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A high-order finite-difference algorithm is proposed in the aim of LES and CAA appli-

cations. The subgrid scale dissipation is performed by the explicit high-order numerical

filter used for numerical stability purpose. A shock-capturing non-linear filter is also imple-

mented to deal with compressible discontinuous flows. In order to tackle complex geome-

tries, an overset-grid approach is used. High-order interpolations make it possible to ensure

the communication between overlapping domains. The whole algorithm is first validated

on canonical flow problems to illustrate both its properties for shock-capturing as well as

for accurate wave propagation. Then, the influence of the multi-domain approach on the

high-order spatial accuracy is assessed. Afterwards, the algorithm is extended to dynamic

mesh applications with overlapping grids. Finally, two industrial cases are presented to

highlight the potential of the proposed algorithm.

I. Introduction

I
n a wide range of technical fields such as aircrafts, automotive engineering, trains, turbomachinery, power
plants, non-linear interactions between the turbulent flow and the acoustic fields produce undesirable high

pressure levels.1 They are the source of noise pollution which is a major environmental issue. The radiated
noise can also induce vibrations and damages. This is particularly the case in confined flows. In addition,
turbulent flows or acoustic waves can couple with moving structures involving fluid/structure interaction.
The calculation of both the unsteady flow and the associated sound must be performed in the same com-
putation. This is referred as Direct Noise Computation (DNC) in the literature.2 Using DNC is an efficient
way to identify the fluid mechanism contributing to the sound production and therefore, a useful tool to
reduce the noise radiation. The feasibility of DNC is now demonstrated in the literature via Direct Numerical
Simulation (DNS)3–5 and Large-Eddy Simulation (LES).6–8

Application of compressible LES to computational aeroacoustics (CAA) problems makes it possible to
tackle applications with industrial or practical relevance. The large disparity in the characteristic scales
of the acoustic and the flow fluctuations, and the need to accurately resolve high wavenumber fluctuations
require the use of numerical methods with minimal dissipation and dispersion errors.1 In this context, the
Dispersion-Relation-Preserving (DRP)9 or optimized10 high-order finite-difference schemes in conjunction
with selective filter are an attractive choice for LES to reduce both amplitude and phase numerical errors.
Transonic compressible turbulent flows are characterized by the presence of shock waves which interact with
turbulence. A shock-capturing scheme must also be implemented but implies the introduction of numerical
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dissipation. The development of numerical algorithms that capture discontinuities and also resolve both the
scales of turbulence and the generated acoustic waves in compressible turbulent flows remains thus a signifi-
cant challenge. In order to treat industrial configurations, a new numerical code called SAFARI (Simulation
of Aeroacoustic Flows And Resonance and Interaction) has been developed. To address complex geometrical
configurations, overset-grid strategy is used with high-order interpolation for the communication between
non-coincident grids.11–13

This paper is organized as follows. After briefly presented the governing equations in Section II, the pro-
posed algorithm is presented in Section III. This algorithm is based on optimized high-order finite-difference
schemes in conjunction with optimized high-order low-pass spatial filters.10 To highlight the spectral be-
havior of our proposed algorithm, a linear analysis is performed on the global numerical method including
both spatial, temporal discretizations and selective filter. The shock-capturing procedure is performed via
a non-linear filter after the time integration. A special attention is paid on the shock-detector which is the
key issue in the preservation of the algorithm spectral behavior. In order to tackle complex geometries as
multiple bodies, the employed overset-grid strategy with high-order Lagrangian interpolation is presented in
Section IV where a linear analysis of the interpolation error is assessed. The ability of the present algorithm
to capture discontinuities in canonical 1-D and 2-D problems without damaging its initial propagation prop-
erties is discussed in Section V. Afterwards, it is shown that the multi-domain strategy does not corrupt the
algorithm characteristics via numerical examples. Then, in Section VI, the high-order scheme is extended
to moving overset grids. The time metric error cancellation which is required to ensure the free-stream
preservation and the stability criterion linked to the mesh displacement are discussed. Finally, two realistic
cases are briefly presented in Section VII with complex physical flow/acoustics coupling in real geometries
to highlight the potential of the present solver.

II. Governing equations

A. Fluid dynamics

The three-dimensional Navier-Stokes equations are expressed in Cartesian coordinates for a viscous com-
pressible Newtonian fluid. After the application of a general time-dependant curvilinear transformation
(x, y, z, t) → (ξ, η, ζ, τ),14, 15 these equations are written in the following strong conservative form:

∂τQ + ∂ξ

(

E − Eν
)

+ ∂η

(

F − F ν
)

+ ∂ζ

(

G − Gν
)

= 0. (1)

with Q = U/J where U = (ρ, ρu, ρv, ρw, ρe) is the vector of conservative variables, ρ is the density, u, v

and w are the Cartesian velocity components of the vector ~V , e is the total specific energy:

ρe =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
,

where p is the pressure, γ the specific heat ratio and J the Jacobian of the coordinate transformation
(x, y, z) → (ξ, η, ζ). E, F and G are the inviscid flux-vectors which can be expressed as:

E = ξtQ +
1

J










ρΘξ

ρuΘξ + pξx

ρvΘξ + pξy

ρwΘξ + pξz

(ρe + p)Θξ










, F = ηtQ +
1

J










ρΘη

ρuΘη + pηx

ρvΘη + pηy

ρwΘη + pηz

(ρe + p)Θη










, G = ζtQ +
1

J










ρΘζ

ρuΘζ + pζx

ρvΘζ + pζy

ρwΘζ + pζz

(ρe + p)Θζ










.

The contra-variant velocity components Θξ, Θη and Θζ are defined as:

Θξ = uξx + vξy + wξz , Θη = uηx + vηy + wηz and Θζ = uζx + vζy + wζz .

The quantities ξt, ηt and ζt are the time metrics; ξx, ξy, ξz , ηx, ηy, ηz, ζx, ζy and ζz designate the spatial
metrics. The subscripts denote the partial derivatives. Eν , F ν and Gν are the viscous flux-vectors. Their
expression are the same as in the case of time-invariant generalized coordinates.16, 17
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B. Geometrical conservation

With the strong-conservation form in Equation (1), the following relations must be satisfied numerically to
ensure free-stream preservation when a finite-difference discretization is used:18







(
1

J
ξx

)

ξ

+

(
1

J
ηx

)

η

+

(
1

J
ζx

)

ζ

= 0

(
1

J
ξy

)

ξ

+

(
1

J
ηy

)

η

+

(
1

J
ζy

)

ζ

= 0

(
1

J
ξz

)

ξ

+

(
1

J
ηz

)

η

+

(
1

J
ζz

)

ζ

= 0

(
1

J

)

τ

+

(
1

J
ξt

)

ξ

+

(
1

J
ηt

)

η

+

(
1

J
ζt

)

ζ

= 0

(2)

The last relation only concerns time-dependent meshes and is called the geometric conservation law (GCL).19

In order to satisfy the numerical metric error cancellation and to ensure the free-stream preservation, the
spatial metrics are expressed in the conservative form proposed by Thomas and Lombard:19







1

J
ξx = (yηz)ζ − (yζz)η

1

J
ξx = (yζz)ξ − (yξz)ζ

1

J
ξx = (yξz)ζ − (yηz)ξ

(3)

Time metrics are used for moving/deforming grid computations. Their expression are given in Section VI.

III. Numerical method

A. Spatial discretization

First derivatives at interior grid points are determined using the optimized 11-point centered finite-difference
scheme proposed by Bogey and Bailly:10

∂ξEi,j,k ≈ 1

∆ξ

5∑

m=1

sm

(

Ei+m,j,k − Ei−m,j,k

)

. (4)

This non-dissipative scheme is optimized in the wavenumber space to reduce the dispersion error following
the idea of Tam and Webb.9 The linear analysis shows that this scheme is able to resolve accurately
perturbations with only four points per wavelength such as shown in Figure 1 (a). The same scheme has
been applied successfully7, 8 for the direct computation of jet noise using LES. The coefficients sm are given
in Appendix A.

B. Temporal integration

The spatial discretization step leads to a semi-discrete form as:

dQi,j,k

dτ
+ Ri,j,k = 0 (5)

with Ri,j,k the residual of the discretized inviscid and viscous terms. Equation (5) can be solved by both
explicit and implicit time integration methods. In the present work, the equations are integrated in time
with the classical explicit four-stage Runge-Kutta scheme (RK4) :

Q
(l)
i,j,k = Qn

i,j,k − ∆τβ(l)R
(l−1)
i,j,k ∀l ∈ {1, ..., 4} (6)
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with Q(0) = Qn. The damping and stability properties of the RK4 scheme obtained with the linear analysis
are shown in Figure 1 (c).

C. Low-pass filter

After the application of the Runge-Kutta scheme, the explicit optimized 11-point spatial low-pass filter
proposed by Bogey and Bailly10 is used to remove spurious high-frequency spatial oscillations:

W
(5)
i,j,k = W

(4)
i,j,k − σf

[

F ξ
(

W
(4)
i,j,k

)

+ F η
(

W
(4)
i,j,k

)

+ F ζ
(

W
(4)
i,j,k

)]

(7)

where

F ξ
(

W
(4)
i,j,k

)

= d0W
(4)
i,j,k +

5∑

m=1

dm

(

W
(4)
i+m,j,k + W

(4)
i−m,j,k

)

with 0 ≤ σf ≤ 1 for the filtering strength ; and W = (ρ, ρu, ρv, ρw, p)T .
This filter is optimized in the wavenumber space: the linear analysis shows that this filter only damps

the perturbations not accurately resolved by the spatial scheme of Equation (4) as shown in Figure 1 (b).
The coefficients dm are given in Appendix A.
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Figure 1. (a) Comparison between the exact – and the effective - - wavenumber of the spatial discretization;
(b) Damping function of the selective filter as a function of the wavenumber k∆x; (c) Dissipative characteristic
of the RK4 scheme as a function of the pulsation ω∆t.

D. Linear Analysis

The Von Neumann method is used to analyze the damping and dispersive properties of the algorithm
presented previously. This analysis is only applied on linear equations with periodic boundary conditions.
For non-linear equations, the results obtained with the linear analysis are not sufficient. However, linear
stability is a necessary condition for non-linear problems.20

The Von Neumann method is applied to the global algorithm (spatial, temporal discretizations and
low-pass filter) for the following linear advection equation:

∂tu + a∂xu = 0 (8)

The algorithm can be decomposed into three steps as:







Ri(u) =
a

∆x

5∑

m=1

sm(ui+m − ui−m) (spatial discretization)

u
(l)
i = un

i − ∆tβ(l)Ri(u
(l−1)) ∀l ∈ {1, ..., 4} (time discretization)

un+1
i = u

(4)
i − σf

[

d0u
(4)
i +

5∑

m=1

dm

(

u
(4)
i+m + u

(4)
i−m

) ]

(low-pass filter)
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with u
(0)
i = un

i .
The Von Neumann method is based on the Fourier transform. We consider a single harmonic un

i =
ûneIik∆x with ûn the amplitude, k∆x the phase angle corresponding to the wavenumber k and I2 = −1. In
order to evaluate the algorithm amplification factor defined as g = ûn+1/ûn, the Fourier transform is applied
to the three stages of the computation:







R̂(u) = I
a

∆x
ûk∗∆x with k∗∆x = 2

5∑

m=1

sm sin(mk∆x) (spatial discret.)

û(4) =

(

1 +

4∑

l=1

γl(−∆tI
a

∆x
k∗∆x)l

)

ûn with γl =

4∏

q=4−l+1

β(q) (time discret.)

ûn+1 = (1 − σf D̂)û(4) with D̂ = d0 + 2
5∑

m=1

dm cos(mk∆x) (low-pass filter)

Finally, the amplification factor of the global algorithm can be written as:

g = (1 − σdD̂)

(

1 +

4∑

l=1

γl(−Iσk∗∆x)l

)

(9)

with the CFL number σ =
a∆t

∆x
.

The amplification factor g which can be rewritten as g = |g|eIφ is now compared with the exact factor:
gex = e−Iσk∆x. The algorithm damping property is given by the norm |g| and the dispersive one by the
relative phase error: φ + σk∆x. The results with CFL = 1 and σf = 0.2 are displayed in Figure 2. With
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Figure 2. Damping and dispersion errors as a function of the wavenumber k∆x: (a) Norm of the amplification
factor |g| ; (b) relative phase error φ + σk∆x.

respect to the damping character of the spatial scheme and the linear filter presented in Figure 1, by taking
CFL = 1, the explicit time integration damages the upper bound of the range of well-resolved wavenumber:
k∆x ≤ π/2. To known quantitatively the accuracy domain of the global algorithm, an accuracy limit is
estimated from the following arbitrary criterion:

|1 −H| ≤ 5 × 10−4 (10)

with the ratio H = g/gex. The accuracy domain of the global algorithm is thus reduced to 0 ≤ k∆x ≤ 0.65,
that is to say in term of number of points per wavelength: λa/∆x ≈ 9.66.
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E. LES strategy

The LES strategy used in the present work is the same as the one employed by Bogey and Bailly7, 8 and by
Rizzetta et al.21 The compressible LES formalism of Vreman22 is retained to express the filtered equations in
conservative form. The selective filter used to improve the numerical stability of the centered non-dissipative
spatial discretization is also employed to separate the large scales from the small ones. In addition, this
linear filter takes into account the dissipative effects of the subgrid scales by draining energy at the cut-off
frequency. Indeed, the selective filter leaves flow features larger than the cut-off wavelengths unaffected,
while properly removing the energy being transferred to smaller wave lengths. In addition, the interactions
between the resolved and the unresolved scales are neglected. Thus, no additional explicit subgrid scale
model is used.

F. Shock-capturing procedure

1. Adaptive shock-capturing filter

A shock-capturing filter23 is applied on the conservative variables after the use of the selective filter in
Equation (7). This non-linear filter is based on the artificial dissipation model proposed by Kim and Lee.24

The same model has been recently used in25 for choked nozzles and supersonic diffusers. However, in the
present work, only the low-order shock-capturing term of the model of Kim and Lee is applied. Following Yee
et al.,26 the dissipative part of the shock-capturing procedure is applied after the time integration process
as a non-linear filter:

Qn+1
i,j,k = Q

(5)
i,j,k + ∆t

(

Dξ
i,j,k + Dη

i,j,k + Dζ
i,j,k

)

, (11)

where the dissipative part of the shock-capturing procedure in the ξ-direction can be expressed as:

Dξ
i,j,k =

1

∆ξ

(
Di+1/2 −Di−1/2

)
,

where Di+1/2 is the dissipative numerical flux of the filtering operator:

Di+1/2 =
∆|λ|ξi+1/2

Ji+1/2
ǫ
(2)
i+1/2

(

U
(5)
i+1,j,k − U

(5)
i,j,k

)

. (12)

The stencil eigenvalue ∆|λ|ξi+1/2 is defined as:

∆|λ|ξi+1/2 =
3

max
m=−2

(|λξ|i+m,j,k) −
3

min
m=−2

(|λξ|i+m,j,k),

where the eigenvalue is expressed in the time-dependant generalized coordinates:

λξ = ξt + Θξ + c||~∇ξ|| with ~∇ξ = (ξx, ξy, ξz)
T

and c =

√
γp

ρ
is the sound speed. The midpoint value of the transformation Jacobian is estimated by

Ji+1/2 = (Ji + Ji+1)/2. The non-linear dissipation function is expressed:

ǫ
(2)
i+1/2 = κj,k

3
max

m=−2
(νξ

i+m,j,k) with νξ
i,j,k =

|pi−1,j,k − 2pi,j,k + pi+1,j,k|
pi−1,j,k + 2pi,j,k + pi+1,j,k

In this expression, νξ is the pressure shock detector proposed by Jameson et al.27 Finally, the definition of
the adaptive control constant κj,k proposed by Kim and Lee24 is retained.

According to Garnier et al.,28 the classical high-order shock-capturing schemes show excessive numerical
dissipation in the frame of freely decaying turbulence. Thus, a local application of the shock-capturing
scheme is necessary to reduce the numerical dissipation, and the determination of the shock location is
a crucial problem to minimize this excessive damping. In the filter presented here, this determination is
performed via the Jameson sensor. However, in the frame of shock/turbulence interaction,29 this sensor is
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not able to distinguish turbulent fluctuations from strong gradients. Therefore, a modified Jameson sensor23

is used in this paper. The Jameson sensor can be rewritten in the following form:

νξ
i,j,k =

|Lξ
f(pi,j,k)|

pi,j,k − Lξ
f (pi,j,k)

where Lξ
f designates the linear second-order filter operator:

Lξ
f (pi,j,k) = −1

4
pi−1,j,k +

1

2
pi,j,k − 1

4
pi+1,j,k.

The modified sensor proposed in this work is based on the use of the optimized selective filter defined by
Equation (7):







φξ
i,j,k =

|F ξ(pi,j,k)|
pi,j,k − F ξ(pi,j,k)

with F ξ(pi,j,k) = d0pi,j,k +
5∑

m=1

dm (pi+m,j,k + pi−m,j,k)

(13)

The damping feature of the two detectors is compared in 1-D, using a linear analysis. To do that, a plane
wave is considered pi = e−Iki∆x where k∆x is the phase angle corresponding to the wavenumber k and
I2 = −1. We can notice on Figure 3, in contrast with the Jameson sensor, that the modified sensor does
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Figure 3. Damping errors of the shock detector as a function of the phase angle k∆x: – νξ
i

(classical Jameson

sensor), - - φξ
i

(modified Jameson sensor).

not damage the low wavenumber range. However, for the high frequencies, the two detectors collapse which
ensures the shock-capturing property of the scheme. In addition, theses two detectors can be used without
modification in the scheme. Moreover, the computational efficiency of the algorithm is not affected by the use
of the modified sensor because F ξ(pi,j,k) is already computed in the selective filtering process in Equation (7).

2. Conservative properties of the algorithm

In order to deal with shock waves, the conservative properties of the spatial scheme are studied in details.
As shown in Appendix B, the 11-point centered scheme presented in Equation (4) can be recasted in a
finite-volume framework which ensures its conservativity. In addition, the adaptive non-linear filter in
Equation (11) is conservative due to its finite-volume definition. In Section V, the shock-capturing ability of
the method proposed here is assessed.

IV. Extension to complex geometries

The high-order finite-difference algorithm satisfying conservation laws on generalized coordinates are
limited to cylindrical geometries. In order to go past this limit, overset-grid techniques are used with high-

7 of 25

American Institute of Aeronautics and Astronautics



order interpolation procedure to preserve the high-order spatial accuracy.11–13 This is addressed in the
following.

A. Overset-grid strategy

In order to handle complex configurations as those including multiple bodies, the high-order algorithm pre-
sented in the previous sections is extended to general overset-grid topologies. In practice, the SAFARI code is
interfaced with the freely available Overture library developed by the Lawrence Livermore National Labora-
tory.30 The mesh including different component grids are given by Overture. In addition, the interpolation
data such as overlapping zones, interpolation stencils and offsets are generated with Overture.

B. High-order interpolation

In the overset-grid approach, points of the different overlapping regions are non coincident. Therefore, the
communication between overlapping component grids is performed with high-order interpolation. Follow-
ing Sherer and Scott,12 high-order explicit non-optimized Lagrangian polynomials are used to perform the
interpolation stage. The interpolation process is performed in the computational domain (ξ, η, ζ, τ) as in
Figure 4. The evaluation of the variable φ at the point P is performed via the interpolation of φ at P as:

φP ≈
Mξ−1
∑

i=0

Mη−1
∑

j=0

Lξ
i L

η
j φIQ+i,JQ+j . (14)

where Mξ and Mη are the interpolation stencil length in the ξ- and η-direction respectively. Q is the first

donor point of the interpolation stencil (in green in Figure 4) and its coordinates are (IQ, JQ). Lξ
i and Lη

j

P

x

y η

ξ

η

ξ

η

δη

M
ξ

δξ

M
P

Q

Figure 4. Example of a 2-D interpolation stencil: 2-D communication between a circular and a Cartesian
component grids.

are the Lagrangian coefficients in the two directions defined as:

Lξ
i =

Mξ−1
∏

m=0,m 6=i

δξ − m

i − m
and Lη

j =

Mη−1
∏

m=0,m 6=j

δη − m

j − m

where δξ and δη called the offsets are the coordinates of P , the receiver point, with respect to Q in the
computational domain. For simplicity and isotropic reason, in the following, we have chosen Mξ = Mη = M
which is also the Lagrangian polynomial order in the computational domain.

In addition, the SAFARI code is parallelized by domain decomposition on each component grid for appli-
cation to massively-parallel platforms. The communication between each domain is performed via the MPI
library.

C. Linear analysis

In 1-D, the Lagrangian interpolation procedure in Equation (14) can be rewritten as follows:

φ(xP ) ≈
M−1∑

i=0

Liφ(xQ + i∆x) with Li =

M−1∏

m=0,m 6=i

δ − m

i − m
(15)
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M

Q

δ

P

Figure 5. Example of a 1-D interpolation stencil.

with xP = xQ+δ∆x. The interpolation error is now quantified using a one-dimensional Fourier error analysis
following Sherer and Scott.12 Thus, we consider a single harmonic: φ(x) = eIkx as previously in Section III
with the wavenumber k and I2 = −1. The interpolation error factor can be defined as:

Hitp =
eIδk∆x

M−1∑

i=0

Lie
Iik∆x

For a centered Lagrangian interpolation, we have δ ≈ (M−1)/2. The local error is displayed in Figure 6. The
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Figure 6. Local error of the interpolation process as a function of the wavenumber k∆x with M = 2, 4, 6 and 8:
(a) dissipation error or norm of Hitp and (b) dispersion error or phase of Hitp.

Lagrangian interpolation procedure with M = 2 or M = 4 implies numerical errors in the wavenumber range
not damped by the present algorithm according to the results in Section III. This can lead to the generation
of spurious waves. In contrast, Lagrangian interpolation with M = 6 or M = 8 seems to be suitable with
the present numerical algorithm. To compare quantitatively the different polynomial interpolation, the limit
accuracy limit in Equation (10) is still used: |1 −Hitp| ≤ 5 × 10−4. The accuracy domains are given in the
table 1. The range of wavenumber well resolved by the present algorithm is thus incorporated in the one of

M ka∆x λa/∆x

2 0.04 169.81

4 0.34 18.48

6 0.65 9.59

8 0.90 6.94

Table 1. Accuracy limit of the Lagrangian polynomial interpolations with M = 2, 4, 6 and 8.

the Lagrangian polynomial interpolation with M = 6 and M = 8.

9 of 25

American Institute of Aeronautics and Astronautics



D. Boundary conditions

1. Wall boundaries

In order to preserve low-dissipation and low-dispersion properties near wall boundaries, 11-point non-
centered finite-difference schemes in conjunction with explicit 11-point non-centered low-pass filter proposed
by Berland et al.31 are used. Theses two procedures are optimized in the wavenumber space to recover the
bandwidth properties of the centered ones in Equations (4) and (7). However, the non-centered schemes
suffer from numerical instability. Therefore, in the case of strong flow gradients near wall boundaries, explicit
centered filtering of lower order can optionally be used to ensure this numerical stability.

2. Non-reflecting boundary conditions

Inlet and outlet boundary conditions are based on the Thompson’s characteristic boundary conditions.32

The conditions are supposed to locally be one-dimensional and inviscid. Then, the convective terms in the
boundary-normal direction are split into several waves with different characteristic velocities. Finally, the
unknown incoming waves are expressed as a function of known outgoing waves. The 3-D far-field radiation
boundary conditions generalized by Bogey and Bailly33 are applied on the boundaries to which only acoustic
perturbations are reaching.

V. Canonical test problems

In this Section, several canonical problems are reported. These cases involve classical problems encoun-
tered in computational aeroacoustics (CAA) as well as in computational fluid dynamics (CFD).

A. Shock-capturing properties

The conservative and shock-capturing properties of the proposed algorithm are evaluated on classical 1-D
shock tube and 2-D inviscid flow with discontinuities. The interaction shock/vortex is also retained to check
that the non-linear procedure does not damage the bandwidth properties of the spatial discretization.

1. One-dimensional shock tube

(a) (b)
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Figure 7. Comparison between analytical (-) and numerical (+) solutions for the Sod’s shock tube with 100
cells: (a) density; (b) pressure.

First, the classical 1-D Sod’s shock tube is considered: results are displayed in Figure 7 with CFL = 0.5
and σf = 0.2. Only 100 cells (∆x = 1/100) are used for the computational domain [−0.5; 0.5] as in Jiang
and Shu.34 The third shock wave is very well represented with a minimum of diffusion. The second contact
discontinuity is well located by the algorithm with a diffusive character. Only the end of the first rarefaction
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wave is not well located. On the pressure variable, small classical Gibbs oscillations are observed upstream
the position of the shock wave.

2. Two-dimensional Mach 3 wind tunnel with a step

The second well-known test case is the Mach 3 wind tunnel with a step studied by Woodward and Colella.35

The problem is initialized with a inviscid Mach 3 flow in the wind tunnel. Reflective boundary conditions
are applied along the walls, whereas the inflow and outflow conditions are applied via the characteristics. No
specific treatment is used for the singularity at the corner of the step. The grid resolution is the same as the

x

y

0 0.5 1 1.5 2 2.5 3
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0.2

0.4

0.6

0.8

1

Figure 8. Inviscid 2-D Mach 3 flow past a step: density contour at t = 4.

one used by Woodward and Colella:35 Nξ × Nη = 240 × 80. Density contours with CFL = 0.8 and σf = 0.6
are represented in Figure 8 exhibiting multiple shock reflections and interactions between different types of
discontinuity. The locations of shocks are accurately represented. Kelvin-Helmholtz oscillations generated
at the triple point are clearly visible. The generated waves propagate downstream and are refracted by the
second and third reflected shocks. In addition, small Gibbs oscillations are observed due to the high-accuracy
of the spatial scheme.

3. Two-dimensional shock/vortex interaction

This test case describes the interaction between a stationary shock and an inviscid vortex.34 The compu-

(a) (b)
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Figure 9. Inviscid vortex/shock interaction, pressure iso-contours: (a) thirty contours from 1.02 to 1.4 at
t = 0.35 and (b) thirty contours from 1.1 to 1.3 at t = 0.8.

tational domain is taken to be [−1, 1] × [−0.5, 0.5]. A stationary Mach 1.1 shock normal to the x axis is
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located at xs = −0.5. Its left side is (ρ, u, v, p)L = (1, 1.1
√

γ, 0, 1) and its right side is obtained with the
Rankine-Hugoniot relations. A vortex is superposed to the flow and centers at (xc, yc) = (−0.75, 0). Ac-
cording to,34 the vortex is described as a perturbation of the velocity (u, v), the entropy S = ln(p/ργ) and
the temperature T = p/ρ of the base flow:







δu = ǫaeα(1−a2)(y − yc)/r

δv = ǫaeα(1−a2)(xc − x)/r

δS = 0

δT = (1 − γ)ǫ2e2α(1−a2)/4αγ

with







a = r/rc

r =
√

(x − xc)2 + (y − yc)2

rc = 0.05

ǫ = 0.3

α = 0.204

The computation is performed with an uniform grid of 251× 101 points and with CFL = 0.9. The upper
and lower boundaries are set to be reflective. The results plotted in Figure 9 are in good agreement with
the one obtained in.36 An accurate vortex/shock resolution is obtained.

B. Multi-domain approach

The use of overlapping regions can generate spurious acoustic waves as it has been observed by Desquesnes
et al.13 In the present paper, the influence of the polynomial order on the accuracy of the optimized finite-
difference scheme and on the generation of spurious acoustic waves is characterized. Two numerical test cases
are retained: the convection of an inviscid vortex through overset regions and the diffraction of a monopolar
acoustic source by a cylinder.

1. Two-dimensional advection of a vortex through interpolation zones

The vortex is defined by the initial conditions using the following values:






ρ = 1

u = M∞ + y ǫ exp

(

− log (2)

α2
(x2 + y2)

)

v = x ǫ exp

(

− log (2)

α2
(x2 + y2)

)

p =
1

γ

where M∞ = 0.5 is the free-stream Mach number, ǫ = 0.01 is the vortex strength and α = 3∆x is the
Gaussian half width. The computational domain composed by three uniform component grids connected by

(a) (b)

Figure 10. Overlapping grid: (a) general view; (b) detailed view of the center of an overlapping region (y = 0).

two overlapping regions, is displayed in Figure 10 (a). The left and the right grids contain Nξ ×Nη = 51×51
points. The centered grid consists of Nξ ×Nη = 51×52 and is shifted by half a grid size length in x-direction
such as displayed in Figure 10 (b). This avoids interpolation points to coincide with grid points in the zone
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of the vortex travel. The radiation boundary conditions are applied to all boundaries. Five simulations
are done with varying interpolation order ranging from 2 to 10. For all computations, we fix CFL=0.25 to
avoid numerical errors due to the time integration. The simulations are carried out for 800 iterations, that
is the time required to convect the vortex over 100∆x and to ensure the transit through the two overlapping
regions.

Figure 11 displays a sequence of the instantaneous pressure field when the vortex, characterized by
a pressure minimum, meets the first overlapping region. Figures 11 (a), (b) and (c) are obtained using
Lagrangian polynomial order Norder = 2, 6 and 10 respectively. The acoustic wave leaving the computational
domain at the first and second instant is due to an adaptation of the pressure field to the velocity field
at the beginning of the simulation. Using the second-order interpolation, strong acoustic disturbances are
generated and contaminate the physical solution. Those parasite waves are significantly reduced when using
sixth-order Lagrangian polynomials and disappear when a tenth-order interpolation scheme is used. This
non-linear numerical example supports the linear analysis performed previously.

(a)

(b)

(c)

Figure 11. Iso-contours of the instantaneous pressure field computed in the left grid during the passage of the
vortex through the overlapping region using Lagrangian polynomials of order: (a) Norder = 2; (b) Norder = 6
and (c) Norder = 10.

In order to quantify the generation of spurious acoustic perturbations, the time evolution of the L2 norm
of the residual pressure in the left grid has been computed:

Rp =

√
√
√
√ 1

NξNη

Nξ,Nη∑

i,j

p′2i,j .

This residual obtained with the overset-grid approach is compared to the reference single-block computation
in Figure 12. The peak observed during the first 200 iterations for all setups is associated to the transitional
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Figure 12. (a) Time evolution of the residual pressure Rp in the left grid. (b) Detailed view on the residual
pressure; Rp of the single-block computation (reference solution); solution obtained with overset grids
using different interpolation orders: + Norder = 2, ◦ Norder = 4, Norder = 6, △ Norder = 8,
▽ Norder = 10.

pressure pulse. The decrease of the residual pressure, indicates that this pressure pulse leaves the compu-
tational domain without any spurious reflections. When the vortex hits the overlapping zone (Nit = 200),
the residual pressure obtained with second-order polynomials shows a significant increase and confirms the
generation of acoustic waves observed in Figure 11 (a). Using fourth-order polynomials the reflections are
only visible in a zoom on the last 600 iterations shown in Figure 12 (b). For orders higher than 6 the residual
pressure evolves like in the single-block computation and the reflections are negligible.

Finally, to quantify the error on the aerodynamic field, the L2 norm of the difference between the exact
and the computational swirl velocity when the vortex has reached its final position at x = 100 ∆x is
considered. This error is computed along the x-axis at y = 0 such as:

Lv =

√
√
√
√ 1

Nξ

Nξ∑

i

vi|2y=0.

The Lv values normalized by the single-block result are plotted in Figure 13. It reveals that for polynomial
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B

Figure 13. L2 norm of the error of the swirl velocity normalized by the L2 obtained for the computation on a
single block.

orders higher than 6 the accuracy of the numerical algorithm is only governed by the spatial and time
integration errors: the interpolation error becomes negligible. In order to reduce the effort in CPU and
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storage, the order of polynomial interpolation is limited to eighth-order for 2-D problems and to sixth-order
for 3-D problems in the present work.

2. 1-D shock tube with 2-D overlapping grids

The preservation of the present high-order algorithm via the overset-grid strategy for CFD problems has been
discussed in the previous Section. However, as the interpolation procedure does not ensure the conservativity
property of the global algorithm, it is necessary to evaluate the damage caused by this process on the
computation by revisiting for instance the Sod’s shock tube computed previously on a single block. Consider

(a) (b)
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ρ

g1 g2 g1 g2 g1

Figure 14. Computation of the Sod’s shock-tube with overlapping grids: (a) general view of the computational
domain with the two grids; (b) comparison between analytical (-) and numerical (*) density profiles at y = 0.

now the 2-D computational domain: [−0.5; 0.5]×[−0.5; 0.5], composed by two component grids: one Cartesian
g1 with ∆x = ∆y = 1/100 and one circular g2 plotted in Figure 14 (a). Eighth-order Lagrangian polynomials
are used for the communication between the two component grids. The computation is then performed with
CFL=0.5 and σf = 0.2. According to Figure 14 (b), the numerical density profile at y = 0 is in good agreement
with the analytical one except for the end of the first rarefaction wave where a spurious undershoot is present
due to the passage of the second contact discontinuity through the overlapping-grid zone. However, the wave
speeds are well retrieved even with the interpolation procedure. The vertical lines represent the limit between
the two component grids.

3. Diffraction of monopolar acoustic source by a cylinder

This test case is issued from the second CAA workshop37 and serves to check if sixth-order Lagrangian
polynomials are sufficient to recover the accuracy of the high-order finite-difference scheme when only acoustic
perturbations are involved. The numerical setup is represented in Figure 15. The 2-D Euler equations are
solved in non-dimensional form. The reference length scale is the diameter of the cylinder d. A Gaussian
shaped source is placed at (xs, ys) = (4, 0):

S = ǫ sin (ωt) exp

[

ln (2)
(x − xs)

2 + (y − ys)
2

b2

]

,

where the angular frequency is given by ω = 8π and the Gaussian half-width by b = 0.2. Originally the test
case proposes to solve the linearized Euler equations. For the non-linear Euler equations, a sufficiently small
source strength ǫ has to be introduced, in order to avoid non-linear effects. In this work ǫ = 1 × 10−6 has
been chosen. For initial conditions air at rest at the pressure p0 = 1/γ and with the density ρ0 = 1 is taken.
The wave length associated to the source is λ = c0/4 = 0.25. Note that the source is non compact since the
wave length is of the same order as the source size.

A first simulation is done using a single cylindrical grid. The grid contains Nr×Nθ = 781×751 = 5.9×105

grid points which are spaced uniformly in r- and θ-direction. The number of points in the azimuthal direction
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Figure 15. Configuration for the diffraction test cast: the time harmonic monopolar source is placed at point
S. The directivity D(θ) will be measured on a arc at r/d = 7.5, π/2 ≤ θ ≤ π.

Nθ is chosen to ensure a wave to be resolved by 7 points at r/d = 7.5. The number of points in radial direction
Nr is taken to respect a ratio ∆r/∆θ = 1.5 at the cylinder wall. The directivity given by:

D(θ, r) = r
1

T

T∫

p′(θ, r)2 dt

is computed on a arc with r/d = 7.5 and π/2 ≤ θ ≤ π and is compared to the analytical solution of the
problem. The computed curve and the analytical curve compare well in Figure 16.
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Figure 16. Directivity D(θ) = r < p′2 > at r/d = 7.5: computed solution; analytical solution.

Figure 17 (a) shows the simulated fluctuating pressure field. The acoustic waves coming from the non-
compact source generate a diffraction field. A silent zone behind the cylinder can be observed.

In a second simulation the same test case is performed using the overset-grid approach. The overset
grid is composed of 2 grids: one cylindrical grid and one uniform grid. The uniform grid is generated to
resolve acoustic wave with 7 points per wave length ∆x = ∆y = λ/7 = 1/28. The uniform grid is extended
−10 ≤ x, y ≤ 10. The cylindrical grid is spaced uniformly in azimuthal and radial direction and is limited
by the outer radius ra/d = 1.5. In the radial direction the grid length is chosen to be λ/13 and the number
of grid points in azimuthal direction is taken to ensure that the aspect ratio of the radial and azimuthal grid
spacing is ∆r/∆θ ≈ 1.1. The overset grid contains 3.2 × 105 grid points, 45% less grid points than used for
the single-block computation.

Figure 17 (b) shows the fluctuating pressure field for the overset grid using sixth-order interpolation
polynomials. Even in the cylinder near region, the diffracted field is very similar to the reference single-block
computation. The acoustic waves propagate through the overlapping region without generating spurious
reflections. In Figure 18, the quantity D(θ, r) along a line defined by θ = π/2 and 0.5 ≤ r/d ≤ 10 is com-
pared with the analytical solution for the interpolation order of 2 and 6. Use of second-order polynomials
leads to large discrepancies in the near cylinder region. For higher orders than six, the error made by the
interpolation procedure tends to zero.
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(a)

(b)

Figure 17. Diffraction of a non-compact source by a cylinder: fluctuating pressure field (color scales ≤ 10−10

Pa): (a) obtained by the single-block computation; (b) obtained using overset-grid approach and sixth-order
interpolation polynomials. The solid line stands for the boundary of the cylindrical grid.
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Figure 18. Directivity D(θ, r) at 0.5 ≤ r/d ≤ 10 and θ = π/2 for different order of interpolation: (a) second-order
(b) sixth-order; —— computed solution; + analytical solution.
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In this Section, the overset-grid approach has been successfully applied and the results compare very well
with the analytical solution. The test case reveals that sixth-order Lagrangian polynomials are sufficient
when acoustic perturbations are involved in order to maintain the global accuracy of the 11-point finite-
difference scheme.

VI. Application on moving grids

For the application of the algorithm for moving/deforming grids, the approach retained in this paper to
compute the time metrics in order to provide metric cancellation and free-stream preservation is based on
the one proposed by Visbal and Gaitonde.18 The time derivative in Equation (1) is split into two parts and
the second term is evaluated using the GCL condition. And, finally, the following equation is solved with
the high-order algorithm presented in Section III:

∂τU + J

{

∂ξE + ∂ηF + ∂ζG − U

[

∂ξ

(ξt

J

)

+ ∂η

(ηt

J

)

+ ∂ζ

(ζt

J

)]}

︸ ︷︷ ︸

R

= 0 (16)

The time metrics are evaluated using the grid velocity ~Ve = (xτ , yτ , zτ )T via the following relations:







ξt

J
= −

(

xτ
ξx

J
+ yτ

ξy

J
+ zτ

ξz

J

)

ηt

J
= −

(

xτ
ηx

J
+ yτ

ηy

J
+ zτ

ηz

J

)

ζt

J
= −

(

xτ
ζx

J
+ yτ

ζy

J
+ zτ

ζz

J

)

(17)

These relations are similar to the classical ALE (Arbitrary Lagrangian Eulerian) expression in a finite-volume
framework. The spatial derivative in Equation (16) are approximated by the spatial scheme in Equation (4)
and the time integration is performed with RK4 yielding:

U
(l)
i,j,k = Un

i,j,k − ∆τβ(l)R(l−1)
i,j,k ∀l ∈ {1, ..., 4} (18)

with U (0) = Un and Ri,j,k the discretization of the residual R. The Courant-Friedrich-Lewy number in the
ξ-direction is defined by:

CFLξ =
∆t
(

|ξt + Θξ| + c||~∇ξ||
)

∆ξ
(19)

and the numerical stability requires to satisfy the following relation:

CFL = max(CFLξ, CFLη, CFLζ) ≤ 1

In the same way, the mesh displacement is linked to a new stability requirement. In order to introduce
this new stability constraint, a 1-D model is considered. In the physical space, the time and spatial variables
are independent which is equivalent to a non-linear advection equation in the computational domain using
the chain-derivative rules:

dx

dt
= 0 ⇐⇒ ∂τx + ξt∂ξx = 0

For this equation, the stability constraint is based on the ratio Cξ =
|ξt|∆τ

∆ξ
. According to Equations (17)

and (19), it follows that:
|dξ|
∆ξ

||~∇ξ|| < CFLξ (20)

where dξ = ~Ve.~∇ξ/||~∇ξ|| is the displacement in the ξ-direction. Thus, the mesh displacement is limited and
the maximal allowed value is driven by the CFL value linked by the updating of the flow variables.
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In order to ensure the synchronization between the flow variables and the grid coordinates, the RK4
scheme is also used for the updating of the grid coordinates:







x
(l)
i,j,k = xn

i,j,k + ∆τβ(l)(xτ )
(l−1)
i,j,k

y
(l)
i,j,k = yn

i,j,k + ∆τβ(l)(yτ )
(l−1)
i,j,k

z
(l)
i,j,k = zn

i,j,k + ∆τβ(l)(zτ )
(l−1)
i,j,k

(21)

for l ∈ {1, .., 4} and with x(0) = xn, y(0) = yn, and z(0) = zn.
As the relative position of the overlapping grids changes continuously during the flow simulation, the

interpolation data used for the communications between the component grids must be updated at each stage
of the RK4 scheme. In practice, this updating is performed via the overlapping grid generator Ogen.30 The
validation procedure of the application of our high-order algorithm on dynamic meshes is performed in two
stages. The first one concerns single-block computations in order to validate the calculation of the time
metrics and the grid coordinate updating. Then, multi-block computations is used to couple the updating
of the interpolation data with the numerical algorithm.

A. Inviscid vortex advection

The first validation test case is the vortex advection on a dynamically deforming 2-D mesh. The computa-
tional domain is taken as [−2, 2]× [−1, 1]. Initially, an uniform mesh is retained with ∆x0 = ∆y0 = 1/100.
The grid speed is analytically specified by the following equations:







(xτ )i,j = 2πωAx∆x0 cos(2πωt) sin

(

nxπ
yi,j(0) − ymin

ymax − ymin

)

αx

(yτ )i,j = 2πωAy∆y0 cos(2πωt) sin

(

nyπ
xi,j(0) − xmin

xmax − xmin

)

αy

(22)

with

αx = exp

(

−4 log(2)
xi,j(0)2 + yi,j(0)2

(xmax − xmin)2

)

αy = exp

(

−4 log(2)
xi,j(0)2 + yi,j(0)2

(ymax − ymin)2

)

The grid coordinates are then provided via the RK4 scheme with the assumption that the grid speed is
constant during a time step:







x
(l)
i,j = xn

i,j + ∆τβ(l)(xτ )n
i,j

y
(l)
i,j = yn

i,j + ∆τβ(l)(yτ )n
i,j

∀l ∈ {1, .., 4}

In fact, only the domain [xmin, xmax] × [ymin, ymax] is dynamically deformed. The different parameters
are: Ax = Ay = 2, nx = ny = 6, xmin = ymin = −0.5, xmax = ymax = 0.5 and ω = 2.

Two computations are performed: one on a static grid, the initial uniform grid, and the other with the
grid velocity expressed in Equation (22). These two computations are performed with CFL = 0.5 designed
with the initial non deformed grid in order to underline the effect of the mesh dynamic deformation on
the high-order discretizations performance. The vortex is initially placed on (xc, yc) = (0, 0) and results
given in this section are visualized when the vortex returns at its initial position. Comparison is given in
Figures 19 and 20. The velocity fields in the static and deforming cases are similar which makes it possible
to preserve the high-order schemes propagation properties on dynamically deforming meshes. The profile
of the swirl velocity on y = 0 in Figure 20 shows the excellent agreement between the two computations.
In addition, the dynamic deformation of the mesh implies a kind of numerical dissipation in the spatial
high-order discretization characterized by a damping in the profile amplitude as in Visbal and Gaitonde.18
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(a) (b)

Figure 19. Comparison of the swirl velocity field: (a) in the static case ; (b) in the deforming case.
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Figure 20. (a) Snapshot the grid deformation; (b) effect of the mesh dynamic deformation on the swirl velocity:
. static case ; - - deforming case.
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B. Cylinder advection in an inviscid uniform flow

The advection of a cylinder in a uniform flow at rest is now considered. The computational domain taken as
[−2, 2]× [−2, 2] is divided in two grids. A cylindrical body-fitted grid moves with respect to a fixed Cartesian
uniform grid with ∆x = ∆y = 1/50. The overlapping meshes are plotted in Figure 21. Initially, the center
of the cylinder is located at xc = 0.85.

Figure 21. General view of the computational domain for the cylinder advection.

At every time step, a constant displacement of the cylindrical domain in the x-direction is imposed:
dx = −0.08∆x. Then, the mesh velocity is computed using the relation x(l+1) − x(l) = dx/4 for every stage
of the RK4 scheme. The computation is performed with CFL = 0.5. Thus, the cylinder is shifted at the
Mach number Me ≈ 0.3. The radiation boundary conditions are applied to all the boundaries of the fixed
Cartesian domain. Then, at the wall, a no-slip condition is used following the displacement of the cylinder.

The velocity field of the inviscid flow over an moving cylinder is plotted in Figure 22 for three different
positions. First, a transient acoustic wave is generated by the initial motion of the cylinder. Then, the
wave leaves the computational domain and a symmetric stationary solution with respect to the cylinder is
reached.

(a) (b) (c)

Figure 22. Time evolution of the streamwise velocity around the cylinder.

VII. 3-D complex applications

Two flow problems of industrial relevance are presented to show the ability of the algorithm to treat
complex physical patterns in more realistic geometries.

A. Ducted cavity flow

The LES of the flow over a ducted cavity is performed with the proposed algorithm, see Figure 23. This
configuration is characterized by a coupling between the self-sustained cavity oscillations and the transverse
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acoustic duct mode. For example, at Mach number M∞ = 0.20, the second cavity mode is coupled with
the first pipe mode. The coupling phenomena is well reproduced numerically. More details concerning the
computational issues and the physical analysis are given in.38, 39

(a) (b)
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Figure 23. Ducted cavity flow for M∞ = 0.20: (a) spanwise average of the vorticity modulus ; (b) pressure
fluctuation in the duct

B. Sudden expansion

The LES of a transonic flow passing a sudden expansion in a duct is presented, see Figure 24. In this
problem, strong interactions between shock oscillations internal, aerodynamic noise and acoustic duct modes
are present. The validation of the numerical results via the comparison with experimental results is shown
in details in.40

(a) (b)

Figure 24. Sudden expansion of a transonic flow for pressure ratio τ = 0.15: (a) instantaneous numerical
Schlieren ||∇ρ|| ; (b) iso-contours of the mean density

VIII. Conclusion and future works

A numerical method has been described for performing compressible LES in CAA applications. The
scheme is based on a 11-point explicit optimized finite-difference algorithm in conjunction with a 11-point
optimized spatial low-pass filter. A non-linear filter is implemented to capture discontinuities in compressible
flows. This filter is based on a modified Jameson sensor to detect the location of shock waves. In order to
address complex geometrical configurations, overlapping grids are used and the communications between
domains are performed via high-order Lagrangian interpolation. The validation procedure has shown the
ability of the algorithm to capture discontinuities without damaging its spectral behavior. The high-order
overset-grid technique has proved to maintain the algorithm accuracy on both classical CFD and CAA ap-
plications even for moving grid applications. For compressible flows with complex physical interactions, the
LES using the present algorithm well predicts the flow/acoustics coupling and the turbulence/shock interac-
tions. Thus, the present scheme appears to provide a robust and accurate tool for performing LES of realistic
compressible flows for CAA applications.

A more detailed validation procedure is in progress to check the accuracy of the present algorithm for
moving grids. To address fluid/structure interaction, the coupling between flow patterns and structure
dynamics will be studied with the aim of preserving the high-order accuracy of the present solver. The
choice of the time integration method is also to be considered. In the explicit method used in this work, the
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time step is imposed by stability constraints. However, the time step needed to respect the physical time
scales of the turbulent flow may be larger. This is the case for turbulent wall-bounded flows, for example.
The use of implicit time integration method would make it possible to circumvent the numerical stability by
using a time step only driven by the flow physics.21, 41
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A. 11-point scheme and filter coefficients

s0 0.0 d0 0.2150448841109084

s1 0.872756993962667 d1 −0.1877728835894673

s2 −0.286511173973333 d2 0.1237559487873421

s3 0.090320001280000 d3 −0.0592275755757438

s4 −0.020779405824000 d4 0.0187216091572037

s5 0.002484594688000 d5 −0.0029995408347887

Table 2. Scheme and filter coefficients proposed by Bogey and Bailly10

B. Finite-volume formulation of the 11-point scheme

In a similar way as Popescu et al.,42 a finite-difference scheme can be recasted in a finite-volume frame-
work. We consider the following non-linear conservation law:

∂tu + ∂xf(u) = 0. (23)

A finite-difference scheme can be written in the classical form:

∂xf(u)|i ≈
1

∆x

q
∑

m=−r

smf(ui+m).

On the other hand, a finite-volume discretization leads to:

d

dt

∫ xi+1/2

xi−1/2

u(x, t)dx + fi+1/2 − fi−1/2 = 0.

Thus, a finite-volume formulation of the finite-difference scheme is:
q
∑

m=−r

smf(ui+m) = fi+1/2 − fi−1/2,

with

fi+1/2 =

q
∑

m=−r+1

βmf(ui+m).

Finally, the finite-volume coefficient βm can be expressed using the finite-difference ones:
{

βq = sq

βm − βm+1 = sm −r + 1 ≤ m ≤ q − 1

Thus:

βm =

q
∑

j=m

sj (24)

for −r + 1 ≤ m ≤ q
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