

A High Memory Bandwidth FPGA Accelerator for

Sparse Matrix-Vector Multiplication
Jeremy Fowers⃰ † Kalin Ovtcharov‡ Karin Strauss‡ Eric S. Chung‡ Greg Stitt†

†Dept. of Electrical and Computer Engineering

University of Florida
Gainesville, FL, USA

‡Microsoft Research
Redmond, WA, USA

Abstract—Sparse matrix-vector multiplication (SMVM) is a
crucial primitive used in a variety of scientific and commercial
applications. Despite having significant parallelism, SMVM is
a challenging kernel to optimize due to its irregular memory
access characteristics. Numerous studies have proposed the use
of FPGAs to accelerate SMVM implementations. However,
most prior approaches focus on parallelizing multiply-
accumulate operations within a single row of the matrix (which
limits parallelism if rows are small) and/or make inefficient
uses of the memory system when fetching matrix and vector
elements. In this paper, we introduce an FPGA-optimized
SMVM architecture and a novel sparse matrix encoding that
explicitly exposes parallelism across rows, while keeping the
hardware complexity and on-chip memory usage low. This
system compares favorably with prior FPGA SMVM
implementations. For the over 700 University of Florida sparse
matrices we evaluated, it also performs within about two thirds
of CPU SMVM performance on average, even though it has
2.4x lower DRAM memory bandwidth, and within almost one
third of GPU SVMV performance on average, even at 9x lower
memory bandwidth. Additionally, it consumes only 25W, for
power efficiencies 2.6x and 2.3x higher than CPU and GPU,
respectively, based on maximum device power.

Keywords-sparse matrix vector multiplication, FPGA,
accelerator, SPMV, SMVM, reconfigurable computing, HPC

I. INTRODUCTION

Sparse matrix-vector multiplication (SMVM) has
received significant attention due to its increasingly
important application in scientific and commercial
applications (e.g., computational fluid dynamics, computer
vision, robotics, and structural engineering, among others).
Although SMVM is a highly parallelizable algorithm, the
irregular memory access patterns of real-world sparse
matrices often restrict realizable parallelism. To address this
problem, numerous studies have introduced specialized
SMVM implementations for parallel microprocessors [19]
and graphics-processing units (GPUs) [1][2].

Field-programmable gate arrays (FPGAs) are a
compelling substrate for SMVM due to the availability of
massive parallel resources (i.e., logic gates, on-chip
memories) and a flexible interconnect to support fine-grained
communication. Prior work has shown that FPGAs can
perform similarly to GPUs [16], even with much lower peak

memory bandwidth, and can exceed GPU performance with
equivalent bandwidth [20]. Furthermore, for comparable or
better performance, FPGAs consume a very small fraction of
the GPU’s power (e.g., 25W vs. 200W), which is a critical
factor for supercomputers where energy costs can approach
millions of dollars per month [6][9]. FPGA performance and
efficiency has been typically obtained by efficiently
parallelizing multiply-accumulate operations within a single
row of the matrix [21], while also leveraging FPGA-
specialized matrix encodings [11] and accumulator
architectures [17][18]. In this paper, we introduce a novel
FPGA accelerator for SMVM that addresses two key
bottlenecks of previous approaches: 1) restrictions on
exploitable parallelism, and 2) limited on-chip block RAM.

While prior approaches have shown promising
performance, they can be difficult to scale due to limits on
exploitable parallelism. Specifically, early works on
accelerating SMVM focused mostly on exploiting
parallelism within a single matrix row. For example, for an
accelerator with 32 multipliers, if a given row of the matrix
has less than 32 unprocessed nonzero values, the remaining
multipliers will be wasted due to zero padding [21]. It is
possible to begin processing the next row instead of using
zero padding, but supporting an arbitrary number of rows
with an arbitrary number of elements increases complexity
significantly, limiting the clock rate. Ideally, an accelerator
should be capable of processing elements from multiple rows
of the matrix to maximize parallelism. Prior works implement
support for dynamic scheduling across rows but have not
demonstrated scalable performance or efficient utilization of
memory bandwidth [13]. Furthermore, most prior works
assumed Compressed Sparse Row (CSR) matrix encodings
that are cumbersome to fetch across multiple rows for parallel
processing because the matrix is encoded in a sequential,
row-major fashion. This requires an entire row to be read
from memory and buffered on-chip before the first element
of the subsequent row can be fetched.

Another bottleneck of previous SMVM approaches is the
need for replicated storage of the input vector using on-chip
FPGA block RAM. Previous approaches parallelize
multiplications by streaming matrix values from external
memory, while reading a vector value, with one vector replica
implemented in FPGA block RAM per multiplier. Although
a replicated memory architecture is well-suited for small
vectors, it becomes a bottleneck for highly parallelized
implementations using large vectors, if they are to be stored *Work performed while employed by Microsoft Research.

entirely on-chip. For example, for an FPGA board with ~10
GB/s of external memory bandwidth and a clock of 100 MHz,
an SMVM accelerator can potentially fetch 100 bytes and
execute ~25 32-bit floating-point multiplications every cycle.
For a vector of 100,000 elements, previous approaches would
require 10 MB of block RAM, which exceeds even the largest
FPGAs. Furthermore, this bottleneck is rapidly becoming
more significant due to the exponential growth of SMVM
problem sizes [3]. Even for smaller vectors, replicating the
vector limits usage of block RAM for other common
purposes (e.g., external transfer buffers, buffers between
pipelined tasks).

In this paper, we introduce a new Compressed Interleaved
Sparse Row (CISR) matrix encoding that enables
simultaneous multiply-accumulate operations on multiple
rows of the matrix without the need for complex schedulers
or load-balancers. We also introduce a Banked Vector Buffer
(BVB) that supplies vector data at high bandwidth without
requiring expensive replication of data, i.e., a single buffer
services multiple computations simultaneously.

We evaluate our accelerator using over 700 matrices from
the widely used University of Florida Sparse Matrix
Collection [3] and compare our results with other platforms.
We show that the FPGA performs within about two thirds
of CPU SMVM performance, even though it has 2.4x
lower DRAM memory bandwidth, and within almost one
third of GPU SVMV performance, even at 9x lower
memory bandwidth. Additionally, it consumes only 25W,
with power efficiencies 2.6x and 2.3x higher than the CPU
and GPU, respectively, based on maximum device power.

The remainder of this paper is organized as follows:
Section II provides an overview of the proposed architecture,
and Sections III and IV provide more details on its key
components; Section V evaluates the proposal, Section VI
discusses related work, and Section VII concludes.

II. OVERALL ARCHITECTURE

The goal of our proposed design is to accelerate sparse
matrix-vector multiplications of large matrices—millions of
elements or more—by vectors as large as tens of thousands
of elements. Our design choices are guided by two principles:
(1) to enable as much parallelism as possible while keeping
hardware complexity low, and (2) to eliminate the replication
of vector inputs, so that larger vectors can fit on chip.

A. Limitations of Compressed Sparse Row (CSR)

Matrix-vector multiplications consist of multiple dot
product operations, one for each row in the matrix. Each dot
product operation requires the addition of pair-wise
multiplications between elements of a matrix row and vector
elements. All rows in a densely represented matrix are the
same size, so the effort of parallelizing the operation across
or within dot products is roughly equivalent. However,
sparsely encoded matrices using the popular Compressed
Sparse Row (CSR) format encode only the non-zero values
of the matrix, resulting in variable-sized rows. CSR creates a
trade-off in parallelization: parallelizing within dot products
introduces the complexity of controlling variably-sized
addition reduction operations. Conversely, parallelizing

across dot products requires either a potentially large amount
of buffering to store entire rows, or that multiple memory
fetching points are managed and coordinated, which also
introduces complexity.

B. Proposed Architecture and CISR Encoding

The proposed architecture avoids this trade-off by
introducing a specialized sparse matrix encoding that
explicitly exposes parallelization across rows, which
eliminates the need for additional buffering or convoluted
memory access and arbitration mechanisms.

Figure 1 illustrates the proposed architecture running on
a single FPGA connected to two dedicated DRAM chips
delivering up to 21.3GB/s of aggregate bandwidth. The
design maximizes bandwidth utilization by organizing the
data coming from memory into parallel channels, where all
elements in a matrix row are processed by the same channel.
When a channel exhausts a row, it fetches a new row, which
is typically already pre-fetched from memory.

Each channel requests the vector elements corresponding
to the newly fetched matrix elements. These vector requests
are steered to the Banked Vector Buffer (BVB), a multi-
ported, high bandwidth structure used to store and supply
vector elements. Vector elements returned by the BVB are
paired with their matrix counterparts at their channel FIFOs.
Finally, a multiplier pulls each pair out of their respective
FIFOs, multiplies them and feeds the results into a fused
accumulator, which is responsible for performing additions
for a group of channels. Each fused accumulator is fully
pipelined and takes turns processing the multiplier outputs of
each channel in its group, performing several additions for a
channel at once. When the dot product of a row completes,
the accumulator places the result in the output buffer.

The first step in obtaining a highly parallelized design
with low hardware complexity is to minimize communication
and dependencies between channels. Figure 1 shows that
there is no communication across channels. A factor that may
limit parallelism is how data are retrieved from memory. This
is the inspiration for the newly proposed Condensed
Interleaved Sparse Representation, or CISR encoding.

The principle in CISR encoding is to divide the total bit
width received from memory in a single cycle into slots, each
corresponding to a channel. Data to be used by a channel
should only be placed in its corresponding slot. This results
in a directly connected design where no crossbar is required
to route data from the DRAM interface into their respective
channels. In other words, when data is brought from memory,
each data slot lines up with a corresponding channel. This
greatly simplifies the design.

The CISR encoding, like the CSR encoding, consists of
three arrays, where the first encodes non-zero values, the
second encodes their corresponding columns, and the third
encodes information about where rows start and end. Unlike
CSR, which encodes values in row-major order, CISR
encodes the first and second arrays in a modified column-
major order. The third array in CISR stores the length of each
row, which breaks data dependencies between rows and
simplifies parallelization. Section III explains the CISR
encoding in detail.

C. De-replicating Vectors and Dynamic Fetch

Conventional strategies for sustaining high vector access
bandwidth often involve replicating input vectors across
multiple sets of block RAMs. Although this strategy is simple
to implement, it is difficult to scale due to limited on-chip
FPGA storage. An important goal of our proposed design is
to avoid the overhead and redundancy of replicated vector
buffers while achieving high throughput. To meet this goal,
the Banked Vector Buffer (BVB) implements a shared pool
of on-chip memories connected to a highly optimized
crossbar switch that services up to 32 requests every clock
cycle. Section IV provides more detail on the BVB design.

III. CISR FORMAT, ENCODING AND DECODING

This section compares the CISR and CSR encodings and
explains why CISR leads to simpler parallel designs.

A. CSR Encoding

The CSR encoding uses three arrays to represent a sparse
matrix. Figure 2a shows an original densely-represented
sparse matrix. Letters indicate non-zero values; blanks
indicate zero values. Figure 2b shows its corresponding CSR
encoding. The first array (values) lists all non-zero elements
in row-major order (i.e., A, B, then C, and so on). The second
array (indices) lists the column index of each non-zero
element and thus also follows row-major order. The ith
element in the third array (row pointers) contains pointers to
the position in the first array where the ith row begins. If the
ith element in the third array contains the same pointer as the
(i+1)th element, then the ith row contains no non-zero

elements. The last element in the third array represents the
number of elements in each of the first and second arrays.

It is possible, but complex, to parallelize multiplications
across rows with CSR. First, enough buffer space must be
provided to store a memory line’s worth of non-zero values
and column indices. Alternatively, multiple DRAM read
streams must be managed and distributed across multiple
buffers. Finally, inter-row parallelization requires sequential
decoding steps to determine the boundaries between rows.

B. CISR Encoding

CISR encoding stores rows in a format that enables more
straightforward parallelization and hardware design. One can
think of CISR as a static scheduling of rows to channels using
channel slots (referred to simply as slots), which are
illustrated in the bottom row of Figure 2c. Figure 2c makes
use of a hypothetical memory width of four elements, which
results in enough per-cycle bandwidth to feed 4 channels.
Therefore, four slots (numbered 1 to 4) are used to statically
schedule the input to each channel. The first step for encoding
a matrix into a 4-slot CISR format is to allocate each of the
first four rows to one of the slots. Next, the first element in
each of these rows is placed in its respective slot (A, C, D, F),
then the second element, and so on. The corresponding
column indices are placed in the same order in the indices
array. Once one of the rows runs out of elements, a new row
is assigned to that slot. For example, row 1 contains only one
element (C), so on the second round of allocations, row 4 is
assigned to slot 1, and I is placed in this slot of the values
array, right next to B (second element in row currently
allocated to slot 1). The process repeats until it exhausts the
rows in the original matrix and all row elements have been

Figure 1. Overview of hardware blocks in proposed design. Data flows from left to right.

placed in the sparse encoding. At the end of this process,
certain slots will be empty while other slots will still have row
elements to be assigned. Special-symbol padding (e.g., zero
padding, not shown) is used to fill completed slots such that
all slots have the same number of values. The number of
elements in each row is placed in its corresponding slot in the
row length array as rows are completely placed in the values
and indices arrays. Note that this effectively reorders row
element counts so that the counts are placed in the same slots
as their non-zero elements and indices counterparts. For
example, element 4 in the row length array corresponds to
row number 5, the second row to be allocated in slot 1.

This static row scheduling is beneficial because it shifts
the complexity of assigning rows to hardware resources from
hardware to software, which is much more flexible. Given the
simplicity of the CISR encoding format, we do not expect a
significant increase in the encoding time relative to CSR. On
the hardware side, static scheduling allows elements, indices
and row lengths of different rows to be directly passed to the
hardware resources responsible for processing them, thanks
to the direct correlation of memory slots to hardware
channels. This obviates the need to implement dynamic row
scheduling in hardware and to provide a full, difficult to
manage and area-intensive crossbar between the memory
buffer segments and hardware resources.

C. CISR Decoding

The CISR encoding process was designed to statically
perform as much of the work of preparing the matrix for
processing as possible, so the CISR decoding process can be
very simple. Matrix values and column indices are forwarded
directly from slots to the channels processing them. The only
on-chip decoding required is transforming row lengths into
row IDs, which inform the accumulator to which row each
matrix-vector value pair belongs. First, the CISR decoder
initializes sequential row IDs (i.e., each channel gets its own
index minus one as the initial ID). Next, for each channel, the
CISR decoder reads a value from the row length FIFO and
sets a counter equal to that value. The CISR decoder
decrements each counter every cycle and places a copy of
each channel’s row ID in that channel’s row ID FIFO. When
a channel’s counter value reaches zero, it indicates that all of

the row IDs for that row have been produced and that a new
row ID must be assigned. If multiple channels need new row
IDs in the same cycle, the encoding guarantees that lower-
indexed channels correspond to lower-indexed row IDs. This
process continues until the matrix’s row length array has been
exhausted, indicating that the matrix has been fully decoded.

IV. BANKED VECTOR BUFFER

The purpose of the BVB is to supply vector elements at
high bandwidths to a set of channels (32 or more). To
mitigate the need for replicated storage while simultaneously
providing high bandwidth, the BVB is internally built out of
two 32x32 input-queued crossbars connected to 32
independently accessible block RAMs. The address-request
crossbar accepts a column index from each channel and
routes it to one of 32 banks using a simple bank hashing
function (in our design, the log2(# banks) lower-order bits of
the column index). When a given column index is routed to
a block RAM, the index (excluding the banking bits) is used
to read the vector element from the RAM in a single clock
cycle. The resulting value is then issued to one of 32 input
ports in the data-response crossbar, which is used to forward
results back to the requesting channel. On a bank conflict,
requests are back-pressured into the crossbars’ input queues,
and eventually back to the channel.

The BVB crossbars are highly pipelined and can operate
at up to 150 MHz after place-and-route. Each of the 32 output
ports of the crossbar selects among 32 input candidates on
each clock cycle using a single-cycle priority encoder. The
match decision is then fed along with the input channel’s data
into a 6-cycle pipelined multiplexer. The BVB has enough
on-chip bandwidth to sustain 32 channels simultaneously.

Although we do not discuss in detail in this paper, scaling
beyond supporting 32 channels in the BVB could be achieved
by increasing the degree of banking further and by using a
more scalable network-on-chip instead of a high-radix
crossbar that scales quadratically in area with inputs (O(n2)).
Alternative strategies could include more scalable topologies
such as a 2-D mesh (O(n)). We leave this investigation to
future work.

memory width

0 1 2 3 4 5 6 7

0 A B

1 C

2 D E

3 F G H

4 I J K

5 L M

6 N O

7 P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C D E F G H I J K L M N O P

0 3 3 4 5 1 5 7 2 6 7 3 7 1 5 6

0 2 3 5 8 11 13 15 16

CSR
VALUES

COLUMN
INDICES

ROW
POINTERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A C D F B I E G L J N H M K O P

0 3 4 1 3 2 5 5 3 6 1 7 7 7 5 6

2 1 2 3 2 3 2 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

CISR
VALUES

COLUMN
INDICES

ROW
LENGTHS

(a) (c)

(b)

SLOT
NUMBER

Figure 2. (a) Original densely represented matrix, (b) its representation in CSR and (c) its representation in CISR.

V. EVALUATION

A. Methodology

We implemented and benchmarked the proposed SMVM
accelerator on a custom FPGA PCIe card with an Altera
Stratix V D5 FPGA. The selected FPGA has 172K ALMs and
39 MBits of on-chip memory. The card supports up to 8 GB
of DRAM, with two dual-rank DDR3-1333 SO-DIMMs
clocked at 667 MHz supporting an aggregate peak off-chip
bandwidth of 21.3 GB/s. The FPGA is clocked at 150 MHz,
which translates to over 1024 bits/cycle DRAM bandwidth
and supplies 32 32-bit processing channels. The FPGA
communicates with the host system using PCIe Gen 2x8,
which supports up to 4 GB/s of bandwidth to the host
memory.

We evaluate the SMVM FPGA prototype’s performance
using over 700 sparse matrices from the University of Florida
Sparse Matrix Collection [3] with matrix dimensions that can
fit into the aggregate on-chip vector buffer — currently, up to
16K elements. The number of vector elements is not a
fundamental limitation of the architecture and it would be
straightforward to modify the design to accommodate sizes
of up to 100k on the targeted FPGA. This architecture could
support even larger configurations via tiling/blocking
software strategies. We leave these extensions to future work.

To demonstrate the absolute benefits of the proposed
design, we compare our results to highly-optimized CPU and
GPU SMVM implementations. Our CPU measurements are
carried out on a quad-core Xeon E5-1620 @ 3.6 GHz running
a highly tuned multithreaded CSR-format SMVM
implementation from Intel’s MKL library [10]. Our GPU
measurements are carried out on a high-end NVidia GTX 580
running the latest version of NVidia CUSP [14]. It is worth
noting that compared to the FPGA’s bandwidth of 21.3 GB/s,
the CPU supports up to 51.2 GB/s of DRAM bandwidth,
while the GTX 580 GPU supports up to 192.2 GB/s.

In our hardware measurements, the CISR-encoded matrix
is first preloaded and stored in the FPGA’s DRAM. This
scenario is based on the assumption that the SMVM kernel is
executed iteratively on the FPGA (as is common in many use

cases of SMVM, e.g., Conjugate Gradient Solver). Our
performance measurements of the FPGA implementation
include the time needed to stream the inputs from DRAM.

For the GPU, we measure CUSP using all supported
matrix formats (e.g., CSR, ELL, HYB) and select the best
performance. Our GPU results optimistically exclude the
time it takes to encode sparse matrices in GPU-optimized
formats (e.g., HYB or ELL), and also excludes the time it
takes to load the input matrix and vector into GPU DRAM.

Our measurements include both “warm” and “cold” runs.
The warm measurements involve running the GPU kernel
repeatedly to include the impact of last-level caching in the
GTX 580. The cold measurements ensure that all matrix and
input vector data is resident only in GPU DRAM. For the
CPU, we also exclude any matrix encoding time and measure
performance with both warm and cold caches. The “cold”
results allow us to understand the impact of off-chip memory
bandwidth on the CPU and GPU, while the “warm” results
give us an upper bound on CPU and GPU performance under
ideal circumstances (i.e., vectors and matrix elements are
cached on-chip).

Finally, we report aggregate GFlops numbers by using a
time-weighted average to emphasize GFlops rates obtained
for large matrices that take longer to execute.

B. Results

We first compare overall performance of the FPGA, CPU,
and GPU, then turn our attention to a normalized memory
bandwidth comparison, as well as a power efficiency
comparison. Finally, we provide additional characterization
of bottlenecks of our current implementation and compare to
a prior FPGA implementation.

1) Overall Performance
Figure 3 shows the relative performance of our FPGA

implementation against the warm CPU and GPU
implementations, as the number of non-zero values increases.
These results show that the FPGA has equivalent
performance up to a certain size, and then it saturates at
around 3.9GFlops. This is lower than the ideal ~5.3GFlops
because of inefficiencies in the BVB further characterized in
Section V.B.4. As expected, CPU and GPU performance

Figure 3. Overall performance comparison between FPGA, CPU, and GPU implementations of SMVM, with growing number of

non-zero values. The CPU and GPU results are based on warmed (repeated) measurement runs. Axis are in logarithmic scale.

0.01

0.10

1.00

10.00

100.00

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

G
Fl
o
p
s

Number of non‐zero elements

GPU CPU FPGA

saturate at higher non-zero value quantities, since they have
higher available memory bandwidths. Overall, the FPGA
implementation achieves 65% of CPU performance and 29%
of the GPU performance on average. If we only consider
speedup after saturation, the FPGA implementation achieves
about 32% of CPU performance and 11% of GPU
performance. However, there is no reason the FPGA cannot
be augmented with additional memory bandwidth. In the next
section, we estimate the FPGA performance at a memory
bandwidth equivalent to the CPU and GPU.

Figure 4. Overall performance for different matrix sizes.

Figure 4 reports average GFlops for matrices with small
(up to 103), medium (103 to 105), and large number of non-
zero values (more than 105), as well as the aggregate over all
matrices. Small matrices perform poorly on the GPU due to
startup overheads and an insufficient amount of available
work to keep the GPU busy and to amortize memory access
latency. Small matrices running on the CPU perform better
than the GPU since less parallelism is needed for efficient
execution on the CPU. In experiments with warm cache
(warm CPU and warm GPU), the difference stems from the
software that makes the call to the SMVM subroutine. Cold
caches add to this overhead because they insert additional
cache subsystem latencies. As sizes grow, the overheads in
the former category are amortized over the SMVM
execution time and CPU/GPU look more attractive. In
medium matrices, sufficiently large to amortize software
overheads, we can clearly see the effect of caches: matrices
are cache-resident, so the effective available memory
bandwidth is higher than that offered by main memory.
Large matrices do not fit in caches, so the difference between
cold and warm cache results do not differ much.

2) Normalized Performance
The next question we want to answer is how the FPGA

implementation would compare if it had memory bandwidth
equivalent to what is available to the CPU and the GPU. The
FPGA we are using has unused transceivers that can be used
to connect additional DIMMs, which would increase memory
bandwidth proportionally. To take advantage of the increased
memory bandwidth, it would be necessary to increase the
number of supported channels. Based on our current FPGA

capacity and area results, we optimistically estimate that with
additional area optimizations applied to our current design, it
would be possible to support 3x as many channels. A
balanced design with 3x as much memory bandwidth
(63.9GB/s) would be almost as fast as a GPU (0.9x) on
average. A larger FPGA with enough resources to match the
GPU’s peak memory bandwidth would be 2.6x as fast as the
GPU on average. At the same bandwidth as the CPU, the
proposed FPGA design would achieve 1.6x of the CPU
performance on average. Table 1 summarizes these results.

Table 1. Scaled memory bandwidth comparison.

Memory Bw
GB/s

FPGA/CPU
GFlops/GFlops

FPGA/GPU
GFlops/GFlops

51.2 1.6x --
63.9 -- 0.9x
192.2 -- 2.7x

3) Power Efficiency Comparison

While performance is an important metric to compare,
power efficiency should not be left out. Unfortunately, we do
not currently have a setup that we could use to measure actual
power, so we use maximum power rating as a proxy. The
CPU we used for our measurements is specified at 100W
maximum power (with the unfair advantage that we are not
counting DRAM power for it), while the GPU board is rated
at 195W and the FPGA board at 25W, including the two
DIMMs used for this evaluation. The FPGA, if augmented to
have 3x as much memory bandwidth, would consume 45W,
including additional memory controllers and DIMMs.

Table 2 shows measured and scaled MFlops/W numbers.
When comparing measured performance numbers, the FPGA
implementation performs 2.6x as well as the CPU and 2.3x
as well as the GPU. When comparing the scaled FPGA, these
numbers grow to 4.4x and 3.8x, respectively.

TABLE 2. POWER EFFICIENCY COMPARISON: FPGA, CPU AND GPU.

Absolute FPGA CPU GPU
Measured 132.9MFlops/W 50.8MFlops/W 58.3MFlops/W
Scaled 3x 221.5MFlops/W -- --

Ratios -- FPGA/CPU FPGA/GPU
Measured -- 2.6 2.3
Scaled 3x -- 4.4 3.8

4) Characterization
We characterize the main sources of FPGA inefficiency to

explain why our implementation does not reach its ideal
performance and to identify improvement opportunities.
Figure 5 plots the percentage of clock cycles spent stalling
on DRAM fetches, ordered by increasing number of non-
zero elements. Unsurprisingly, small matrices offer an
insufficient amount of work to overlap computation and
DRAM accesses.

Increasing the total number of non-zeros reduces this
effect, although some large matrices still experience
significant stall times (shown on the right of Figure 5). These
underperforming matrices are limited by inefficiencies in
our current memory controller IP block. Nevertheless, even

1.E‐02

1.E‐01

1.E+00

1.E+01

1.E+02

small medium large aggregate

G
Fl
o
p
s

Matrix size

Overall Performance (GFlops)

FPGA warm CPU warm GPU cold CPU cold GPU

with current limitations, the FPGA still offers competitive
performance relative to CPUs and GPUs.

Figure 6 similarly plots the percentage of clock cycles
spent stalling on the Banked Vector Buffer. The BVB stalls
when column addresses of a sparse matrix are skewed non-
uniformly in banks. These bank conflicts contribute as much
as 30% of the total stalls in the worst-case. Nevertheless,
excluding a few outliers, the vast majority of matrices
experience 15% or less time spent stalling on the BVB.

Figure 5. Percentage of cycles stalled due to DRAM. Smaller matrices
have insufficient work to overlap DRAM access time and computation.

Figure 6. Percentage of cycles stalled due to the Banked Vector Buffer.

Stalls occur when there are bank conflicts in the BVB, due to non-uniform
column addresses in a given sparse matrix.

5) Comparison to Previous Work on Convey HC-1

 We briefly compare the proposed design against previous
work on accelerating SMVM on Convey HC-1 [13]. The
Convey design employs four FPGAs and offers an aggregate
off-chip memory bandwidth of 80 GB/s. Our comparison is
at best an approximation because the Convey design
operates on double-precision operands, while our current
design only supports single-precision. We optimistically
double the reported throughput of the Convey system for a
fair comparison. Table 3 reports on two input matrices
measured on both systems. The Convey system achieves
better absolute performance, but our per-FPGA performance
is significantly higher, by a factor of 1.9X to 2.6X.

6) FPGA Area
Table 4 reports the overall FPGA area consumption of

various components of the proposed design, including the
processing array responsible for 32 channels, the BVB, and
the matrix fetcher. Without significant optimization effort,
our design consumes a modest 38% area of a mid-end FPGA.

Table 3. ESTIMATE OF RELATIVE PERFORMANCE TO SMVM ON

CONVEY HC-1 [13].

 Convey HC-1 [13] This work

DP

GFLOPS
SP (projected

GFLOPS)
SP per FPGA

(GFLOPS)
SP per FPGA

(GFLOPs)
dw8192 1.71 3.42 0.855 2.27

epb1 2.56 5.12 1.28 2.45

Table 4. SMVM AREA CONSUMPTION ON STRATIX V D5

 Resources % Area (Stratix V D5)
 ALM M20K DSP ALM M20K DSP

Total Area 65506 540 32 38 27 2
 Proc. Array 26438 160 32 15.3 7.9 2
 Mul-Accum 20705 64 32 12 3.2 2
 Matrix Fetcher 11225 156 0 6.5 7.7 0
 CISR Decoder 3813 32 0 2.2 1.6 0
 BVB 25713 128 0 14.9 6.4 0
 Address Xbar 9015 0 0 5.2 0 0
 Vector Xbar 16242 0 0 9.4 0 0

VI. RELATED WORK

Most previous FPGA accelerators [11][20][21] for
SMVM maintain a separate replicated copy of the input
vector for every multiplier, resulting in the block RAM
bottleneck described in the previous section. Shan et al. [16]
addressed this bottleneck by storing the vector in external
SRAM, which saved block RAM at the expense of increased
latency, reduced access bandwidth and reduced exploitable
parallelism. Nagar and Bakos [13] extended this approach by
using block RAMs as vector caches to improve memory
bandwidth utilization. In this paper, we also avoid replicated
copies of the input vector while enabling a much larger input
vector to be resident on chip by implementing a highly
banked vector buffer.

Multiple sparse matrix encodings have been proposed and
used over the years. Compressed Sparse Row (CSR) is a
commonly used encoding for CPUs [19], GPUs [1][2], and
FPGA implementations [4][11][21]. Prior work introduced
FPGA-optimized sparse matrix encodings to improve
SMVM performance. Kestur et al. recently proposed an
FPGA-specialized encoding called Compressed Variable-
Length Bit Vector (CVBV) that reduced matrix storage and
bandwidth requirements of CSR by an average of 25% [11].
The CISR encoding proposed in this paper is complementary
to CVBV and could potentially be combined to further
improve bandwidth, while reducing block RAM
requirements. Dickov et al. introduced a row-interleaved
compressed row storage encoding that multiplexes dot
products from different matrix rows onto a single floating-
point adder in order to save resources [4]. In contrast, the
presented CISR encoding adopts a different optimization
goal of maximizing parallelism while reducing block RAM
requirements, which is appropriate for the common situation

of memory bandwidth becoming a bottleneck before
exhausting FPGA resources.

Several previous approaches have also addressed the
limitation of restricting parallelism to a single matrix row.
Sun et al. [17] introduced an Input Pattern Vector along with
a specialized SMVM architecture that enables flexible
parallelization of operations across multiple matrix rows.
Our approach also parallelizes operations across rows, while
additionally reducing block RAM requirements to enable
sparse matrices significantly larger than those evaluated by
Sun et al [17]. Dickov’s SMVM implementation [4] also
processed multiple rows, but with the goal of minimizing
resources as opposed to maximizing parallelism.

VII. CONCLUSION

In this paper, we introduce an FPGA-optimized SMVM
architecture that uses a specialized CISR encoding to
efficiently process multiple rows of a matrix in parallel,
coupled with a highly banked buffer design that eliminates
replication of buffered vectors, enabling larger vectors to be
stored on-chip. We show that the presented architecture
performs within about two thirds of CPU SMVM
performance, even though it has 2.4x lower DRAM memory
bandwidth, and within almost one third of GPU SMVM
performance, even at 9x lower memory bandwidth.
Additionally, our FPGA design consumes a maximum of
25W, for power efficiencies 2.6x and 2.3x higher than CPU
and GPU, respectively. When supplied with the same
memory bandwidth, we predict this FPGA architecture is
1.6x faster than the CPU and 2.7x faster than the GPU, and
even more power-efficient (4.4x and 3.8x, respectively).

ACKNOWLEDGMENT

We would like to thank Doug Burger and the Catapult
team for their support and help with this project. We would
also like to thank Adrian Macias from Altera for helping with
the accumulator implementation.

REFERENCES
[1] N. Bell and M. Garl. Efficient sparse matrix-vector multiplication on

CUDA. Technical report, NVIDIA, 2008.

[2] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC’09, pages 18:1–18:11, New York, NY,
USA, 2009. ACM.

[3] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. ACM Trans. Mathematical Software, 38(1):1:1–1:25, Nov.
2011.

[4] B. Dickov, M. Pericàs, N. Navarro, E. Ayguadé, and D. D. D.
Computadors. Row-interleaved streaming data flow implementation
of sparse matrix vector multiplication in FPGA. In 4th Workshop on
Reconfigurable Computing, WRC-2010. Vol. 104. 2010.

[5] J. Fowers and G. Stitt. Dynafuse: dynamic dependence analysis for
FPGA pipeline fusion and locality optimizations. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA’13, pages 201–210, New York, NY, USA,
February 2013. ACM.

[6] A. George, H. Lam, and G. Stitt. Novo-G: At the forefront of scalable
reconfigurable supercomputing. Computing in Science Engineering,
13(1):82–86, Jan.-Feb. 2011.

[7] D. Gregg, C. Mc Sweeney, C. McElroy, F. Connor, S. McGettrick, D.
Moloney, and D. Geraghty. FPGA based sparse matrix vector
multiplication using commodity DRAM memory. In Proceedings of
the International Conference on Field Programmable Logic and
Applications, 2007. FPL 2007, pages 786–791, 2007.

[8] P. Guo and L. Wang. Auto-tuning CUDA parameters for sparse
matrix-vector multiplication on GPUs. In Proceedings of the
International Conference on Computational and Information Sciences
(ICCIS), 2010, pages 1154–1157, 2010.

[9] V. Hopytoff. Japanese ‘K’ computer is ranked most powerful. New
York Times. June 19, 2011.
http://www.nytimes.com/2011/06/20/technology/20computer.html?_
r=2.

[10] Intel Math Kernel Library. 2007. http://software.intel.com/en-
us/intel-mkl.

[11] S. Kestur, J. D. Davis, and E. S. Chung. Towards a universal FPGA
matrix-vector multiplication architecture. In Proceedings of the 2012
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, FCCM’12, pages 9–16, Washington, DC,
USA, 2012. IEEE Computer Society.

[12] N. McVicar, W. L. Ruzzo, and S. Hauck. Accelerating ncRNA
homology search with FPGAs. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays,
FPGA’13, pages 43–52, New York, NY, USA, 2013. ACM.

[13] K. Nagar and J. Bakos. A sparse matrix personality for the Convey
HC-1. In Proceedings of the IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2011, pages 1–8, 2011.

[14] NVIDIA. CUSPARSE: CUDA Toolkit Documentation, 2014,
http://docs.nvidia.com/cuda/cusparse/.

[15] K. Sano, Y. Hatsuda, and S. Yamamoto. Multi-FPGA accelerator for
scalable stencil computation with constant memory-bandwidth. IEEE
Transactions on Parallel and Distributed Systems, 25(3):695–705,
Mar. 2014.

[16] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang.
FPGA and GPU implementation of large scale SPMV. In Proceedings
of the IEEE 8th Symposium on Application Specific Processors
(SASP), pages 64–70, 2010.

[17] S. Sun, M. Monga, P. Jones, and J. Zambreno. An I/O bandwidth-
sensitive sparse matrix-vector multiplication engine on FPGAs. IEEE
Transactions on Circuits and Systems I: Regular Papers, 59(1):113–
123, 2012.

[18] S. Sun and J. Zambreno. A floating-point accumulator for FPGA-
based high performance computing applications. In Proceedings of the
International Conference on Field-Programmable Technology. FPT
2009, pages 493–499, 2009.

[19] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, SC’07, pages 38:1–38:12, New
York, NY, USA, 2007. ACM.

[20] Y. Zhang, Y. Shalabi, R. Jain, K. Nagar, and J. Bakos. FPGA vs. GPU
for sparse matrix vector multiply. In Proceedings of the International
Conference on Field-Programmable Technology. FPT 2009, pages
255–262, 2009.

[21] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on
FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-programmable gate arrays, FPGA’05, pages 63–
74, New York, NY, USA, 2005. ACM.

[22] NVIDIA. https://developer.nvidia.com/cusp

