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4Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia, Università degli Studi di Parma, Parma, Italy, 5Centro di Ricerca Interdipartimentale di

Ingegneria Tissutale e Centro di Eccellenza in Biologia Applicata, Università degli Studi di Pavia, Pavia, Italy

Abstract

Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and
segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell
elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When
chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis,
recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In
mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of
unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC
proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death.
We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene
spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in
MSUC (e.g., cH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and
are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of
apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis
defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely
on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint
could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and
differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian
translocations, explaining the multitude of natural Robertsonian populations described in the mouse.
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Introduction

A series of complex processes takes place during the first meiotic

division, including pairing, synapsis, recombination and segregation of

homologous chromosomes. Defects in any of these processes can affect

the normal progression of meiosis, causing severe fertility reduction or

even sterility [1–3]. This is a consequence of the existence of

surveillance mechanisms that monitor the accurate progression of

meiotic events and promote the removal of defective cells. Two main

checkpoints have been proposed to act during the first meiotic division:

the pachytene checkpoint, responsible for ensuring the correct

occurrence of recombination and synapsis [2,4,5], and the meta-

phase-I or spindle checkpoint, which controls the precise segregation of

homologous chromosomes [6,7].

Although the process that eliminates meiocytes in metaphase-I

and II might be similar to that acting during mitosis [6,7], a clear

understanding of the mechanisms that trigger the pachytene

checkpoint is still lacking. Given the interdependence between

meiotic recombination and synapsis, it has been difficult to ascertain

the existence of separate checkpoints for these processes in
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mammals. Thus, many recombination-defective mutants exhibit a

delay in synapsis and/or synaptic aberrations, and meiosis is

aborted during the zygotene-pachytene transition [8–10]. Likewise,

most mutants defective for synaptonemal complex (SC) components

abort meiosis at pachytene with unresolved recombination

processes [11–15].

In addition to the accumulation of unresolved recombination

intermediates, unsynapsed chromosomal regions undergo a process

of transcriptional inactivation called meiotic silencing of unsynapsed

chromatin (MSUC) [1,16–18]. The mechanisms involved in

transcriptional inactivation are particularly well characterized in

mammalian male meiosis, in which sex chromosomes undergo a

special case of MSUC called meiotic inactivation of sex chromo-

somes (MSCI) [19,20]. This process is initiated with the

accumulation of BRCA1 protein on the unsynapsed axial elements

(AEs). BRCA1 is a protein involved in DNA damage repair that

allows the recruitment of other factors such as ATR, promoting the

phosphorylation of H2AX at serine 139 on the surrounding

chromatin [21,22]. The inactivation of sex chromosomes, which

affects the unsynapsed regions of both the X and Y chromosomes,

comprises an additional plethora of chromatin modifications that

includes: 1) histone modification [18,23,24]; 2) incorporation of

specific histone variants [25,26]; 3) specific incorporation of non-

histone proteins [27–30]; and 4) accumulation of XIST RNA [31]

and other families of non-coding RNAs [32].

The initiation of MSUC seems to also operate by the action of

BRCA1 and ATR [17]. Furthermore, it has been reported that

many chromatin modifications detected during MSCI are also

involved in the inactivation of unsynapsed autosomes. This is the

case of H2AX phosphorylation [17], histone H2A ubiquitination

[18], methylation of histone H3 and H4, incorporation of histone

H3.3 [26] and Maelstrom protein [29]. However, the role of other

chromatin modifications in MSUC remains to be demonstrated.

On these grounds, it has been proposed that MSUC may interfere

with the expression of genes necessary for the completion of meiosis

and this would contribute to arrest the meiotic progression of

pachytene spermatocytes with synapsis defects [17]. More recently, it

has been suggested that extensive asynapsis and MSUC could also

interfere withMSCI [33]. Indeed, activation of some sex chromosome-

linked genes that should remain inactive during meiosis has been

claimed as one of the causes of meiotic failure in some mouse models

[1,17,34,35]. Mahadevaiah and co-workers [33] have proposed that

MSCI initiation could be impeded by the sequestration of MSUC

triggering proteins like BRCA1 and ATR on extensively unsynapsed

autosomes, a circumstance that would preclude these proteins to

relocate to the unsynapsed AEs of the sex chromosomes. MSCI

abrogation has thus been proposed as the primary cause of

spermatocyte death in mouse models that typically arrest meiosis at

the zygotene-pachytene transition, including many recombination-

defective mutants [33]. Sequestration of BRCA1 has been proposed to

occur also in female meiosis [36]. However, in both cases cells seem to

tolerate a certain degree of asynapsis, since both spermatocytes and

oocytes with a reduced number of asynapsed chromosomes are able to

progress through first meiotic prophase without interfering with of

MSUC or MSCI processes [33,36].

In the house mouse (Mus musculus domesticus), individuals that are

heterozygous for Robertsonian (Rb) translocations (the fusion of

two acrocentric chromosomes) show reduced fertility. This

reduction is strongly correlated with impairment of spermatogen-

esis and loss of meiotic cells [37–45]. Depending on the number

and complexity of Rb heterozygosity (i.e. formation of trivalents,

chains or rings), meiocytes may be eliminated during prophase-I

[41,46–48] or during metaphase-I and II [39,47–50].

The synaptic behaviour of trivalents in Rb heterozygotes has been

extensively analyzed by means of electron microscopy in a wide range

of mammalian species, including mouse and humans [42,44,45,47,51–

54]. During meiosis, heterozygous mice display a high frequency of

pairing abnormalities including: 1) delay in synapsis completion of

trivalents; 2) existence of a variety of heterelogous synaptic situations,

both within and between trivalents and between trivalents and the sex

chromosomes; and 3) persistence of unsynapsed regions in the

trivalents throughout pachytene. Furthermore, a reduction of the

recombination frequency and a decrease of chiasma interference in

these hybrids have been demonstrated [40,55–58]. However, little is

known about the chromatin modifications associated with these

synaptic disturbances.

The aim of this study is to ascertain the extent of MSUC during

meiosis in Rb heterozygous mice and to evaluate the consequences

of this cellular response on the meiotic progression of spermatocytes.

We used males generated by crossing individuals of a standard

karyotype (2n= 40) with homozygous individuals bearing eight Rb

translocations (2n= 24), collected from natural populations in

Northern Italy. The resulting hybrids (2n= 32) bear eight trivalents

that exhibit different degrees of asynapsis during meiosis. We have

combined the analysis of synapsis and recombination progression

during male meiosis with the localization of some proteins involved

in MSUC, i.e., cH2AX, ATR, ubiquitinated H2A, SUMO-1 and

XMR, the latter two having only been reported to act in MSCI.

Our results describe the kinetics of MSUC in Rb heterozygotes and

highlight the capacity of spermatocytes with synaptic defects to pass

through pachytene and progress to the metaphase stage.

Results

Synapsis and recombination/repair progression is normal
in bivalents but slightly delayed in trivalents
To characterize the progression of the first meiotic prophase, we

used three main criteria: 1) the localization of SYCP3, the main

component of the synaptonemal complex (SC) axial/lateral

Author Summary

Cells have different mechanisms to assess the proper
occurrence of cellular events. These mechanisms are called
checkpoints and are involved in the surveillance of
processes such as DNA replication and cell division. A
checkpoint at the pachytene stage arrests meiosis when
defects in the process of homologous chromosome
synapsis and recombination are detected. In mammals,
both transcriptional inactivation of chromosomal regions
that are not correctly synapsed at pachytene and
activation of sex chromosome genes that are normally
silent during this stage could contribute to meiotic arrest.
We found that when Robertsonian translocations appear
in heterozygosis, many synapsis defects occur, and
mechanisms that trigger transcriptional silencing of the
unsynapsed chromatin are activated. However, meiotic
prophase-I progression is not greatly compromised. This
questions the ability of the meiotic checkpoints to halt
meiosis progression when synapsis is not completed,
allowing cells with synapsis defects to reach the first
meiotic division. The fertility reduction of Robertsonian
heterozygous mice seems to be mainly caused by errors
detected by the metaphase-I checkpoint, when most of
the spermatocytes die, rather than by synapsis defects. In
an evolutionary context, a permissive pachytene check-
point could contribute to increasing the chances of
Robertsonian translocations to spread into natural popu-
lations.

MSUC in Robertsonian Heterozygous Mice
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element (AE/LE), and that of RAD51, a protein related to early

meiotic recombination and repair (Figure 1) that is abundantly

incorporated along the chromosomes at zygotene, and then

gradually disappears during pachytene and is absent at mid/late

pachytene [59]; 2) the length of the pairing region between X and

Y chromosomes, which extends up to 100% of the Y chromosome

at early pachytene and becomes shorter as pachytene proceeds

[60]; and 3) the reduction of the pairing region of sex

chromosomes to the very distal end, the appearance of

excrescences on the AEs of sex chromosomes, and the widening

of SC attachment plates on the autosomes that identify the late

pachytene stage. These criteria are comparable with those

reported in recent studies carried out using RPA and MLH1 as

markers of pachytene progression [61].

We found that synapsis was initiated at early zygotene in both

bivalents and trivalents, but proceeded more quickly in the

bivalents (Figure 1A). In fact, most trivalents were still undergoing

synapsis when bivalents (b in Figure 1) were almost completely

synapsed. This may be due to the fact that in trivalents, synapsis

was initiated only at the distal ends of the chromosomes

(Figure 1B–1B’). At this meiotic stage, the X and Y chromosomes

usually lay apart from each other. At early pachytene, all bivalents

and some trivalents had completed synapsis (closed configuration),

although in many trivalents the chromosomal regions close to the

centromeres were still unsynapsed (open configuration) (Figure 1C–

1E’ and Table 1).

The pattern of RAD51 localization at the early stages of

prophase-I was similar to that exhibited by mice with the standard

acrocentric karyotype. During zygotene, a large number of

RAD51 foci appeared on both synapsed and unsynapsed AEs of

bivalents and trivalents and on the X chromosome (Figure 1A–

1B’). Then, during early pachytene, the number of foci started to

drop, although foci remained more abundant in both trivalents

and sex chromosomes than in bivalents (Figure 1C–1E’). RAD51

foci were associated with the trivalents in either the open or closed

configuration and did not preferentially accumulate on the

unsynapsed regions of the open trivalents (Figure 1C–1D’).

At mid-pachytene, many trivalents had completed synapsis and

appeared in a closed configuration, but one to four trivalents

remained in an open configuration (Figure 1F–1H’). At this stage

Figure 1. Localization of RAD51 (green) and SYCP3 (red) during
prophase-I in 2n=32 spermatocytes. (A) Zygotene. RAD51 is
distributed in both synapsed LEs (arrowheads) and unsynapsed AEs
(arrows) in bivalents (b) and trivalents. A distal heterologous association
is observed between two trivalents (red arrowhead). Sex chromosomes
(X, Y) appear separated. (B) Magnification of a trivalent shown in (A)
with RAD51 foci on unsynapsed acrocentric (arrows) and metacentric
chromosomes. Note that the synapsis starts only from one chromo-
somal end. (B’) Schematic representation of the trivalent shown in (B).
Homology between the metacentric and the acrocentrics is represented

in yellow and blue and centromeres in orange. (C) Early Pachytene.
Synapsis has been completed in bivalents (b). RAD51 focus starts to
disappear from synapsed chromosomes but persist intensely in
unsynapsed AE, X chromosome and trivalents. Most trivalents present
an open configuration (arrows) and some of them show end-to-end
connections (arrowheads). (D,D’) Magnification of a trivalent shown in
(C). RAD51 appears on synapsed and unsynapsed AEs (arrows). (E,E’)
Magnification of sex chromosomes shown in (C) and their schematic
representation. RAD51 is located along the pseudoautosomal region
(PAR) (arrow) and the unsynapsed AE of the X chromosome whereas it
is absent from the Y chromosome AE. Synapsis occupies half of the Y
chromosome. (F–H’) Mid Pachytene. Trivalents show either open
(arrows) or closed (arrowheads) configuration. RAD51 foci are scarce
but still present, mostly on the synapsed regions of the trivalents and
on the X chromosome. (G,G’) Magnification of a trivalent with RAD51 in
both synapsed and unsynapsed AEs. Notice that one of the open
segments presents RAD51 (arrowhead) while the other does not
(arrow). (H,H’) Sex chromosomes: arrow marks the PAR. Synapsis is
reduced if compared to that at early pachytene. (I–K’) Late pachytene.
RAD51 is completely absent. Again, trivalents can show either open
configuration (arrows) or closed (arrowheads) configuration. The region
of synapsis between sex chromosomes is reduced to a very distal short
segment (arrow in K). (L–M’) Diplotene. RAD51 is absent. Some
trivalents rapidly start desynapsis (arrows) whereas others show
heterologous distal association of the acrocentrics (arrowheads).
doi:10.1371/journal.pgen.1000625.g001
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RAD51 was only present on the sex chromosomes and on some

trivalents.

At late pachytene, most cells exhibited up to four trivalents with

an open configuration (Figure 1I–1K’). At diplotene, when

desynapsis starts and homologues initiate their separation, the

proximal ends of the acrocentric chromosomes remained associ-

ated in some trivalents while they appeared clearly separated in

others (Figure 1L–1M’). RAD51 was not detectable at late

pachytene (Figure 1I–1K’) or diplotene (Figure 1L–1M’). These

results indicate that the repair of DNA might be delayed in some

trivalents as it is in the sex chromosomes, but this process seems to

culminate successfully in mid-late pachytene, when the signal of

RAD51 disappeared, even though many unsynapsed chromosome

regions are present.

Presence of heterologous synapsis
Trivalents commonly engage in ectopic heterologous associa-

tions with other trivalents and/or the sex chromosomes

(Figure 1C). Thus, we wondered whether these associations would

involve the assembly of the SC as a tripartite structure. For this

purpose we analyzed the localization of SYCP1 protein, one of the

main components of the SC transverse filaments and central

element (Figure 2). At zygotene, we found that trivalents could

establish an end-to-end connection that did not usually involve

SYCP1 (Figure 2A–2A’). However, the association of unsynapsed

proximal ends of trivalents with the sex chromosomes frequently

involved the formation of a short SC with either the distal region

of the X chromosome, the proximal region or both (Figure 2B–

2B’; see also Figure 3 and Figure S1). Furthermore, the Y

chromosome was sometimes found in a self-synapsed configuration

(Figure 2B–2B’ and Figure S1). These situations usually occurred

at early pachytene and were more rarely detectable from mid-

pachytene onwards.

Heterologous synapsis was also found within each trivalent.

Although it was expected that the two acrocentrics could synapse

with the corresponding homologous segment of the metacentric

(Figure 2C–2C’), synapsis between the heterologous proximal

chromosomal regions of the acrocentrics was the most frequent

configuration. Heterologous synapsis could involve either a short

(Figure 2D–2D’) or a long segment of both chromosomes

(Figure 2E-2E’) and could be maintained from pachytene until

late diplotene (Figure 2G–2G’). Furthermore, we found that some

unsynapsed chromosomal regions incorporated SYCP1

(Figure 2F–2F’), perhaps representing either unsynapsed regions

that were about to synapse or regions of self-synapsis. Alterna-

tively, they may reveal only a non-specific binding of SYCP1 to

unsynapsed AEs, a feature that is frequently observed in the sex

chromosomes [62].

Association of MSUC markers with unsynapsed trivalents
To evaluate the incorporation of MSUC markers on un-

synapsed Rb trivalents, we first examined the temporal localization

of cH2AX (Figure 3 and Figure S1; Video S1). This protein

localizes in foci at DNA double-strand breaks during DNA repair

and it is also associated with the inactivation of unsynapsed

chromatin in autosomes and sex chromosomes [17,63,64]. At

leptotene, the localization of cH2AX was dispersed throughout the

nucleus (Figure 3A; Video S1); then, at zygotene, cH2AX began to

disappear from the synapsed chromosome regions of the bivalents

and from the synapsed distal regions of some trivalents (Figure 3B).

The X chromosome appears intensely labeled while the Y

chromosome is usually devoid of cH2AX labeling.

When spermatocytes entered pachytene, cH2AX became

restricted to the chromatin located close to the LEs of the synapsed

regions of both bivalents and trivalents (see insets in Figure 3C and

3D) [65]. In the sex chromosomes, cH2AX was extended over the

chromatin (Figure 3C and 3D). Interestingly, we observed that the Y

chromosome is intensely labeled even when it occasionally appears

self-synapsed (Figure S1). In the unsynapsed regions of the

trivalents, cH2AX showed two labeling patterns: 1) occupying a

wide chromatin area surrounding the unsynapsed segments, as in

the sex chromosomes, and 2) occupying a more restricted chromatin

area, very close to the unsynapsed AEs, as in the synapsed regions

(see inset in Figure 3C). It is especially striking that in some trivalents

one of the unsynapsed acrocentric chromosomes showed one of

these labeling patterns while the other acrocentric showed the

alternative pattern (see inset in Figure 3D).

From mid to late pachytene, cH2AX labeling appeared as a bright

signal on the entire chromatin surrounding the X and Y chromosomes

and the AEs of the unsynapsed regions of open trivalents (Figure 3E). It

is important to stress that open trivalents showed cH2AX labeling

regardless of whether they were close to the X and Y chromosomes or

far from them, indicating that this labeling was not a consequence of

their association with the sex chromosomes (see Video S2). At diplotene

Table 1. Number and frequency of cells showing open trivalents during pachytene and diplotene in Robertsonian heterozygotes.

Number of

open trivalents Early Pachytene Middle Pachytene Late Pachytene Early Diplotene Middle/late Diplotene

n % n % n % n % n %

0 3 2.22 36 9.94 38 12.45 35 17.49 38 18.36

1 9 6.66 111 30.67 136 44.59 100 50.00 106 51.20

2 16 11.85 115 31.76 98 32.13 52 26.00 53 25.60

3 26 19.25 70 19.34 31 10.16 11 5.50 10 4.83

4 37 27.41 25 6.90 2 0.66 2 1.00 0 0

5 18 13.33 5 1.38 0 0 0 0 0 0

6 17 12.59 0 0 0 0 0 0 0 0

7 8 5.92 0 0 0 0 0 0 0 0

8 1 0.74 0 0 0 0 0 0 0 0

Total 135 362 305 200 207

doi:10.1371/journal.pgen.1000625.t001
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the localization of cH2AX in the sex chromosomes remained visible,

and it was also detectable in the pericentromeric regions of some

trivalents (Figure 3F). These regionsmost likely represent chromosomal

segments that have remained unsynapsed during pachytene, since

those that began desynapsis during diplotene, in either bivalents or

trivalents, were devoid of cH2AX labeling. These results suggest that

MSUC is a mechanism triggered during the early stages of prophase-I.

Furthermore, it indicates that most spermatocytes carrying unsynapsed

trivalents would proceed normally into diplotene.

Unsynapsed chromatin recruits a second group of MSUC/
MSCI-related proteins at early–mid pachytene
Next, we investigated the presence of ATR in the unsynapsed

regions of trivalents (Figure 4, Figure S2, and Figure S3). During

zygotene, ATR labeling appeared as small foci located on the

AEs/LEs in both synapsed and unsynapsed autosomes and in the

X chromosome, but it was rarely observed in the Y chromosome

(Figure 4A). At the zygotene/pachytene transition, ATR began to

disappear from the chromosomes that had completed their

synapsis (Figure 4B), although it remained as numerous and

intense foci on the unsynapsed AEs. At this stage, a single ATR

focus was always detected on the Y chromosome.

During early pachytene, ATR labeling appeared as a contin-

uous line along the unsynapsed AEs of trivalents and sex

chromosomes (Figure 4C). ATR localization contrasted with that

of cH2AX, the latter including the whole unsynapsed chromatin

(Figure 3C). This result indicates absence of colocalization of the

two proteins during late zygotene and early pachytene in the

unsynapsed regions (Figure S2). On the other hand, we observed

some unsynapsed trivalent regions without the ATR signal

(Figure 4B–4D). This observation is consistent with the absence

of cH2AX in some unsynapsed trivalent regions and strongly

suggests the existence of two classes of unpaired chromosome

segments during early pachytene: one class that shows neither

cH2AX nor ATR protein, and another class that shows the

presence of both proteins.

At mid-pachytene, ATR labeling was still apparent along

unsynapsed AEs and also appeared to extend to the surrounding

chromatin of the unsynapsed regions of trivalents and of the sex

chromosomes (Figure 4D); then, it became brighter as spermato-

Figure 2. Synaptic conditions of Robertsonian trivalents during prophase-I. SYCP3 (red) and SYCP1 (green). (A,A’) Zygotene trivalents (T1
and T2) and their schematic representation. The distal ends of the acrocentric chromosomes are synapsed with the metacentric chromosomes
(arrowheads) whereas the proximal ends are unsynapsed (arrows). Two unsynapsed proximal ends are engaged in a heterologous end-to-end
connection (asterisk). (B,B’) Early pachytene. Trivalents show co-localization of SYCP3 and SYCP1 in the synapsed regions (arrowheads) whereas
unsynapsed regions (arrows) that do not present SYCP1. One trivalent is associated with the X chromosome by a short segment of SC (red
arrowhead). The single Y chromosome appears self-synapsed. (C,C’) Complete homologous synapsis of two acrocentric chromosomes with the
metacentric chromosome. (D,D’) Heterologous synapsis between two acrocentric chromosomes involving a small chromosome region (arrowhead).
(E,E’) Partial heterologous synapsis of the acrocentric chromosomes involving a long chromosome region (arrowhead). Notice the unsynapsed
chromosomal segment in the heterologous region (arrows). (F,F’) Open trivalent. The proximal region of one acrocentric and the interstitial region of
the metacentric chromosome do not present SYCP1, while the other acrocentric chromosome presents SYCP1 in its unsynapsed segment. (G,G’)
During diplotene, the heterologous synapsis between acrocentric chromosomes persists (arrowheads) even when desynapsis begins in the trivalent.
doi:10.1371/journal.pgen.1000625.g002
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cytes progressed to late pachytene (Figure 4E). During diplotene,

ATR remained visible on the surrounding chromatin of the sex

chromosomes and of the open trivalents (Figure 4F); its signal

progressively faded and completely disappeared by the late

diplotene stage.

In view of these results, we next analyzed the pattern of

appearance and localization of three other MSUC/MSCI-related

proteins: 1) monoubiquitinated H2A histone (ubiH2A) (Figure 5),

known to be associated with transcriptional silencing of un-

synapsed autosomes and sex chromosomes in mouse male meiosis

[18]; 2) SUMO-1 (Figure 6), which is involved in SC assembly as

Figure 3. Localization of cH2AX (red) and SYCP3 (green) during
prophase-I. cH2AX signal has been under-exposed to show its
localization in unsynapsed regions. Inserts represent cH2AX labeling of
selected bivalents and trivalents at a normal bright level. (A) Leptotene.
cH2AX is distributed throughout the whole chromatin. (B) Zygotene.
cH2AX is present in the X chromosome (X) and regions that are still
unsynapsed (arrows), but fades in synapsed regions (arrowhead) of
bivalents (b) and trivalents and is undetectable in the Y chromosome (Y).
(C,D) Early Pachytene. cH2AX occupies a wide area in the chromatin
surrounding the unsynapsed AEs of X, Y and autosomes (white arrows),
but also localizes in the chromatin close to the SC in synapsed regions in
both bivalents and trivalents. Some unsynapsed regions of trivalents do
not present cH2AX signal (red arrows). Arrowheads marks ectopic synapsis
between trivalents and between a trivalent and the X chromosome. Sex
chromosomes lie apart from each other in (C) but have synapsed in (D).
Notice that in the selected trivalent shown in (D) both acrocentrics are
unsynapsed near the proximal region, but one of them shows an intense
cH2AX labeling (white arrow) while the other lacks labeling (red arrow)
(see insert). (E) Late pachytene. cH2AX is restricted to the chromatin
surrounding the unsynapsed AEs of XY chromosomes and open trivalents
(white arrows). Ectopic association is found between one acrocentric
chromosome and the X chromosome (arrowhead). Red arrows mark the
absence of cH2AX in synapsed heterologous regions of closed trivalents.
(F) Diplotene. cH2AX labeling is present in two trivalents and the sex
chromosomes. Labeled trivalents show two different regions: The
chromatin proximal to the centromeres is labeled in both the acrocentric
and the metacentric chromosomes (red arrows) while more distal regions
are unlabelled (white arrows). In unlabelled trivalents, the proximal regions
of acrocentrics often appear associated (arrowheads).
doi:10.1371/journal.pgen.1000625.g003

Figure 4. Localization of ATR (green) and SYCP3 (red) during
prophase-I. (A) Early zygotene. ATR appears as foci localized in both
the unsynapsed AEs (arrows) and the synapsed regions (arrowheads) of
all chromosomes, excepting the Y chromosome. (B) Late zygotene. ATR
foci are restricted to the AEs of unsynapsed chromosomes (white
arrows). However, some unsynapsed AEs do not show ATR signal (red
arrows). The Y chromosome (Y) shows a single ATR dot. (b) Bivalents. (C)
Early pachytene. ATR appears as an irregular line running all along the
unsynapsed AEs of open trivalents (white arrows) and the sex
chromosomes (X, Y), although some open trivalents lack labeling (red
arrows). Closed trivalents (arrowheads) do not show ATR labeling. (D)
Mid-late pachytene. ATR localizes along the AEs of open trivalents
(white arrows) and the sex chromosomes (X, Y) and becomes detectable
in the surrounding chromatin. A trivalent shows a short unsynapsed AE
without ATR signal (red arrow). (E) Late pachytene. ATR is detected
along the unsynapsed AEs of trivalents and the sex chromosomes (X, Y)
and is intensely distributed in the surrounding chromatin (arrows). (F)
Early diplotene. Autosomes begin desynapsis. ATR localizes along the
AEs and the surrounding chromatin of two trivalents (arrows) and the
sex chromosomes (X, Y). One of the trivalents is ectopically associated
with X chromosome (arrowhead). Newly desynapsed autosomes lack
ATR labeling (red arrows).
doi:10.1371/journal.pgen.1000625.g004
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well as in the formation of the sex body [30,66–68], and 3) XMR

(Figure 7), a member of the XLR gene superfamily [69], known to

localize in the sex body [27].

We found that during zygotene (Figure 5A) and early pachytene

(Figure 5B), ubiH2A appeared as a faint signal on the chromosome

ends on both synapsed and unsynapsed LEs, as previously

observed [18]. On the contrary, at mid-pachytene, an intense

labeling appeared on the chromatin of unsynapsed segments of

trivalents and of the sex chromosomes (Figure 5C), persisting until

mid diplotene (Figure 5D), when it started to disappear.

SUMO-1 was not detected during zygotene (data not shown)

and very early pachytene spermatocytes (Figure 6A). It appeared

on the unsynapsed chromatin of sex chromosomes and trivalents

during a temporal window between the early to mid-pachytene

transition (Figure 6B–6D), indicating that its appearance was

delayed compared to mice with standard karyotype [30,70], and it

remained detectable until the end of diplotene.

XMR started to accumulate on the unsynapsed chromatin of

trivalents and of the sex chromosomes at early to mid-pachytene

transition and it disappeared at late diplotene (Figure 7).

Interestingly, the intensity of the XMR signal seemed to be lower

on the unsynapsed chromatin of the trivalents that were far from

the sex chromosomes compared to that on the unsynapsed

chromatin of the trivalents that were close to the sex body. These

results suggest that the location of XMR in the open trivalents

Figure 5. Localization of ubiH2A (red) and SYPC3 (green)
during prophase-I. (A) Zygotene. UbiH2A is mostly absent, excepting
for a weakly labeling localized along some synapsed LEs (red arrows)
and unsynapsed AEs (white arrows). This labeling is only occasionally
detected. Right insert represents the ubiH2A signal on the squared area.
(B) Early pachytene. UbiH2A is absent although it may occasionally
localize along the unsynapsed AEs of the autosomes (white arrows), the
sex chromosomes (X, Y), and the synapsed LEs (red arrows). (C) Mid
pachytene. UbiH2A intensely labels the chromatin of sex chromosomes
(X, Y) and the chromatin surrounding unsynapsed AEs of trivalents
(arrows) and is absent in the synapsed chromatin. (D) Diplotene.
UbiH2A persists in the chromatin surrounding unsynapsed chromo-
somes (arrows) and the sex chromosomes (X, Y) whereas it is absent in
the chromatin around desynapsed segments of homologous chromo-
somes.
doi:10.1371/journal.pgen.1000625.g005

Figure 6. Localization of SUMO-1 (red) and SYCP3 (green)
during prophase-I. (A) Early pachytene. SUMO-1 is not detected in
both the chromatin of unsynapsed trivalents (arrows) and the XY body.
(b) Bivalents. (B) Mid pachytene. SUMO-1 is only present in the
chromatin of unsynapsed trivalents (white arrows) and the sex
chromosomes (X, Y). (C) Early and (D) late diplotene. SUMO-1 persists
in the unsynapsed chromatin (white arrows) and it is not present in the
separated segments of homologous chromosomes (red arrows).
doi:10.1371/journal.pgen.1000625.g006

Figure 7. Localization of XMR (red) and SYCP3 (green) during
prophase-I. (A) Early pachytene. XMR is not detected in both the
chromatin of unsynapsed trivalents (arrows) and the XY body. (b)
Bivalents. (B) Mid pachytene. XMR is present in the chromatin sex
chromosomes (X, Y), while faint labeling is also detected in the
unsynapsed regions of open trivalents (arrows). XMR labeling in the
trivalents associated to the sex body is more intense than in those that
are not associated. (C) Early diplotene. XMR persists in the unsynapsed
chromatin of the trivalents (arrows) and the sex chromosomes and is
not present in the segments that start desynapsis (arrowhead). Notice
that a fully synapsed acrocentric in an open trivalent can elude the
deposit of XMR (yellow arrow). (D) Late diplotene. XMR tends to
disappear and is almost undetectable at the end of diplotene.
doi:10.1371/journal.pgen.1000625.g007
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could be influenced by their association with the sex chromo-

somes.

In summary, our results show that the proteins cH2AX and

ATR started to appear at the beginning of prophase I (leptotene),

but intense labeling of ubiH2A, SUMO-1 and XMR was detected

at a later stage (early to mid-pachytene). The appearance of

ubiH2A and SUMO-1, which are known to be involved in DNA

repair [71,72] slightly preceded the spread of ATR from the

chromosome axes to the unpaired chromatin (see Figure S3 for a

comparison between the timing of the appearance of SUMO-1

and ATR on unsynapsed chromatin). Therefore, ATR was the last

protein to appear on the unsynapsed chromatin at mid-pachytene

(Figure 8). All these proteins remained localized on the unsynapsed

regions of trivalents and of the sex chromosomes until late

diplotene, indicating an active repair of DNA on the unsynapsed

chromatin of trivalents. Also, at mid-pachytene, ubiH2A and

SUMO-1 might be involved in determining those chromatin

modifications that would lead to the transcriptional inactivation of

unsynapsed chromatin [72,73].

Spermatocytes with open trivalents predominate during
the first meiotic prophase
The presence of trivalents with unsynapsed proximal regions

throughout the first meiotic prophase raises the question of how

many of these trivalents achieve a complete synapsis. To this end,

we analyzed the number of completely synapsed (closed) and

partially unsynapsed (open) trivalents during early, mid- and late

pachytene and during early and mid-late diplotene (Table 1) in

two individuals. No statistical differences were found between

them. At the beginning of pachytene, only 2.22% of spermatocytes

had completed synapsis in all trivalents, whereas most spermato-

cytes showed one to eight open trivalents, with spermatocytes

having four open trivalents occurring at the highest frequency

(27.41%). During prophase progression, the frequency of sper-

matocytes with a high number of open trivalents tended to

decrease, even though, at late pachytene, the great majority

(87.55%) of spermatocytes possessed open trivalents (Table 1). At

diplotene, the frequency of spermatocytes with closed trivalents or

with one open trivalent (recognized by the presence of cH2AX)

increased slightly (18.36% and 51.20%, respectively), although not

significantly when compared to that of late pachytene. On the

contrary, the frequency of spermatocytes with two, three and four

open trivalents slightly decreased (Table 1). These data show that

most spermatocytes maintained partially unsynapsed trivalents

throughout pachytene, although their number decreased towards

the end of pachytene along with an increase of spermatocytes with

completely synapsed trivalents.

Spermatocyte elimination preferentially occurs at the
metaphase, not at the pachytene stage
To estimate germ cell death, we made a quantitative evaluation

of the TUNEL-positive cells present in seminiferous tubule cross-

sections. Confirming previous results [39,49], TUNEL positive cells

were almost exclusively present in the meiotic compartment of stage

XII of the seminiferous epithelium, which contains spermatocytes at

the zygotene-pachytene transition, metaphase I and II. An average

Figure 8. Dynamic recruitment of MSUC proteins in unsynapsed chromatin of Robertsonian trivalents. cH2AX appears at zygotene
distributed in the whole chromatin while ATR appears as discrete foci scattered along the AEs/LEs as revealed by SYCP3 protein. At the beginning of
pachytene, cH2AX becomes restricted to the chromatin surrounding unsynapsed AEs. Accumulation of SUMO 1, monoubiquitinated H2A, and XMR
on unsynapsed chromatin occurs through the early pachytene stage, before the accumulation of ATR in the unsynapsed chromatin at mid-
pachytene. These proteins remain associated to the unsynapsed chromatin until late diplotene, indicating that spermatocytes with unsynapsed
trivalents skip pachytene arrest and progress further into later stages of meiosis. Newly desynapsed chromosomal regions at diplotene do not
incorporate any of the MSUC-related proteins.
doi:10.1371/journal.pgen.1000625.g008
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of 19.44% (64.37) of spermatocytes were TUNEL-positive, most of

which were at the metaphase stage (Figure 9). When we specifically

evaluated metaphase cells at stage XII, we found that 63% of them

were TUNEL positive, as shown in an our previous study [39]. This

suggests that 37% of metaphase cells are able to pass the spindle

checkpoint and progress to further stages of differentiation. In this

regard, we previously reported a mean ratio between round

spermatids and pachytene spermatocytes of 1.43, corresponding to

36% of germ cell survival following meiosis in the same type of Rb

heterozygous mice, although in the homozygous parentals germ cell

survival is 84% and 86% for 2n= 40 and 2n=24 karyotypes,

respectively [40,43]. Moreover, the absence of extensive cell death

in other stages of the spermatogenetic cycle suggests that pachytene

and diplotene spermatocytes are able to progress to meiotic divisions

despite the presence of unsynapsed trivalents.

Discussion

The aim of this study was to evaluate the involvement of MSUC

during the meiotic progression of spermatocytes of Rb heterozy-

gous mice. The data presented here show that the mechanisms

that regulate MSUC are active during meiosis in mice heterozy-

gous for multiple simple Rb translocations. We report that most

pachytene spermatocytes bear trivalents with unsynapsed regions

that incorporate, in a stage-dependent manner, proteins involved

in MSUC. Our results demonstrate that although many

chromosomal regions remain unsynapsed, massive cell death is

not detected at pachytene. On the contrary, spermatocytes bearing

unsynapsed chromosomes subject to MSUC progress into

diplotene.

Synapsis and recombination progression
It has been repeatedly reported that synapsis is delayed in

heterozygotes for Rb translocations [44,45,47,51–54,57] and other

chromosomal rearrangements [46,74,75]. The results presented

here are in agreement with these previous reports. During

zygotene, while synapsis progresses rapidly in the bivalents, in

the trivalents it is initiated at the distal ends and then slowly

progresses to the proximal ends of the acrocentrics. Previous

reports have suggested that a delay in synapsis might be influenced

by architectural constraints [43,52,58,76]. In fact, the centromeres

and proximal telomeres of acrocentric chromosomes are located at

the nuclear periphery, while centromeres of metacentric chromo-

somes are located more internally in the nucleus (unpublished

observations). This distinct localization of centromeres is defined

by the different trajectory of the metacentric chromosomes’ AEs

within the nuclear space compared to that of acrocentrics’ AEs

[76,77]. As synapsis of trivalents progresses from their distal

telomeres, metacentric centromeres tend to approach to the

nuclear envelope, where acrocentric centromeres and proximal

telomeres are bound. These circumstances would explain why at

the beginning of pachytene, while bivalents and sex chromosomes

have achieved their respective synapsis, trivalents still appear with

an open configuration. The presence of many unsynapsed

proximal regions in acrocentric chromosomes located at the

nuclear periphery would promote their association, causing the

appearance of an ectopic heterologous synapsis between them or

with the sex chromosomes at early pachytene. Most of these

associations tend to disappear as trivalents complete their synapsis

during mid and late pachytene. In agreement with previous

reports [45,52], our results show a decrease in the number of open

trivalents throughout pachytene. These results suggest that

trivalents can complete synapsis during the mid and late pachytene

stages, as previously reported by Moses and coworkers [52].

However, contrary to the results found in lemur Rb heterozygotes

[52], in which all trivalents finally achieve complete synapsis, in

mouse there is a striking persistence of trivalents in open

configuration throughout pachytene and at later stages [45].

Compared to autosomal bivalents, we found that trivalents

retain RAD51 until later stages; however, RAD51 foci are not

specifically enriched in the unsynapsed segments of the trivalents,

a finding that differs from previous studies that have reported the

maintenance of this protein on asynaptic autosomal segments

[78,79]. RAD51 finally disappears from the trivalents during mid-

pachytene, despite the presence of unsynapsed segments. This

circumstance has two interesting implications. First, our results

confirm previous data that cells can accomplish prophase-I with

unsynapsed autosomes [1,33,36,64,80,81]. Since completion of the

recombination/repair process is considered necessary to bypass

the pachytene checkpoint [2,4,5,82] it is likely that unsynapsed

segments are repaired by the end of pachytene. This behavior

parallels the situation found in the sex chromosomes. Second,

some trivalents probably complete synapsis after RAD51 has

disappeared, indicating the existence of a mechanism that is able

Figure 9. Cross-section of a stage XII tubule of the cycle of the
seminiferous epithelium showing germ cell death of meiocytes
in Robertsonian heterozygous mice. (A) Metaphases are the most
frequent cell type positive to the TUNEL assay (arrows). Notice the
absence of apoptotic cells in the surrounding tubules that are at
different stages of seminiferous epithelium, and contain abundant
pachytene spermatocytes (arrowheads). (B) Periodic-acid-Schiff (PAS)
reaction and haematoxylin counterstaining of the same tubule cross-
section.
doi:10.1371/journal.pgen.1000625.g009
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to complete synapsis independently of the usual recombination/

repair pathway [83]. Interestingly, many of these late synapsis

events culminate with the heterologous synapsis of acrocentric

chromosomes within each trivalent. This process, called synaptic

adjustment, has been previously reported for these and other

chromosomal rearrangements [44,45,52,78,84]. An additional

consequence of both the persistence of unsynapsed and the

presence of non-homologous synapsed chromosome regions is the

reduction of chromosome segments where reciprocal homologous

recombination could take place. This could account, at least

partially, for the displacement of chiasma from the centromeric

regions and the overall decrease of recombination frequency

observed in Rb heterozygotes [57,85].

Dynamics of chromatin modifications involved in MSUC
The results presented here show that the unsynapsed regions of

trivalents incorporate many of the proteins related to MSUC, such

as cH2AX, ATR and ubiH2A [17,18] and some markers that

have been previously reported only in association with MSCI, such

as SUMO-1 and XMR [27,30], supporting the idea that MSCI

could be a particular case of MSUC [17,18].

Our study on Rb heterozygotes reveals further interesting

features of the MSUC process. We found that during early

pachytene, some unsynapsed regions do not exhibit either cH2AX

or ATR signals. This labeling is especially striking in those

trivalents in which one of the open acrocentrics incorporates these

markers while the other does not (see Figure 3D). This absence of

either cH2AX or ATR signals might be due to a limited

availability in the meiocytes of factors triggering MSUC and

MSCI, like BRCA1 and ATR, as recently suggested [33,36].

However, alternative explanations could be formulated taking into

account that: 1), unlabeled unsynased chromosome segments are

found in cells with either a high or a low number of open

trivalents; 2), we never observed MSCI to be hampered in the sex

chromosomes. Since the absence of either cH2AX or ATR

labeling on some unsynapsed regions is mainly found at early

pachytene, we favor the interpretation that unlabeled chromatin

could represent chromosomal regions that are about to synapse

and/or are asynaptic but MSUC is not initiated yet. In our model,

asynapsis could not be extensive enough to exhaust MSUC/MSCI

triggering factors; asynapsis in each trivalent affects just a short

chromosome length, thus the total amount of unsynapsed

chromatin in Rb heterozygous mice is lower than in other mouse

models [33,36]. However, given the physiological interdependence

of spermatocytes in the seminiferous epithelium provided by the

presence of intercellular bridges [86–88], it is also likely that

cytoplasmic flux could compensate the mRNA/protein levels of

MSUC components among different cells, buffering the effect of

extensive asynapsis in some spermatocytes. These facts could

determine the success of spermatocytes to have a normal MSUC/

MSCI performance during the first prophase and will serve to

avoid stage IV pachytene apoptosis.

Our study also adds new clues to the understanding of the

sequence of initiation and spreading of chromatin modifications

involved in MSUC. H2AX phosphorylation detected at late

zygotene was the first modification found in unsynapsed

chromatin. This was followed by the accumulation of ubiH2A,

SUMO-1, XMR and finally ATR on these regions during the

early-mid pachytene transition. Thus, we suggest that the

modifications of the chromatin involved in MSUC occur in at

least two phases (Figure 8). The first phase initiates with the

phosphorylation of H2AX, resulting in chromatin silencing at

leptotene/zygotene. The second phase starts at early-mid

pachytene with a second round of chromatin modifications,

probably driven by the persistence of ATR at unsynapsed AEs,

and it involves the incorporation of ubiH2A, SUMO-1, XMR,

and finally ATR into unsynapsed chromatin. Whether it also

involves other histone replacements and/or modifications, such as

histone H3.1 and H3.2 replacement by H3.3 and H3, and H4

methylation [26], or the incorporation of other specific proteins or

RNAs, remains to be determined.

Our analysis of the temporal appearance and localization of the

proteins involved in MSUC has shown that ATR starts to spread

over the chromatin of unsynapsed trivalents only at mid-

pachytene, after the massive accumulation of cH2AX, while

ubiH2A, SUMO-1, and XMR accumulate throughout early

pachytene. Previous studies have suggested that ATR is involved

in phosphorylating H2AX on the surrounding chromatin at late

zygotene [17,21] and that XMR and SUMO-1 accumulate on the

sex body during early pachytene [27,30,70]. Although the pattern

of appearance of some of these proteins is not completely

established and discrepancies have been reported by different

authors [17,21,30,70,89,90], the comparison of these studies with

our results suggests that: 1) the incorporation of many MSUC-

related factors is delayed in Rb heterozygotes compared to

homozygotes; and 2) our cytological approach, and previous

studies [89,91], are not completely congruent with the role of ATR

in phosphorylating H2AX at late zygotene. Since we cannot rule

out that undetectable amounts of ATR are present in the

unsynapsed chromatin at late zygotene, other methodological

approaches would be necessary to confirm this issue.

Finally, our results indicate that in mouse MSUC is triggered

during zygotene-early pachytene and that desynapsing LEs at

diplotene do not incorporate MSUC markers, even if they are

adjacent to regions that have remained unsynapsed during

pachytene. This differs from the recently reported dynamics of

sex chromosome inactivation in chicken females, in which two

waves of H2AX phosphorylation, one at zygotene and other one

at late pachytene, have been detected [92]. These differences in

MSUC dynamics open interesting questions in an evolutionary

context.

Spermatocytes with unsynapsed trivalents avoid
pachytene arrest
Meiotic failure has been postulated as one of the main causes of

infertility in organisms bearing chromosomal rearrangements.

Several models have been proposed to explain this phenomenon,

including the alteration of transcriptional activity of autosomes

and sex chromosomes [1,17,34,93–95], the impairment of synapsis

and recombination progression [8,42,45,75,82,96], the alteration

of nuclear architecture during prophase-I [43], and the incorrect

orientation and segregation of chromosomes during meiotic

divisions [39,49,50].

Current models postulate the existence of a pachytene

checkpoint that monitors synapsis and/or recombination progres-

sion [2,4,5]. Pachytene arrest resulting from asynapsis has been

proposed to occur as a consequence of MSUC through the

inactivation of genes that are crucial to meiotic progression [17].

Additionally, it has been suggested that sequestration MSUC-

related proteins like BRCA1 and ATR resulting from an excess of

asynaptic chromosomes might prevent their relocation to the sex

chromosomes, hampering MSCI initiation in males [1,33] and an

extensive MSUC response in females [36]. The subsequent

inability to inactivate the sex chromosomes has been proposed

as a primary cause of spermatocyte apoptosis in a variety of mouse

models [1,33]. The presence of many open trivalents in our model

does not result in sequestration of repair factors such as ATR on

unsynapsed autosomal regions, allowing the correct progression of

MSUC in Robertsonian Heterozygous Mice
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MSCI. These results indicate that in our model asynapsis per se

could not be sufficient to trigger pachytene arrest. This agrees with

recent reports on human [64,80,81] and mouse meiosis [1,33,36]

indicating that cells can ‘‘tolerate’’ a limited degree of asynapsis.

Therefore, it seems likely that there is not an stringent synapsis-

specific checkpoint acting during pachytene in mouse and that

MSUC involvement in triggering a checkpoint during prophase-I

through MSCI hampering could be limited to extreme asynaptic

situations.

Nevertheless, we consider important to stress that the

impairment of the meiotic progression of spermatocytes with

synaptic defects could still rely on the deregulation of gene

expression caused by MSUC. In this sense, MSUC effects would

greatly depend on the number and/or nature of genes that are

transcriptionally inactivated [17]. In Rb heterozygotes, the

unsynapsed segments comprise the pericentromeric heterochro-

matin-rich regions and euchromatic regions meager in genes, most

of which might not be critical for meiosis progression and

subsequent spermiogenesis. However, while MSUC has little effect

in determining pachytene arrest in this model, it is likely that the

effect could be much more relevant in other models.

Spermatocyte death is mainly observed during meiotic
divisions
We found that in Rb heterozygotes meiotic failure occurs

mainly during meiotic divisions, as we recorded a high proportion

of apoptotic cells at stage XII of the seminiferous epithelium and

very few TUNEL-positive pachytene spermatocytes. We are aware

that apoptotic pachytene cells are very rapidly removed and

difficult to document by TUNEL [50]. On the other hand,

metaphase apoptotic cells may be difficult to eliminate from the

seminiferous epithelium, causing and overestimation of cell dead

at these stages [47]. However, our result are in agreement with

previous reports showing that in Rb heterozygotes bearing

trivalents or complex rings cell death is mainly found during

meiotic divisions [47–49] while cell death mainly occurs during

prophase-I in Rb heterozygotes bearing chromosome chains

[41,46–48]. Furthermore, the absence of massive cell death at

the pachytene stage is also supported by our previous studies

[39,40], which showed only a slight reduction of the number of

this type of spermatocytes from stage I to XI of the cycle of the

seminiferous epithelium. This could account for the elimination of

those spermatocytes with a high number of open trivalents,

whereas those that have one to four open trivalents might be able

to bypass pachytene arrest and proceed to further stages.

Therefore, meiotic failure in our Rb heterozygotes seems to rely

mainly on the action of checkpoints during metaphase I and II

[39,40,45,49]. Trivalents may have difficulties in achieving a

correct orientation on the meiotic spindle, determining a delay of

anaphase initiation that would lead to cell degeneration [7,49,97]

and subsequent reduction of fertility.

Evolutionary perspectives
Paradoxically, despite the reduced fertility of heterozygous

mice, Rb translocations are very frequent in wild populations

[41,98], spread rapidly [99,100] and represent one of the main

causes of karyotype evolution in mammals [101]. We propose that

the circumvention of pachytene arrest even in the presence of

chromosome regions subjected to MSUC, as demonstrated in the

present study, could contribute to increasing the chances of many

spermatocytes to reach meiotic divisions and to differentiate into

viable sperm. Although substantial cell death is produced at the

metaphase stage (up to 63%), the chances of producing viable

gametes are still much higher than if a more stringent pachytene

checkpoint were able to eliminate up to 87% (Table 1) of

pachytene spermatocytes bearing unsynapsed chromosomes.

In an evolutionary context, it must be stressed that when a

chromosomal rearrangement arises in a natural population, the

rearranged chromosomes must still pair, synapse, recombine and

segregate from their cognate homologues. Therefore, the possibil-

ity that a chromosomal rearrangement will spread into a

population would greatly depend on the meiotic defects it may

cause in the heterozygotes. Thus, while Rb rearrangements may

have a relatively mild effect on mouse pachytene progression, for

other chromosomal rearrangements and organisms, this model

cannot be applied [102].

Materials and Methods

Mice
Heterozygous Robertsonian mice (2n= 32, eight Robertsonian

chromosomes in a heterozygous state) were generated by mating

females of the laboratory strain CD1 (2n= 40, all acrocentric

chromosomes) and males of the Milano II race (2n = 24, eight

pairs of Robertsonian metacentrics in a homozygous state, Rb

(2.12), Rb (3.4), Rb (5.15), Rb (6.7), Rb (8.11), Rb (9.14), Rb

(10.13), Rb (16.17). Six three-month old male mice were analyzed.

Mice were maintained at 22uC with a light/dark cycle of 12/

12 hours and fed ad libitum. Procedures involving the use of the

mice were approved by the animal ethics committees of the

Faculty of Medicine, University of Chile, and the University of

Pavia (Italy).

Immunofluorescence
Spermatocyte spreads and squashes were obtained following the

procedures described by Peters et al. [103] and Page et al. [104].

The slides were placed in PBS and incubated with the following

primary antibodies: mouse anti-SYCP3 1:100 (Abcam, Ab12452);

rabbit anti-SYCP3 1:100 (Abcam, Ab15093); rabbit anti-SYCP1

1:100 (Abcam, Ab15087); rabbit anti RAD51 1:50 (Calbiochem,

PC130); mouse anti-phospho-histone H2AX (Ser139) 1:1000,

clone JBW301 (Upstate, 05–636); goat anti ATR 1:80 (Santa Cruz

Biotechnology, sc-1887); mouse anti ubiquityl-histone H2A 1:15,

clone E6C5 (Upstate, 05–678); mouse anti GMP-1 (SUMO-1)

1:50 (Zymed, 33–2400); mouse RIK2D3 1:100 that recognizes the

XMR protein in the testis [27], kindly provided by Denise Escalier

(Université Paris 5, Paris, France). After rinsing in PBS, the slides

were incubated with appropriate secondary antibodies diluted

1:100 in PBS: FITC-conjugated donkey anti-rabbit IgG, FITC-

conjugated donkey anti-mouse IgG, TR-conjugated donkey anti-

mouse IgG and FITC-conjugated donkey anti-goat IgG. Slides

where then stained with 1 mg/ml DAPI. After a final rinse in PBS,

the slides were mounted with Vectashield. Observations were

made in a Nikon (Tokyo, Japan) Optiphot or an Olympus BX61

microscope equipped with epifluorescence optics and the images

were photographed on DS camera control unit DS-L1 Nikon or

captured with an Olympus DP70 digital camera. All images were

processed with Adobe Photoshop CS software.

Three-dimensional reconstruction of squashed
spermatocytes
Immunolabeled spermatocytes were observed in an Olympus

BX61 microscope equipped with a motorized Z-axis, epifluores-

cence and an Olympus DP70 digital camera. A collection of

optical sections were captured using the analiSYS software (Soft

Imaging System, Olympus). Images were subsequently analyzed

and processed using the public domain software ImageJ (National

Institutes of Health, United States; http://rsb.info.nih.gov/ij), and
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the output video files were edited with VirtualDub (VirtualDub,

http://www.virtualdub.com).

Histology and TUNEL assay
The right testis of three mice were fixed in Bouin’s fluid and

embedded in paraffin wax. Five-micrometer serial transverse

cross-sections were made and at least four serial sections per testis

were mounted on each glass slide. One slide was stained by the

periodic-acid-Schiff (PAS) reaction and counterstained with

haematoxylin to identify the stages of seminiferous epithelium

according to Oakberg [105]; the other slide was processed with the

terminal deoxynucleotidyl transferase-mediated dUTP nick end-

labelling (TUNEL) method, using an ApopTag Plus Peroxidase In

Situ Apoptosis Kit (Chemicon-Millipore, Billerica, USA), accord-

ing to the manufacturer’s instructions. Positive and negative

controls were also set up. The positive controls were established

using the slides contained in the same kit and following the

manufacturer’s instructions. For the negative controls, sections

were processed without TdT enzyme in the labelling reaction mix.

The sections were counterstained with 0.5% (w/v) methyl green

for 10 min at room temperature. For each animal testis, 100 cross-

sectioned tubules were scored to evaluate the frequency of

apoptotic tubules. A cross-section of a tubule was considered

apoptotic when three or more TUNEL-positive spermatocytes

were present within the seminiferous epithelium [39,49]. The

percentage of TUNEL positive cells was calculated taking into

account the total number of spermatocytes per tubule section.

Abercrombie’s correction was applied to all cell counts [106].

Quantitative and statistical analysis
We analyzed 724 and 415 spermatocytes from two three month-

old heterozygous Robertsonian mice. The synapsed condition of

heterologous region of Robertsonian trivalents was determined by

morphological analysis identifying chromosomes with SYCP3 and

the presence or absence of cH2AX positive signal in the

chromatin. The data obtained from each mouse in each prophase

I stage were summarized. Statistical significance between mice was

assessed by the one way analysis of variance (ANOVA), followed

by Tuckey post test. A Z test for two proportions was used to

compare the number of spermatocytes between late pachytene,

early diplotene and middle/late diplotene. In both statistical

analyses a p value,0.05 was considered statistically significant

with a confidence interval of 95%.

Supporting Information

Figure S1 Localization of SYCP3 (green) and cH2AX (red) in an

early pachytene spermatocyte. cH2AX labeling covers the chromatin

of the unsynapsed trivalent regions, as well as the entire X

chromosome, which is associated with two trivalents, one at the

proximal end (arrow) and another at the distal end, where the

pseudoautosomal region (PAR) is located. The Y chromosome, which

appears self-synapsed, also presents an intense cH2AX labeling. An

autosome presumably presents a break that appears labeled by

cH2AX (arrowhead). The inset on the top left represents the putative

synaptic relationships between the X chromosome and the trilavents,

the self-synapsis of the Y chromosome and the extension of cH2AX

labeling (in blue). The position of the centromeres has been inferred

from DAPI staining of the chromatin (not shown).

Found at: doi:10.1371/journal.pgen.1000625.s001 (1.60 MB TIF)

Figure S2 Localization of SYCP3 (blue), ATR (green), and

cH2AX (red) during prophase-I. (A–C) Early pachytene. ATR

appears as an irregular line along the unsynapsed AEs of open

trivalents (arrows) and the sex chromosomes (X, Y), although some

open trivalents lack labeling (arrowheads). Closed trivalents

(arrowheads) do not show ATR labeling. cH2AX intensely labels

the chromatin surrounding those unsynapsed AEs labeled with

ATR. (D–F) Mid pachytene. ATR localizes along the AEs of open

trivalents (arrows) and the sex chromosomes (X, Y) and becomes

detectable in the surrounding chromatin of these regions. cH2AX

labeling still comprises a wider chromatin area than that of ATR.

(G–I) Mid pachytene. ATR labeling becomes more intense on the

chromatin surrounding unsynapsed AEs (arrows), and this labeling

is almost coincident with that of cH2AX. (J–L) Late pachytene.

ATR labeling is very intense in the unsynapsed chromatin. ATR

and cH2AX labeling is completely coincident on the chromatin

surrounding unsynapsed AEs (arrows).

Found at: doi:10.1371/journal.pgen.1000625.s002 (4.93 MB TIF)

Figure S3 Localization of SYCP3 (blue), ATR (green), and

SUMO-1 (red) during prophase-I. (A–C) Early-mid pachytene.

ATR appears as an irregular line along the unsynapsed AEs of

open trivalents (arrows) and the sex chromosomes (X, Y), although

some open trivalents lack labeling (arrowheads). Closed trivalents

(arrowheads) do not show ATR labeling. SUMO-1 weakly labels

the chromatin surrounding those unsynapsed AEs labeled with

ATR. (D–F) Mid pachytene. ATR localizes along the AEs of open

trivalents (arrows) and the sex chromosomes (X, Y) and becomes

detectable in the surrounding chromatin. SUMO-1 labeling

becomes more intense, and it still comprises a wide chromatin

area than that of ATR. (G–I) Mid pachytene. ATR labeling

becomes more intense on the chromatin surrounding unsynapsed

AEs (arrows), and this labeling is coincident with that of SUMO-1.

(J–L) Late pachytene. ATR labeling is very intense in the

unsynapsed chromatin. ATR and SUMO-1 labeling is completely

coincident on the chromatin surrounding unsynapsed AEs

(arrows).

Found at: doi:10.1371/journal.pgen.1000625.s003 (3.99 MB TIF)

Video S1 Three-dimensional reconstruction of squashed sper-

matocytes at prophase-I labeled with SYCP3 (green), SYCP1 (red),

and cH2AX (blue). At leptotene cH2AX distributes in the whole

nucleus, whereas at pachytene and diplotene it accumulates on the

sex chromosomes (XY) and on open regions of trivalents (arrows),

which in turn are devoid of SYCP1 labeling.

Found at: doi:10.1371/journal.pgen.1000625.s004 (1.74 MB

MOV)

Video S2 Three-dimensional reconstruction of a squashed

pachytene spermatocyte labeled with SYCP3 (green) and cH2AX

(red). cH2AX labeling appears on the open trivalents regardless

whether they are associated (red arrows) or not (yellow arrow) to

the sex chromosomes (XY). Closed trivalents are devoid of

cH2AX labeling (white arrow). The trajectory of three trivalents

and the sex chromosomes is represented in the right panel.

Found at: doi:10.1371/journal.pgen.1000625.s005 (0.49 MB

MOV)
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