number of valleys decreased, and the switch was turned on in the first valley at full load.
The driving voltage of the clamp and the synchronous rectifier switch was controlled by the
secondary-side rectifier current of the transformer [32]. As a result, it can be seen that the
SDAS circuit consisting of the clamp switch and the clamp capacitor operated properly, and
the voltage surge was eliminated during the turn-off period of the main switch. Specifically,
the rectifier current on the secondary side of the transformer is in the form of a half-wave
rectified sinusoidal wave occurred by the resonance, and it showed ZCS characteristics and
reduced the switching loss and voltage surge, lowering the rectifier voltage rating [33,34].
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(a) under low power load; (b) under large power load.

In Figure 15, the PSIM simulation results are compared with the experimental results
when a 60 W class QR flyback converter with the SDAS was used under a steady state. Shown
from the top, the operating waveforms refer to the switch drive voltage vGS1, the main switch
voltage vDS1, the switch current is, the clamp capacitor current iCL, the transformer secondary
rectifier current iSR, the clamp switch drive voltage vGS2, the clamp capacitor voltage vCL,
and the transformer primary voltage v1. It can be seen that the PSIM simulation results and
the experimental waveforms are in relatively good agreement, and they are the same as the
operation of each state described above. Therefore, it was confirmed that both the analysis of
the steady-state operation and the design process were valid [35].

3.3. Compact AC–DC Adapter Design

Figure 16 shows the basic structure including the control circuit to construct the
AC–DC adapter designed above. The basic circuit in the figure is for a QR flyback converter
with the SDAS composed of existing commercialized QR flyback control components and
an isolation circuit using a photocoupler. As shown in Figure 16, a synchronous rectifier
driver component was used to control the synchronous rectifier switch SR, and a photo
driver was used to deliver a driving signal to the clamp switch S2 on the primary side
of the transformer. As a result, the operation of the synchronous rectifier and the clamp
switch was always the same [36,37].
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Figure 15. Comparison of operating waveforms of PSIM simulation and experimental circuit:
(a) operating waveform of the experimental circuit; (b) operating waveform of PSIM simulation.
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Figure 16. Basic circuit and control structure of QR flyback converter with SDAS.

Table 2 shows the main components and their electrical characteristics constituting the
experimental AC–DC adapter circuit. For the main switch, a MOSFET with a relatively low
voltage rating of 600 V was used, as it could reduce the on-resistance compared with other
MOSFETs with a similar current rating. A 500 V class P-channel MOSFET was used for the
clamp switch and a surface-mounted device (SMD) MOSFET with 6.3 mΩ on-resistance
was used for the synchronous rectifier switch to minimize the conduction loss. A QR
flyback control IC, NCP1380, was used to control the main switch, TEA1791 was used as
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the synchronous rectifier driver, and TLP118 was used as the photo driver. Table 3 shows
the characteristics of the transformer used in the experimental AC–DC adapter circuit.
The magnetic core size of the transformer was TDK’s RM7. For the primary winding,
Litz wires comprising a bundle of 30 copper wires with 0.1 mm thickness were used to
reduce high-frequency loss, and Litz wires comprising 60 copper wires were used for the
secondary winding to deal with a large RMS current value. The measured magnetizing
inductance was 260 µH, and the leakage inductance was 5.3 µH. The clamp capacitor was a
68 nF film capacitor rated at 650 V. Figure 17 shows the experimental circuit diagram. In the
circuit diagram, the AC–DC rectifier was omitted for convenience, but a general full-wave
rectifier was applied in the experiment [38–40].

Table 2. Main devices and electrical ratings used in the experimental AC–DC adapters.

Parameter Name Model Specifications Shape

Main switch S1 TK31V60X 600 V, 30 A, 78 mΩ DFN8 N-ch
Clamp switch S2 FQP3P50 −500 V,−2.7 A, 4.9 Ω TO-220 P-ch

SR switch SR BUK9Y8R5-80E 80 V, 100 A, 6.3 mΩ LFPAK56 N-ch
QR controller IC1 NCP1380 28 V, 500 mA SO-8
SR controller IC2 TAE1791 120 V, 3 A SO-8
Photo driver IC3 TLP118 3750 V, 60 ns SO-6 GaAlAs IRED

Table 3. Transformer characteristics of experimental AC–DC adapters.

Parameter Name Unit Value Spec.

Core size T1 RM7
Primary winding N1 Turn 32 0.1 mm× 30 p

Secondary winding N2 Turn 5 0.3 mm× 60 p
Auxiliary winding NA turn 5 0.1 mm× 30 p

Magnetizing inductance LM µH 260
Leakage inductance LK µH 5.3
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Figure 17. Schematic of QR flyback converter with SDAS used in the experiments.

Figure 18 shows the external appearance of the experimental AC–DC adapter.
Figure 18a is the assembly drawing of the outer case, and Figure 18b is the inside and
outside size and shape of the constructed experimental circuit. The AC–DC adapter was a
74 mm long rectangular cylinder case with a hollow inside and a rectangular lid attached
to both ends. The AC terminal was integrated with the lid on one side. The volume of the
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adapter was 50 cc, and the power density was approximately 20 W/in3. Figure 19 is the
instrument composition and test environment to test the experimental circuit. The power
supply used in the experiment was a PCR400LE, the electronic load was a PLZ1004WH
from Kikusui (Yokohama, Kanagawa, Japan), the power analyzer was a WT1600 from
YOKOGAWA (Tokyo, Japan), and the oscilloscope was an HDO6104 model from LeCroy
(Chestnut Ridge, NY, USA). To measure the waveform of the experimental circuit in a
steady state, the test was carried out without the case.
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(a) external shape and size of AC–DC adapter; (b) internal PCB and case of AC–DC adapter for
experimentation.
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used in the experiment; (b) AC–DC adapter and its measurement setup.

4. Experimental Results

To verify the effectiveness of the QR flyback converter with the SDAS proposed in
this paper, a 60 W AC–DC adapter was tested. Figure 20 is the steady-state operating
waveform of the experimental circuit when the input voltage was 310 V. In Figure 20a, the
output current was 0.3 A, the voltage vDS of the main switch is shown on the top, and the
switch current iS is shown on the bottom. The power load was approximately 3.6 W, and
the switch voltage showed a small duty cycle under a low load current. At this time, the
turn-off voltage of the switch was clamped by the SDAS circuit and limited to 420 V. As
the load current increased, the operating waveform changed from Figure 20b to Figure 20f.
Figure 20f shows when the load current was 5 A, and the output power was 60 W. The
maximum switch current was 2.4 A, and the maximum switch voltage was limited to about
450 V. It can be seen from this figure that depending on the load, the peak value of the
switch voltage did not significantly increase and was clamped to a constant level [41].
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(d) 3.0 A load current; (e) 4.0 A load current; (f) 5.0 A load current.

Figure 21 shows a comparison of the switch voltage and current waveforms of a
conventional QR flyback converter and the proposed QR flyback converter with the SDAS.
The input voltage was 310 V, the load current was 3.5 A, and the output power was 42 W.
Figure 21a shows the switch voltage and current waveforms of the experimental circuit
using the existing QR flyback converter and RCD snubber, and Figure 21b is the switch
voltage and current waveform of the QR flyback converter with the SDAS. As shown in
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Figure 21a, the voltage surge of the switch occurred at the turn-off moment and had a
peak value of up to 550 V. After that, the voltage surge was limited to about 500 V, there
was a damping resonance period, and then the voltage surge stabilized at about 410 V,
which was the turn-off steady-state voltage. The switch turned on in the second valley,
and the switch current had a peak value of about 2 A. At this time, the switch-turn-off
voltage also influenced the current during the damping resonance period, and therefore
the current resonated simultaneously. As shown in Figure 21b, the turn-off voltage of the
switch was clamped by the SDAS circuit and had a peak value of 430 V, and the peak value
of the switch current was about 1.9 A. As can be seen in the figure, compared with the RCD
clamp circuit, the SDAS circuit reduced the voltage surge of the QR flyback switch by up
to 120 V or more. In addition, compared with RCD snubbers, which consume the voltage
surge power in resistors, SDAS circuits do not consume power and, therefore, have higher
efficiency characteristics in principle [42].
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Figure 21. Comparison of steady-state switch voltage and current of QR flyback converter:
(a) steady-state switch voltage and current waveforms of a QR flyback converter with RCD snubber;
(b) steady-state switch voltage and current waveforms of a QR flyback converter with active snubber.

Figure 22 shows the power conversion efficiency of the experimental circuit at an
input voltage of 310 V. The efficiency was over 85% when the output power was more than
5 W, and the efficiency was as high as 90% at the maximum power load of 60 W. Figure 23
shows the internal power dissipation of the adapter. At a power load of 10 W, there was a
power loss of approximately 1.5 W, and at a maximum power load of 60 W, an internal loss
of 6.7 W was observed. Figure 24 shows the output voltage relative to the power load. As
evident in the figure, the output voltage remained stable, and a maximum voltage change
of less than 5 mV was observed with the change in power load. Figure 25 shows the power
conversion efficiency measured at the output power of 20 W, 40 W, and 60 W relative to the
input voltage. The efficiency increased at a higher output and with a decrease in the input
voltage. Specifically, the maximum power conversion efficiency was achieved when the
input voltage was 140 V, and the output was 60 W, at 91.56%. When the output was 60 W,
the power conversion efficiency was over 90% in all rates of input voltage.
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Figure 22. Power conversion efficiency characteristics versus load current of a QR flyback converter
with SDAS at an input voltage of 310 V.
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Figure 23. Characteristics of internal power dissipation versus load current of a QR flyback converter
with SDAS at an input voltage of 310 V.
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Figure 24. Output voltage characteristics versus load current of a QR flyback converter with SDAS at
an input voltage of 310 V.
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Figure 25. Power conversion efficiency characteristics versus input voltage of a QR flyback converter
with SDAS at 20 W, 40 W, and 60 W power load.

These experimental results highlight the following findings: The AC–DC adapter
of the proposed QR flyback converter with the SDAS showed a high power density of
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more than 20 W/in3 and a high power conversion efficiency of up to 91.56%. Therefore,
the proposed SDAS method can be used as the basic circuit method for high-efficiency
power supply. One of the reasons for such high efficiency is due to the SDAS circuit, which
sufficiently reduces the voltage surge of the QR flyback switch compared with the RCD
clamp circuit and does not consume power in principle. Specifically, a separate control
circuit is not required to drive the auxiliary switch for the clamp, and the circuit structure
is simplified because it is self-driven inside the converter [43].

5. Conclusions

In this paper, a QR flyback converter using a self-driven active snubber (SDAS) was
proposed to solve the problem of the switch voltage surge in the QR flyback converter. In the
proposed converter, the SDAS consisting of a clamping capacitor and an active switch was
configured in parallel with the main switch or transformer to reduce the voltage surge in the
switch. The clamp switch was synchronized with the drive signal of an internal synchronous
rectifier and a photo driver or pulse transformer, so no separate control circuit was required.

To confirm the steady-state characteristics of the proposed QR flyback converter with
SDAS, equivalent circuits for each state were constructed, and the equations and characteristics
for each state were determined. Using the main components for each state, the resonant circuit
was separately arranged, and the components involved in resonance and the initial values of
each state were identified. The values of the main elements were designed using the steady-
state analysis results, and the optimal values of the clamp capacitor were derived. To compare
the steady-state analysis results, a simulation using the PSIM program was performed. The
simulation results and the theoretical waveforms were relatively well matched, and they
showed a very similar shape to the experimental waveforms.

To confirm the effectiveness of the proposed converter and control circuit method,
a 60 W class small AC–DC adapter was constructed, and the experimental results were
presented. The size of the experimental AC–DC adapter was 74× 29× 23 mm and had a
high power density of 20 W/in3 or more. The experimental circuit was limited to the high
power conversion efficiency of up to 91.56%, and the maximum voltage surge of the switch
was approximately 450 V. Taken together, these results highlight the applicability of the
proposed converter as the basic circuit method for achieving high-efficiency power supply.
One of the reasons for such high efficiency is due to the SDAS circuit, which sufficiently
reduces the voltage surge of the QR flyback switch compared with the RCD clamp circuit
and does not consume power in principle.
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