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A High-Order Difference Method
for Differential Equations3"

By Robert E. Lynch and John R. Rice

Abstract.   This paper analyzes a high-accuracy approximation to the mth-order linear
ordinary differential equation Mu = f.   At mesh points, U is the estimate of u; and U

satisfies MnU = Inf, where MnU is a linear combination of values of U at m + 1 sten-
cil points (adjacent mesh points) and Inf is a linear combination of values of f at J
auxiliary points, which are between the first and last stencil points.   The coefficients

of Mn, In are obtained "locally" by solving a small linear system for each group of
stencil points in order to make the approximation exact on a linear space S of dimen-

sion L + 1.  For separated two-point boundary value problems, C is the solution of an n-

by-n linear system with full bandwidth m + 1.   For S a space of polynomials, exis-

tence and uniqueness are established, and the discretization error is 0(h ); the

first m — 1 divided differences of U tend to those of u at this rate.   For a general set

of auxiliary points one has L = J + m; but special auxiliary points, which depend up-

on M and the stencil points, allow larger L, up to L = 2J + m.   Comparison of opera-

tion counts for this method and five other common schemes shows that this method is

among the most efficient for given convergence rate.   A brief selection from extensive

experiments is presented which supports the theoretical results and the practicality of
the method.

1. Introduction.  We consider some aspects of a new flexible finite-difference
method which gives high-accuracy approximation to solutions u of linear differential
equations Mu = f subject to rather general initial or boundary conditions.  The ap-
proximation to u is taken as U defined at mesh points as the solution of a system of
difference equations MnU = /„/together with appropriate boundary conditions; n is
used to identify a particular partition of the domain of u. Mn is a difference operator
and MnU is a linear combination of values of U at a small** number of mesh points
of a standard stencil; the value of I„fis equal to a linear combination of values of/
at several auxiliary points close to the stencil points and always inside the domain
of u.

With appropriate normalization of the coefficients of Mn and /„, then /„/ is / +
OQi), where h is a norm of the partition; and thus, the operator In can be regarded
as a perturbation, or an expansion, of the identity operator as is commonly done for
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334 ROBERT E. LYNCH AND JOHN R. RICE

such operators in Approximation Theory.  We have named this method High-Order
Difference approximation with Identity Expansions which leads to the pronounceable
acronym HODIE.

In this paper the application of the HODIE method to ordinary differential
equation problems is treated.  The analysis and results presented here give insight into
the more complicated-and more important-application of HODIE to the solution of
partial differential equations.  Results about the multi-dimensional applications are
given by Lynch and Rice [1975], [1977], [1978a], [1978b], by Lynch [1977a],
[1977b], and by Boisvert [1978] ; more detailed analyses will be presented at a later
time.  The method was discovered by R. E. Lynch during a study of methods for ap-
proximating solutions of elliptic partial differential equations in two independent vari-
ables.

Some of the key features of the method include:  (a) the small number of sten-
cil points which leads to a matrix with small bandwidth; (b) the coefficients of the
operators Mn, In are determined so that the approximation is exact on a linear space
of functions and their values are obtained by solving a small local system of linear
algebraic equations whose size is fixed independent of the mesh length; (c) high ac-
curacy is obtained by the use of values of /at the auxiliary points rather than with
additional stencil points; (d) a variety of boundary conditions can easily be approxi-
mated with high accuracy; (e) the method is computationally efficient.

Although the difference equation is similar to one obtained by the Mehrstellen-
verfahren (or the "Hermitian" method) of Collatz [1960] after one replaces derivatives
of/with divided differences, the method of obtaining the coefficients of the difference
equation is different from that of Mehrstellen verfahren.

For ordinary differential equations, the HODIE method gives the same difference
equations as obtained by Osborne [1967] who generalized the St^rmer-Numerov
scheme. Osborne was pessimistic about its practicality; he did not prove convergence
results.  More recently and independently, Doedel [1976], [1978] presented an es-
sentially equivalent method for the ordinary differential equation case and he proved
some results.  Doedel also presents results about difference schemes which use more
than the minimal number, m + 1, of stencil points for an wrth-order ordinary differen-
tial operator; we do not consider this case.  The results presented below are more com-
plete than those of Doedel for the cases we treat.  Both Osborne's and Doedel's ap-
proaches lead to different and less efficient implementations than the one described
below.

This paper is briefly summarized as follows.  In Section 2, a description of the
HODIE method for ordinary differential equations is presented and some simple ex-
amples are given.   In Section 3, a bound on the truncation error is given when the
HODIE method is exact on PL, the space of polynomials of degree at most L.  For
an rath-order operator and when the location of the auxiliary points is independent
of M, the order of the truncation error is L - m + 1.  Higher-order ("superconver-
gence") is obtained with special auxiliary points ("Gauss-type points") whose location
depends upon M.   In Section 4, approximation for the simple operator M = dm/dtm
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A DIFFERENCE METHOD FOR DIFFERENTIAL EQUATIONS 335

is treated in detail.    A direct relationship between the truncation error and quad-
rature error is demonstrated and Gauss-type auxiliary points are introduced and
analyzed.    These Gauss-type points are the zeros of polynomials orthogonal with
respect to an integral inner product with weight function a polynomial 5-spline.
In Section 5, we extend the results of Section 4 to the general linear variable
coefficient differential operator with leading term dm/dtm.    In Section 6, we
show that the HODIE method gives a stable difference approximation.    In Sec-
tion 7 we show that the order of the discretization error is equal to the order of the
truncation error for the initial value problem; in Section 8 the same result is shown
for the separated two-point boundary value problem.  In these convergence results,
the convergence and rate of convergence applies for the first m - 1 divided differences
of U to those of u.  Section 9 contains a comparison of the computational effort for
the HODIE method and five other methods; this suggests that the HODIE method is
among the most efficient methods available for solving second-order boundary value
problems.  Finally, in Section 10, we give a small sample of extensive experimental
results which verify that the HODIE method works as the theory predicts and that
there are no unforeseen difficulties in its implementation.  Numerical examples indicate
that the use of the Gauss-type auxiliary point for the operator Dm, which can be cal-
culated in advance for a uniform mesh and which are then independent of the mesh
size, can yield enhanced accuracy for the general rath-order problem with operator M.

2.  Approximation of Differential Operators. We construct and analyze high-ac-
curacy (ra + l)-point difference approximation to rath-order differential equations
M[", f] =0 subject to appropriate initial or two-point boundary conditions Mk[u, ck]
= 0, k = 0, . . . , m - 1, where

(2-la) M [u, f] it) = Muit) - fit),      A<t<B,

m-l
(2-lb) Mu(t) = Dmu(t)+ -£  a/itpuit),      D = d/dt,

1=0

(2-lc) Mfc[u, ck] = M*u(A) + Mku(B) - ck,      k = 0, . . . , m - I,

m-l
(2-ld) ^uit) = £  a^itpyuit).

(=0

For the initial value problem, ak ¡(A) = 0 if í =É k, akk(Á) = 1, and ak ¡(B) = 0, i, k
= 0, . . . , m - 1; for the separated two-point boundary value problem, either Mku(A)
or Mku(B) is zero, k = 0, . . . ,m - I.

The interval A < t < B is partitioned into n subintervals by n + 1 mesh points
t \ A = t0 < tx < ■ ■ • < tn = B, with m < n.  The approximation U to the solution
u is obtained at these mesh points as the solution of a system of rath-order difference
equations subject to appropriate boundary conditions.

The approximation M„ [u, f\ = Mnu - Inf of the differential operator M is ob-
tained locally by use of a pair of point sets and a set of basis functions. The m + 1
stencil points are ra + 1 adjacent mesh points:   lk = (tk, tk+ x, . . . , tk + m), and we
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336 ROBERT E. LYNCH AND JOHN R. RICE

set hk = (tk+m - tk)/m.   The difference operator Mn with coefficients a is

m
Mnuitk) = a/*?) E «*»./ö»+|.     "*+! s W*+i>.

1=0

The second set of points comprise / distinct auxiliary points rfc = (rk i, • • • , Tfc /),
subject to the restrictions tk < Tk t < • • • < Tky < rfe+m.  The identity expansion
/„ with coefficients ß is

J

I„fitk) = £ ftt,//*,/.      /*,/ =fi^k,j)-i=i
For a given / U is the solution of M„ [<7, /] = MnU - Inf = 0 subject to appropriate
boundary conditions.

The coefficients a, ß of the operators Mn and /„ are determined so that the ap-
proximation is exact on an (L + l)-dimensional linear space S of functions.  A basis
s0, sx, . . . , sL for S is chosen, and the coefficients are made to satisfy the HODIE
equations M„ [s¡, Ms¡\ = 0, / = 0, . . . , L; that is,

m J
(2-2)        (1/A*) £ akjSlitk+i) - Z 0*./*,(t*,/) = 0-      l = 0,...,L.

(=o /=i

The system (2-2) is homogeneous in the coefficients a, ß; hence, in addition to (2-2),
we take some convenient normalization equation such as

(2-3) (a)   k.,-1;   (b)   £l/3k>/l = l;   or(c)    Z%/= 1-
/ /

The first is used in actual computation since it simplifies the calculation.  The second
and third are useful at various places in the theoretical treatment.  It is a consequence
of the analysis in Sections 4 and 5 that the third normalization can be used.   Remarks
about bases and efficient methods of solving the HODIE equations (2-2) are given in
Section 9.

Boundary conditions for U are obtained in a similar way; they are treated in
Sections 7 and 8.

The truncation error is defined with respect to a space of functions £ in terms
of the truncation operator

i2A) Tn [o] = M„ [o, Mo] - M [o, Mo] =Mno- In(Mo),      o G 2.

For o G 2, the truncation error is the value of the max-norm of T [a], namely,
II Tn [o] II = maXfc I Tn [o] k I.  In Section 3, we obtain a bound on the truncation error
for the case that S is a space of polynomials and 2 is a space of sufficiently smooth
functions.

The truncation error is related to the discretization error, defined as the max-
norm of the error e = u - U at mesh points.  This is because if u G 2, then Mne =
Mnu - MnU = Mnu - IniMu) = Tnu; that is, e satisfies the equation Mne = Tnu.  In
Sections 7 and 8 we show with natural hypotheses and appropriate boundary condition
approximation, a bound on the truncation error yields a similar bound on the discreti-
zation error.
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A DIFFERENCE METHOD FOR DIFFERENTIAL EQUATIONS 337

Examples.  We consider a few examples for equal-spaced mesh points with spac-
ing h and the operator Mu = D2u + axDu + a0u.  It is sufficient to consider tk =
~h> tk+1 = 0, tk + 2 = h.   For brevity, we use a single subscripted notation for the
coefficients a, ß and the auxiliary points r.  For approximation which is exact on the
space S = ?L of polynomials of degree at most L, we use the Lagrange basis for qua-
dratic interpolation together with elements which are zero at the three stencil points,
specifically:

s0it) = tit - h)H2h2),   sxit) = ih2 - t2)/h2,   s2it) = tit + h)H2h2),

slit) = t'-2it2-h2)lh>,      1 = 3,4, ...,L.

For normalization, we take the sum of the ß's to be equal to unity.  After division
by appropriate powers of h, the HODIE equations (2-2) and the normalization equa-
tion become

j
/ = 0   0 = a0 - £  0,.{1 + a^TJHt, - A/2] + a0(T¡)[T¿ - t/,]/2},

i=i

J

1=1    0 = ax - Z ßji-2 + a1(T/)[-2r/] + a0(Tj)[h2 - if]},
1=1

J

1 = 2    0 = 0,-1(1/1+ ax(r^[rj + A/2] + «„(^[t/ + ryA] ¡2}

J
normalization 1 = £ ft,

J

1 = 3   0 = Z ßji 6ry + ayirf)[3if - h2] + a0(Tj)[rf - ryA2]},

1 = 4    0 = Z  ß,-{ 127-; - 2A2 + ax(r¡)[4r] - 2t/i2] + a0(Tj)[T¡ - rfh2] },
/=!

/
/ = 5    0 = lí,.{20t-; - 6t/,2 + ax(T¡)[5T¡ - 3t/,2] + a0(Ti)[rf - rfh2]},

i=l

and so on.

Note that the first three equations give the a's in terms of the ß's.  Also note that in
all the equations above, the terms which involve the coefficients ax and a0 are order
A and A2, respectively, compared with the leading term in each of the curly brackets.

For specific examples, we consider M = D2 in which ax = a0 = 0.  One obtains
immediately that a0 = a2 = 1, ctj = -2, so that the difference operator Mn is the"
usual divided difference approximation for the second-derivative operator

MnU(tk) = (Uk - 2Uk+, + Uk+2)/h2 = U[tk, tk +h,tk + 2A].
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338 ROBERT E. LYNCH AND JOHN R. RICE

However, the operator In changes when / or the locations of the auxiliary points
change.  Below 0(hp) denotes the truncation error with respect to the space of func-
tions 2 = Óp + 2^ of functions with continuous (p + 2)nd derivative.  Below, we also
abbreviate Infitk) with just /„/.

Example 2-1.  For / = 1 and - A = tk < rx < tk + 2 = h,rx =£ 0, the equation
for / = 3 is not satisfied [ax = a0 = 0] and with Inf = /(r, ) we obtain an 0(A)
scheme which is exact on P2.

Example 2-2. For / = 1 and rx = tk+x = 0, the equation for / = 3 is satisfied,
but the one for / = 4 is not satisfied, and with /„/ = j\tx) we obtain an 0(A2) scheme
which is exact on P3.

Example 2-3. For J — 2 and ~tx = t2 = A(l/6)1/2 we obtain an 0(A4) scheme
which is exact on P5 with /„/= [/(fi) + fit2)]/2.

Example 24. J = 3, exact on P5, 0(A4) St^rmer-Numerov approximation /„/

= [/(-A)+10/(0)+/(A)]/12.
Example 2-5. J = 3, exact on P7, 0(h6) approximation of Osborne [1967] /„/

= [5/(tj) + 14/Í0) + 5/(t3)]/24, -tx =t3= h(2/5)1'2.
Example 2-6. J = 5, exact on P,,, a new 6>(A10) approximation Inf = ßxf(rx) +

■■■ + M's).
ßx=ß5= 0.0516582578,       j32 = ß4 = 0.2394732407,     ß3 = 0.4177370031,

-tx = t5 = 0.8214405997A,    ~r2 = r4 = 0.4499203 525A,    t3 = 0.

Example 2-1. J = 3, exact on the space of cubic splines with joints at the equal
spaced mesh points (see, for example, Birkhoff and de Boor [1965, p. 189]), 0(A2)
approximation /„/= |/(-A) + 4f(0) + f(h)] /6.

To use these schemes for the Dirichlet problem, one solves the system

(2-5a) U0=u(A),    Un(B) = u(B),

(2-5b) iUk_x - 2Uk + Uk + x)/h2 =gk,      k = 1.n- I,
with

j
h = (B-A)/n,   tk=A + kh    and   gk= IJ(tk_x) = £ ß,f(A + kh + Tj),

i=i
where g differs from example to example.

For the initial value problem, the value of Du(A) = du(A)/dt is given.  One can
approximate this with the forward divided difference and by equating its value to a
linear combination of values of/, one can obtain higher accuracy (see Section 7).  Use
of polynomial spaces 5 and simplification leads to the pair of initial values for the so-
lution of the second-order difference equation (2-5b)

(2-5a') U0 = u(A),    Ux = u(A) + hDu(A) + h2g°/2,

and the following gives the value of g° for accuracy comparable to that for the
schemes given above:

Example 2-1'.  0(h), g° = J\A).
Example 2-2'.  6>(A2), £° = f(A + A/3).
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A DIFFERENCE METHOD FOR DIFFERENTIAL EQUATIONS 339

Example 24'.  0(A4),#0 = [9/L4) + 25/(4 + 2A/5) + 2j\A + A)]/36.
Example 2-5'.  0(h6),g° = ßxf(A + r,) + ß2f(A + r2) + ß^A + t3),

ßx = 0.4018638275,     ß2 = 0.4584822127,     (33 = 0.1396539598,

tx = 0.0885879595A,    r2 = 04094668644A,    t3 = 0.7876594618A.

Example 2-6'. 0(A10), g° = ßxf(A + f,)+••• + ß^(A + r$),

ßx = 0.1935631805, ß2 = 0.3343492762, ß3 = 0.2927739742,

j34 = 0.1478177401, ß5 = 0.0314958290,

71 =0.0398098571A, r2 = 0.1980134179A, r3 = 0.4379748102A,

t4 = 0.6954642734A, r5 = 0.9014649142A.

3.  Truncation Error for Polynomial Approximation.  We only consider approxi-
mation away from boundaries and approximation which is exact on a polynomial
space PL for some L > ra.   Results for approximation of boundary conditions are ob-
tained by an easy modification.  Results for other spaces, such as those appropriate
for approximation near singular points of differential equations, will be presented else-
where.

We use %k ,,/ = 0, 1, . . . , to denote distinct points such that tk < \k, < tk+m
and set \kj = ($k 0,. . . , %k]); we also set

(3-1) A?fc>/=        min        Hfc,,-^l.
i,q = 0,...,j,i¥=q

We use the polynomials

(3-2a) w(\k y; t) = ]J (t - ^q)/(J + l)\,     j = 0, I, . . . ;
<7 = 0

and, to simplify notation below, we set

(3-2b) w(Jk_x;t)=l.

We also use the Lagrange polynomial interpolation basis with respect to the points in

Id
(3-3) lr(JkJ; t) = wiXKj; t)/ [it - h,>'ilk,j-, h,r)\,      r = 0,..., j.

For all t between tk and tk+m, it follows from (3-2a) that Iwl is bounded above by a
constant times A;fc+1, and lw'(£fc •; %k r)\ is bounded below by a constant times
(A£k y. Then from (3-3) it follows that l/rl is bounded by a constant times
(Ak/A£fc y.  Similarly, there is a constant K which depends on / but does not depend
on Afc or \k ., such that for all t, tk < t < tk+m

\DfwiJk ,; 01 < KhÇi+ »,      / = 0, . . . ,/ + 1,
(34) _'

\mritk ■; t)\ < A7z'fc-'7A?'fc ,      i, r = 0, . . . , j.
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Because Tnu = Mnu - In [Mu]  involves derivatives of u only up to order
ra <Z,, it follows (see, for example, Theorem 2.1 of de Boor and Lynch [1966]) that
for

,    .   u G FL + 1 [tk, tk+m] = {v\DLv is absolutely continuous,
\j-j)

DL + lv is square integrable on tk < t < tk+m }

we have

(3-6a)
Tnu(tk)=t T„Vtfk,L->t)]k»itk,i)

,=o

+ /f! + m  Tn(t)tiitk,L->t, x)]kDL + luix)dX,

where

(3-6b) <7(¡fc)¿; t, x) = |(i -x)L+ - Z hÜk,L> mk,,-X?A /L\,

!(t - x)L    foxt-x>0,

0 for t - x < 0,

and where the subscript (t), as in Tn(t\, denotes that the operator is applied to a
function of t.

Suppose that the HODIE approximation is exact on the space PL of polynomials
of degree at most L so that the coefficients a, ß satisfy (2-2) for a set of basis ele-
ments for PL. Then because /,.(£,. L ; • ) G P¿, the sum in (3-6b) is equal to zero. The
sum in the definition (3-6b) of q is that element of PL which interpolates to (t - jc)+
at the points t = |fc -,/ = 0, . . . , L.  By taking ra + 1 of the points in %k L to be
the stencil points tk, one has q = 0 on the stencil points and hence M.rf = 0;
(3-6a) then reduces to

J t
(3-7a)     Tnu(tk) = -Z ßk,jStl + m Mit)q(tKL ; t, x)\t=r¡(.DL + 1u(x)dx,

where

M(t)lÜk,L> t, x)
(3-7b) }

ml L _ I
= Z «,(0 (' -*)+"''/(£ - 0! - £ i%k,L - x)L+D'ißkiL; t)/L\  .

,=0 / /=0 )

In (3-7a), points rk ¡, x, and those in \k L are between tk and rfc+OT. Therefore,
by (34) we can bound the quantity in curly brackets in (3-7b) by
hk-m(Kx + K2 [hk/A%k L]L), where KX,K2 axe constants which do not depend on
nk or %k L-  Consequently, if DL + 1u and the coefficients a¡ axe continuous, then

ir,**,)!<K3d + [hk/i^k,L]L)\j: %¡\\ny-+iuKhj¡-m+i,
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where ll-llM denotes the max-norm.  The constant K3 depends on max,. II a, II „, on L,
but not on hk or |fc L.

We have introduced the restriction that ra + 1 of the points in £fc L are the
stencil points in tk, the other L - m points in %k L are arbitrary, and we can choose
them to maximize Affc L. Clearly, this maximum depends only on the stencil points
and L.  For L > ra, set

RLitk) = Afc/max A£fc L where the maximization is over

t3"8) all points %kL such that tk < \k , < tk+m, I = 0, . . . , L,

and ra + 1 of the points £fcj/ are equal to tk+j,j = 0, . . . , ra.

Furthermore, set

(3-9) Hn =      max     (r/+M - t,)/m,
j=0,...,n—m

and we have the following

Theorem 3-1.   Suppose the coefficients ai of M are continuous. Let A = t0 <
tx < ■ • ■ < tn = B,n > ra, be a set of mesh points and Tk, k = 0, ...,«- ra, sets
of auxiliary points.   Suppose that for k = 0, . . . , n - m, there are coefficients ak ,-,
ßk ■ which satisfy (2-2) and (2-3b) for s0.sL,L> m,a basis for ?L.  Then there
is a constant K which depends only on B - A, the order m of M, L, and the coeffi-
cients a¡ such that for any u with continuous (L + l)st derivative

rnu(tk)\<K\l +      max      RL(tf)L 1 \\DL + 1u\\aoH^m + l,      k = 0,
j=0,...,n—m

, n - m.

Note that RL(tk) in (3-8) is related to a localized mesh ratio.  This is because
the stencil points lk axe included in \k L and thus RL(tk) exceeds hk/(tk + i - tk+i_x);
it also exceeds L/m, obtained for the case that the points in %k L axe equally spaced.
Consequently,

(3-10)    R^l^xnaxh,       max max   (tk + m - tk)/(tk+i - tk + i_x)\ ( /ra.
(       k=0,...,n-m\_i=l.m J)

4.   Analysis of the Special Case M = D™.  The main results about the special
case M = D"1 carry over to the general case of the variable coefficient operator M
in (2-1 b).  In this section, we consider in detail the special case.   To distinguish be-
tween the two cases, we use the superscript 0 for quantities which apply to the special
case, in particular, we use a°, ß°, M%, and 1% for the coefficients and the operators
when M = D™.

In (2-2) set M = D™, replace a, ß with et0, ß°, and use the following basis for
PL (see (3-2) and (3-3)):

!/,(7fc;r), i = 0,...,m,-
wi$k,i-i> 0,      i = m + I, . . . ,L,
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where
-
$k,i-x = tëk.O' • • ■ ' h,i-x)>the Points h.i ne distinct,

(4"lb) tk < É*,i < '*+„, and t»#/ = rfc+/,/ = 0, . . . , ra.

In this section we use the normalization (2-3c), and it is a consequence of the
analysis below that this is allowed, i.e. 2- j3. ¥= 0.  Note that Dmwi£k m_x ; t) =
Dmit - tk) ■ ■ ■ it - tk + m_x)/m\ = 1 so that (2-3c) can be written as

j
Zp1,/0mw(?fc,m_1;rfc)/.)=l.
7=1

Since the Lagrange basis element ',.(rfc; •) is in Pm, its rath derivative is a constant.
The HODIE equations for the special case then become

(4-2a) a°k ,/A* - [ml/Vft; tk+i)] Z ft,, = 0,      i = 0, . . . , m,

J

(4-2b)       Z fk.j^^k.m^i^^k.j) ' h,x>      l=\,...,L-m+l,
i=i

where S; ,■ denotes the Kronecker delta function.
Since the sum of the (3°'s is unity, (4-2a) shows that the operator Af° is ra!

times the usual divided-difference approximation to M = Dm
m m _

<««*)= Z <i«itk+i)IK = ml E »(tk+l)lw'itk;tk+¿
(4-3) ,= o i=o

= m\u[tk,tk+x, . . . ,tk+m],

that is, M^uitk) is the rath derivative of the unique polynomial in Pm which inter-
polates to the values "(ffc+I) at tk + i,i = 0, ... ,m.

By Taylor's Theorem, any u in Fm can be represented as
m—* rt

ii(i) =  Z  tf«(0(i - iky//! +       (/ - x)m-lDmuix)dx/im - l)\.
i=o Jtk

Because the rath divided difference of an element of Pm_j is zero, we have

(44)        M°nuitk) = m\u[tk,...,tk + m] =fttkk+mBm(tk;x)ffnuix)dx,

where Bm(tk;x) is the rath divided difference gm [tk, . . . , tk+m ; x] with respect to
rof

,m    I        f('-*)m-1/(m-l)!     ift>X,
gmit;x) = it-x)™-1 = <

[0 ift<x,

so that Bm(tk; • ) is the (ra - l)st degree polynomial 5-spline with joints at the sten-
cil points in tk. This 5-spline satisfies (Curry and Schoenberg [1966])

i>0,      tk<x<tk+m,
(4.5a) Bmitk;x) = \

( = 0,      x<tkoxtk+m <x,
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(«b) ft;k+mBmilk;x)dx=l.

Therefore, we have

Tn>uitk)=M0nitk)-I0n[D>"u]k

r<k+-fJt Bm(tk;x)iru(x)dx - Z ß°k,pmuiTk,j)
j=i

= E°n[Dmu]k;

and in this we have defined the operator E°n.  Clearly, E^v(tk) is the quadrature error
in using r^v(tk) as an approximation to the integral of Bm(tk; x)v(x).  This quadrature
error is zero for any v in Pj_x if and only if

(4-6) ß°kJ = ftkk+m Bm(tk; x)lhx(Jk; x)dx,      j=l,...,J.

Since the sum over / of l¡_xitk; x) is unity, it follows from (4-5b) and (4-6) that the
sum of 0°'s is unity.  But then with the 0's in (4-6), for any u in Pm +J_X, T%u =
E°[Dmu] =0.

Consequently, for any stencil points tk and any / auxiliary points rfc, there is a
unique HODIE scheme with normalization (2-3c) which is exact on Pm+J_x.  One
obtains a family of HODIE schemes which are exact on PL for any L such that 0 <
L < m + J - I. We now show that there exist special sets of auxiliary points which
make the approximation exact on PL for L up to ra + 2/ - 1.

Since Bmitk; ■) is positive on the range of integration, we can define the follow-
ing inner product

r**+(«. v) = f Bmitk'x)uixXx)dx-
'k

For fixed ra, k, and Bmitk; •), let b0, bx, . . . with b¡ in P,. denote the normalized
orthogonal polynomials with respect to this inner product; we call these the B-spline
orthogonal polynomials.  Based on the well-known theory of orthogonal polynomials,
b¡ has i distinct real zeros in tk < t < tk+m, and, for fixed ,', we call these the B-
spline Gauss points.

When the / auxiliary points in rk axe the 5-spline Gauss points for bj, then the
unique HODIE approximation which is exact on PJ+m_x is also exact on P2/+m-i •
In this case, the ß°'s axe the coefficients of the /-point Gauss quadrature formula with
weight functions Bmitk; ■) and each ß°k j,j = I, ... ,J, is positive.  Since (A,, bj) is
positive and f^ [bj] k = 0, this HODIE approximation is not exact on P2/+m •

The 5-spline Gauss points and the quadrature coefficients have been tabulated
by Phillips and Hanson [1974] for a number of degrees and for a normalized interval
and equally spaced joints.

The preceding results are summarized below.

Theorem 4-1. Let M = Dm, and let the normalization for HODIE approxima-
tion be (2-3c). For any set ofm+l stencil and J > 0 auxiliary points tk, rk, there
is a HODIE approximation with coefficients ak • = ak -, ßk • = ßk -, which is exact on
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PL for any L with 0 <L - m < /' - 1. The operator Mn = M°n is unique; it is ra!
times the divided difference operator with respect to the stencil points.   There are sets
of J auxiliary points for which a HODIE approximation is exact for L with J < L — m
< 2/ - 1. If L- m>J - I, then the coefficients ß° of r°n are unique and are given
by (4-6).    The J auxiliary points which give exactness on P2/+m-i ore the zeros of
the Jth degree B-spline orthogonal polynomial bj associated with the B-spline
Bm(tk; ■ ) with joints at the stencil points.

The examples for M = D2 in Section 2 illustrate various special cases of the re-
sults stated in Theorem 4-1.  Examples 2-2, 2-3, 2-5, and 2-6 use /2?-spline Gauss
points for / = 1, 2, 3, and 5, respectively.

Examples 24 (St^rmer-Numerov) and 2-7 (exact on cubic splines) bpth use the
same set of three auxiliary points.  Both are exact on P3 and for this L - ra = 3 - 2
= 1</-1=2; their different sets of j3's illustrate the nonuniqueness for L - m <
J - I.  Since the St^rmer-Numerov scheme is also exact on P4 and since L - m = J' -
1 for this case, the scheme is the unique HODIE scheme with those three auxiliary
points which is exact on P4.  One of the auxiliary points, ik2 = tk+x is a Z?-spline
Gauss point for all odd degree Ä-spline orthogonal polynomials associated with B2 k
with equally spaced joints; because of this (or, alternatively, symmetry), the scheme is
exact on Ps.  Another set of three auxiliary points (Example 2-5) yields an approxima-
tion exact on P7.

We now derive bounds on the elements of the inverse of the coefficient matrix
of the system in (4-2b) with L - m + I = J; these are used in the next section. For
fixed /' = 1, . . . , or / consider the systems

(4-7a) Z */,fO",><Í*.m+í-2; rki)) = blt,   l=l,...,J.
i=x

For fixed r = I, . . . , ox J, multiply the Ith equation by the number it   . m+l_2 (de-
termined below) and sum with respect to / to obtain

(4-7b) Z   HP"   E   \-l,m+l-2^k,m + l-2^ ^k,j) = «r-l,m + i-2-
/= 1 1= 1

Define the polynomial pr_x G PJ+m_x by

Pr-xit)=Z   «r-1 ,m +1-2wi$k,m +1-2> ')
;=i

/
=  Z   «r-l,m+l-2Ít - h,o) ---it- tk,m+l-2)H™ +'" W-

1=1

Then the rr's can be expressed in terms of divided differences of pr_x-

"r-l,m+l-2 =im + l-iy-Pr-x[tlc,0> •• ■ >£fc,m+/-l]>        t = I, . . . ,J.

Choose these constants so that Efp^^t) = ^_,(rfc; 0» where lr_x is the (r - l)st
element of the Lagrange basis (3-3) associated with rfc.  The /-by-J matrix fl with
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elements rtr_i m+t_2 is the nonsingular matrix associated with change in basis for P,
from P)r"w(Xkm+j_x ; • ) to the Lagrange basis.

Since (4-7b) is the product of II with the system (4-7a), the jc-'s also satisfy
(4-7a).  That is, the left side of (4-7b) can be written as

£ xjJ^x<?k> %/)•i=i
Consequently, existence and uniqueness of polynomial interpolation shows that the so-
lution of (4-7b) is given by x ¡ = it:_x m + i_2,j = 1, . . . ,/.  The points \k ¡ axe dis-
tinct, are between tk and tk + m and £fc , = tk + l, I = 0, . . . , ra.  Hence it follows
from (44) that

Xr,i = j£+" Bm+i_xilKm+i_x;x)ir + ̂ pr_xix)dx

= Stk+m Bm+i-lGk,m+i-l>x)&~llr-l(T*> x)dx'

where Bm+i_x(%m+i_x; ■ ) denotes the polynomial 5-spline of degree ra + ,' - 2 with
joints at %k t,l = 0, . . . ,m + i - I.  For the case i — 1, this reduces to x- x = ßk •
with ßk • given in (4-6).  By (4-5) and (34), we have, therefore, the following result:

Lemma 4-1. Let %k = i%k 0, . . . , %k m +/_2), where the points %k ¡ are distinct
and between tk and tk+m and %k ¡ = tk+l, I = 0, . . . , ra. Let B° denote the matrix
with elements

iB% = lTwi^m+l_2;rkii),      l,i=l,...,J,

where w is as in (3-2a) and rk = (rk ,,..., Tkj) is a set of auxiliary points between
tk and tk + m.  There exist constants K, ¡ which are independent ofhk and Tk (see
(3-1)) such that

5. Analysis of the Variable-Coefficient Case. Let \ and \p denote the functions
obtained by applying M to the basis elements / and w in (4-1 a)

(5-la) X,.(0 = Ms¡(t) = M/,.(7fc; t);      i = 0, . . . , ra,

(5-lb) ¿¿j) = Msm+l(t)l(hJ = Mw(JKm+l_x;t)/(hk)',      l=l,...,L-m,

and set

(5-lc) M*)sl-

We use X° i//" to denote these functions in the special case M = D™.
The HODIE equations are then

(5-2a) ak ,./Am - Z ßk,j\^k,j) - 0,      Í = 0.ra,
/=!

(5-2b) Z  ßk,j*i-iirk j) = 5U>      l=l,.-.,L-m+l.
/-i
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To see that X, i// differ from Xo, \p° by 0(hk), express the variables in terms of
nondimensional parameters y, ykJ-, pkj

t = tk+yhk;   %kii = tk + ykihk,      i = 0,...,L;   rk>¡ = tk+ pkjhk,

j=l,...,J,

^k,l ~ (Tfc.O' • • • ' Tfc,/)'    Pk = iPk,l' • • • ' Pk.j)'

and then yk . and pk ■ axe between 0 and ra.  From (3-2a) we have

"(¡Mi 0 = hlk+lw(ykl; y),      I/wiXKl; t) = h'k+ »"''Ifvfi>kl; y).

Since

X,°(rfcj/) = m\/w'ilk; tk + i) = m\/[h^w'iykm ; ykJ)],

for / = 0, . . . , ra we have

X
(5-3a)

T        ( m
iirk,j) = \Vk,/)   1 + ] Vm-lOfc,/)      £       iPk.j - -ik.q)

L ( q = 0,q*i

*r«ofrw) n (p*,/-tm)[/«m-
a. = 0,q*i ) J

+ • • • +

For / = 1, . . . , L - m we have
m-l _

(5-3b) p=o
m-l

= ^m^(Tfc,m +1-1 i Pk.,) +   Z   K-^piTk.^ilKm+l-l i Pk.j)-
p = 0

The following establishes existence and uniqueness of HODIE schemes for L -
ra = / - 1 and Afc sufficiently small:

Theorem 5-1.  Let the normalization of the HODIE approximation be (2-3c).
Suppose that the coefficients a,- of M are continuous.   There is a positive H such that
if the stencil points lk satisfy 0 < hk = (rfc + m - rfc)/ra < H, then for any set of J
auxiliary points Tk, there is a unique HODIE approximation which is exact on
P/+m_i. Its coefficients a, ß are the solution of (5-2) vw'rA L - m = J - 1.

Proof.   For details, see the end of this section; the main line of the argument is
as follows:   By hypothesis, the coefficients a,- are bounded; hence, so are the functions
X,., i//, in (5-1).  By (5-3) the values of these functions differ by OQik) at the auxiliary
points from X?, \pf for the special case M = Dm.  Because of the uniqueness of the
coefficients a°_,., j3° -, there is positive H so that the coefficient matrix of the system
in (5-2) is a nonsingular matrix (which is essentially independent of hk) plus 0(Afe)
and, thus, is itself nonsingular for hk < H   D

To show that HODIE approximations exist for L - m = 2/ - 1 with special
auxiliary points, we need some preliminary results.  After changing to nondimensional
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parameters, the functions \¡j¡ in (5-1) have the same form as the functions in the next
theorem.  This theorem shows that the set of functions \p¡, I = 0, . . . ,L - m,is a
Chebyshev set.

Theorem 5-2.  Let K and m denote positive integers.  Let yk, k = 0, . . . , K +
m-l, denote distinct points in the unit interval.  Let the functions <i>; have the form

m+l
%ih; y) s 1,    $,(A; y) = D™  TT  (T - yk) + <pfti; y),      I « 1.K - 1,

fe=0

where 4>¡ is continuous and 0(A) on 0 < y < 1. Let p = ipx, . . . , pK) have distinct
components such that 0 < pk < 1.  There is a positive H such that for any A, 0 < A
<H,

K-l
Z cfitih; Pk) = 0,      k = I, . . . ,K, implies cl = 0,1 = 0, . . . , K - 1.
1=0

The result in Theorem 5-2 is easy to prove for fixed p.  But, in addition, we
must show that H can be chosen independent of p.

Proof.   First, let p be fixed and consider the Kby-K matrix VQi) with elements
^CO/c / = ®i+iih'> pk).  The product of F(0) and a diagonal matrix is equal to a
Vandermonde matrix; therefore, K(0) is nonsingular.  By continuity of the elements
of VQi), there is an Hiß) such that VQi) is nonsingular for all A, 0 < A < H(p).

Second, suppose that there is no positive H0 independent of p such that VQi) is
nonsingular for all A, 0 < A < HQ.  Then there are sequences with index i = 1,2,...,
-> oo

Hf I 0,   c,iH¡),       I = 0, . . . , K - 1, with max I cfßt)\ = 1,

p\Ht) = ip,(//,-), . . ., pKiHt)),   Paj>) = Z  o0ty*0,; p),
1=0

where P¡ has zeros at p = pAH¡),j = I, . . . ,K.  There exist, therefore, convergent
subsequences (whose elements we also denote as above) such that

cfiPU-^cf,   fißi)-+pf,    and Pi^P*.
By continuity and the form of the functions <ï>;, the limiting function P* is a polyno-
mial of degree at most K-l.  Again by continuity, P*ipf) = 0,/ = I, . . . ,K.   Since
maxjlc*! = 1, P* is not identically equal to zero; consequently, the K points p? are
not distinct.  Suppose that there are exactly TV > 1 zeros of P* which are equal to
p% and p| = pk+x = • • • = p%+N_x.    Then we can write

N-l
ptip) = PiHr, p) J] \p-pk+qVt,)]-+PiO;p)\p-pk']N,

<7 = 0

which shows that the (AT - l)st degree polynomial P* has K zeros counting multiplici-
ties.  This contradiction establishes the theorem.  D
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The application of Theorem 5-2 to HODIE approximation follows from
representations of moments of a Chebyshev set.  Such moments are discussed in detail
in Chapter 2 of Karlin and Studden [1966] ;  see, especially, pages 3846. We sum-
marize the pertinent information in the next paragraph.

Let p denote any nondecreasing right continuous function of bounded variation
on tk < t < tk + m.  Let \¡j¡, I = 0, . . . , L, denote functions of a Chebyshev set on
this interval.  The Ith moment q¡ of the set with respect to the measure dp is

qi = Jtk+m W*)^*)'      1 = 0, ... ,L.

For each measure, one gets a set of moments q = iq0, . . . , qL) and the set of all
such q is a subset Q of Euclidean (Z, + l)-space which is called the moment space of
the Chebyshev set. This moment space is the smallest cone with vertex at the origin
which contains the curve *(0 = (i>oit)i • ■ ■ , ^iit)), tk < t < tk+m; this curve is not
in Euclidean /-space.  lfL = 2J~l,J>l, and q G Q is an interior point of Q, then
there is a unique principal representation of q which involves / points Tk x < ■   • <
Tk j in the open interval tk < t < tk+m; that is, there are positive values ßk ■ such
that

<7i=X ßk.jH^k.j)'      l = 0,...,L = 2J-l.
i=i

Clearly, the principal representation gives an abstract setting for Gauss quadrature.
Let Q0 denote the moment space for the Chebyshev set 1, Dmsm+l, 1=1,...,

L, where sm+l axe the basis elements in (4-1).  The results in Section 4 for the case
M = Dm show that with dpLx) = Bm(Jk;x)dx, then q0 = (q00, q0 x, . . . , q0L),
q0,i-i = 5/ i, is in Q0.  Thus, the principal representation is given with Tk -, the zeros
of the /th degree B-sphne orthogonal polynomial and with ßk ¡ equal to ßk ■ in (4-6).
By uniqueness, q0 is an interior point of the moment space Q0 and so there is a closed
sphere S0 with center q0 in the interior of Q0.

It follows from Theorem 5-2 that if the coefficients a,- of M are continuous, then
the functions \p¡ in (5-lb) form a Chebyshev set for all hk sufficiently small.  Let Q
denote the moment space for this Chebyshev set.  The curve ^(0 = (\p0, . . . , \¡/L)
converges uniformly to the curve *0(0 = (1, Cfnsm + x(t), . . . , Dmsm+L(t)) on tk <
t ^ tk+m; hence, for sufficiently small hk, the sphere 50 is in the interior of the
moment space Q. This establishes the next theorem.

Theorem 5-3.   Suppose the coefficients a,, of M are continuous.  For a HODIE
approximation with J auxiliary points, there is a positive H such that for any set of
m + 1 stencil points Tk with 0 < hk = (tk+m - tk)/m < H, there is a set of ßk ¡s
and a unique set of J auxiliary points Tk with tk < Tk x < • • ■ < rk j < tk + m such
that the HODIE approximation is exact on P2/+m_i •   The ßk 'x are nonzero, all
have the same sign and are unique for a given normalization.

We call the special set of / auxiliary points which makes the HODIE approxima-
tion exact on P2J+m_x the generalized B-spline Gauss points.
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We now obtain a specific uniform bound on the ß's for the variable coefficient
case.

The system (5-2b) with / - ra + 1 = / can be written in matrix form as

(B° +Bl)ß = 7x,   ~e\ =(1,0, ...,0),

where B° is the unperturbed matrix in Lemma 4-1. Note that its elements are, essen-
tially, independent of Afc. With ß = ß° + 5j3, where ¡y has components ß°k¿ from the
special case M = D™, we have

(/+ [B°rlBl)8ß = - [B0]-^1]?-

From (5-3b) it follows that elements of Bl axe given by

m-I

(Bl)u = 0,    (B% = Z   hr\irk,j)DP^iyk,m+,-i>Pk,jl      i = 2,...,J.
p = 0

Thus, there are constants k¡, which depend only on max-norm bounds on a0,ax, ... ,
am-i but not on Afc such that for all sufficiently small hk,

\(B%\<hkku,      i,j=l,...,J.

Hence, from Lemma 4-1 we obtain bounds on the elements of the product [B°]~1B1

\([B°rlB%\ < (hJAr.y-'h, Z Kriku.
i

Consequently, for all sufficiently small hk, I + [B°]~lB1 is invertible; and we have
the bound

1180 L < ll^r'ZfHlJI/^IUO - ll^r'fiHL),

where the norms are the vector max-norm and the matrix row-sum-norm. For all suf-
ficiently small hk there is, therefore, a constant K0 such that

(54) 11501.. < hk(hk/Alky-lK0 max 1/3°/.
/

Lemma 4-1 with ,' = 1 gives a bound on ßk ■ which yields

maxl/3k/l <(Afc/A7t/-1 maxi/^p + h^hJArJ-1^].
j r

This gives the following result:

Lemma 5-1.    Under the same hypotheses as Theorem 5-3, there is a constant K
which is independent ofhk/Ark such that for all sufficiently small Afc,

maxl^KAXAfc/AFfc/-1.
/

Equations (5-2a), (5-3a), and (54) yield the following result:

Corollary 5-1.    Under the same hypotheses as Theorem 5-3,

«*,/ = <j + o(hk [hk/ATky-1),   ßktj = ß°kJ + o(hk [hk/Aiky-i).

For R = hk/ATk bounded, \ak    I converges to a positive value as hk goes to zero.
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6.  Stability of the HODIE Difference Operator.   In this section we show that
the initial value problem for the HODIE difference equation is stable.

We first obtain bounds on the coefficients of Mn V when this is expressed in
terms of divided differences of V.  Let V denote a function defined at mesh points,
and let Mn denote a difference operator obtained from a HODIE approximation exact
on PL with L > m.  For fixed k, let p denote that unique element in Pm which in-
terpolates to V(tX j = k, . . . ,k + m. Writing p in the Newton form of the interpo-
lation polynomial, we have

Pit) = 1'*]<».o(0 + v\tk, f*+iK,i(0 + • • • + v[tk,..., tk+m]skm(t),

where

*k,o(0 = l,   Sk,i+iit) = sk,iit)it-tk+i),      1 = 0,-m-l.

Hence

(6-1)    MnVitk)=Mnpitk) = V[tk]Ckt0 + ■■■ + V[tk, ..., tk+m]CKm,

where the C"s are independent of V and are given, for / = 0, 1, . . . , ra, by

/ m-l
Ck,i=MnSk,iitk) = In\MsKl]itk)=Z ßk,j Z  <t,irktjpyskJ(Tktj);

j=l 1=0

the last equality holds because the HODIE approximation is exact on PL, L > ra.
Using the normalization (2-3)(c), Dmsm m(t) = ra!, and am(0 = 1, we have

/ m-l

Ck,m =m\ + Z   ßk,j   Z   aiiTk.jPh.miTk.j)-
j= X 1=0

Set Hn = maxfc{Afc}.   Because the auxiliary points are between tk and tk+m, there
are constants K¡ which depend on max,. II a¡ II «,, but not on the mesh points nor on
the auxiliary points nor on Hn such that for Hn < 1

m-l
\Ckil\ < max \ßkJ\ Z   l«,IL UKrO*./)1 < *i max l0fc/l,

/ '-o /

\Ckm -rail <HnKm max l0fc/l.
/

By Lemma 5.1, max ■ I ßk ■ I < KRJ~i, R = A k /Ark. Consequently, if the ratio
R is uniformly bounded as Hn 10, then the coefficients Ck ¡ are uniformly bounded
(as Hn i 0) independent of k and Hn.  Furthermore, for all sufficiently small Hn,
Ck m — ra!, so that Ck m is uniformly bounded above zero

(6-2) CKm>b>0.

Next we show that, for sufficiently small mesh spacing, there is a unique so-
lution of the initial value problem

(6-3a)                           M„V(tk) = F(tk),      ft-0,1,....,

(6-3b) V[t0], V[t0, rj.V[t0, .. ., tm_x] axe given.
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Because of (6-2), we can divide the difference equation (6-3a) by Ck m.  By us-
ing (6-1), V[tk, . . . , tk+m] can be expressed explicitly in terms of V[tk], . . . ,
V[tk, . . . , tk+m_l] ; and so, there is a unique solution of (6-3).

We now obtain a bound on the solution of (6-3) for the homogeneous case F
= 0. Using the definition of the rath divided difference and the difference equation,
we obtain an expression for the (ra - 1 )st divided difference at tk+x

V[tk+l, . . . , tk + m]  = (1 _ mnk<-:k,m-ll^k,m)^ltk' ' • ' > ̂ fc + m-J
(6.4a)

- (mhkCk m_2/Ck m)V[tk, . . . , tk+m_2\

-i^kCk,olCk,m)V[tk].
We also have

(64b)      fc+1' ' ' ° 'tk+i   =    ^k' ' ' ' ' {k+i-il

+ itk+i - tk)V[tk, ..., tk+i],    i = 1.ft + m - 1.

Let II Vitk)\\m_x he defined by

n^k)iim-i = i^t]i + in^tfc+1]i
(6-5)

+ •••+ W[tk,...,tk+m_x]\.

From (64) we obtain

"V(tk+X)\\m_x <(l + HnK)\\V(tk)\\m_x,

where

K = max { 1 + mCkmJCkim + (tk+i - tk)/Hn};
k,i

and, with the assumption introduced above, K can be taken independent of Hn for
all sufficiently small //„.  Consequently, we have (for HnK < 1 and for Mn V = 0)

m^m-l <i^  + »nK)k^(tQ)\\m_x

< II H>o)Hm-i exp(HnKk),      ft = 0, . . . , n - m.

From this inequality we can obtain a bound on the Green's function for the initial
value difference equation problem.

For each / = 1, ...,«- ra, let G¡ denote the solution of

(6-6a) G,(tk) = 0,      ft = 0, 1,...,/+ m - 2,

(6-6b) MnG,(tt_x) = I,

(6-6c) M„G,(ifc) = 0,      k = l,l+l.«-ra.

Because G,[t,_x] = G,[t¡_x, t¡] = ■ ■ ■ = G,[t,_x, . . . , t,+m_2] = 0, we have

KWh-x) = Cl-l,mGllt,-tl+m-X ]/"*!-1 " L
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Hence, it follows from (6-6c) that for k = I, I + 1, ...,«- ra,

HC,('fc)llm-i < UG,('/)Hm-i vy(HnK[k - t\)

= \Gl[tl,...,tl+m_1]\expiHnK[k-l])

= mhl_x exV(HnK[k - l])/Clm

<Hnexp(HnK[k-l])/ô,

where 5 is as in (6-2).
The solution V of the initial value problem

MnV(tk) = F(tk),      ft = 0, l,...,n-m,

V[tQ] =V[t0,tx] =--=V[t0,...,tm_x] =0

is, therefore,
k—m

vitk) = Z   G¡(tk)F(t,),      k = m,...,n,
1=0

and is bounded by

1 WL-i <*o maxIíT^lexpí//,,*:*),

where KQ < (Hn + l/K)/8.  Thus, we have the following:

Theorem 6-1.  Suppose the coefficients of M in (2.1b) are continuous.  For
the partition and set of auxiliary points

A = tQ<-<tn=B,      tk<Tk>x <---<Tk¡J<tk+m,

let hk = (tk+m - tk)/m and Hn = maxkhk. Let Hn be sufficiently small so that
there are HODIE coefficients a, ß such that

m J
(l/hk)m Z akAtk+i) = Z ßk,jMsiirk,,),      1 = 0,. ..,L>J+m-l,

i=0 j=l

where s0, . . . , sL is a basis for PL. If Hn is sufficiently small, then for given values
F(tk), k = 0, 1, . . . , n - ra, and cq, q = 0, . . . , m - I, the unique solution of

m

(1/Afcr Z <*k,iVitk+i) = Fitk),      ft = 0,...,»- m,
,=o

V[t0,. ..,tq]=cq,      q = 0,...,m-l,

is bounded by

IW*)l»-i < ("ti.)l.-i +*o maxl^lj exV(HnKk),

where the constants KQ and K depend only on

//„/min [tk ~tk_x]    and   Hjxnin \xnin(Tk. - rk ,,)] ,
k k   \_j J

and bounds on the coefficients a¡ of M.
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7.  Discretization Error for the Initial Value Problem.   In this section we show
that the first ra - 1 divided differences of the HODIE approximation U, subject to
appropriate initial conditions, converge as 0(/f^~m + 1) to the first ra - 1 divided dif-
ferences of the solution u of the differential equation

(7-la) Mu=f,      A<t<B,

subject to the initial conditions at t = A = t0

(7-lb) D«u(A)=D«u(t0) = cq,      9-0,..., m-l.

The initial conditions for the HODIE difference equation

(7-2) MnU(tk) = Inf(tk),      ft = 0,1,...,

are taken as

(7-3a) U0 = u(t0).
m-l J

(7-3b) Up=Z  yp.^HitoWp - 'o W + hm Z ßpjfir,),      P=l,...,m-l,
q = 0 i-X

where A = (rm_j - r0)/(ra - 1) and the auxiliary points satisfy

(7-3c) A = t0 < T, < r2 < ■ ■ • < Tj < tm-l-

The coefficients y     , ß   • are chosen to make the boundary conditions (7-3b) exact
on PL and we now use the basis

(74) s{(t) = (t - tj/hl,      l = 0,...,L.

The ß's axe determined first by using the basis elements (74) with I = ra, ra +
1, . . . ,L.  The coefficients of the 7's in (7-3b) are then zero, and this gives the
ra - 1 systems for p = 1, . . . , ra - 1

itP - t0i ' „ r " <?i - '¡f
7T- = Z ßP,i
A' /= 1 (/ - ra)!        Al-m

(7"5) , . P. ,,(rf-tQtm+i
+ h-am   , (tí) —-

(l-m + 1)!  m~lV';       ni-m + i

+ ...+^o(r/)ilL^ , I = m, . . . ,L.

For J = L - m + I, this system consists of/ equations in / unknowns.  There is no
normalization equation for the 0's because of the inherent normalization imposed by
the left side of (7-5).

For the special case that M = D"1, the functions am_,, . . . , a0, are identically
equal to zero, and the coefficient matrix of the j3's in (7-5) has elements

(7-5a) l\(Tj-t0)'-ml[(l-m)\hl-m].

This matrix is equal to the product of a Vandermonde matrix and a nonsingular
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diagonal matrix.  Hence, in this case (M = D™ and J = L - m + 1) there are unique
sets ß   j, . . . , ß  j, p = 1, . . . , ra - 1, which solve the systems.  Moreover, the
quantities

(tp-t0)'/hl   and   iTj-tormlh'-m

are order 1, hence so are the j3's; in fact, for fixed spacings

t   — t0 + 6 A,    Ti = t0 + e/i,    with dp, Cj constants,

the ß's axe independent of A.  For the case that the relative spacings change as tm_x
—► t0, one obtains bounded ß's provided there is a positive constant Rmax such that

(7-6a) max      {(tm_x - t0)l(tp+x - tp)} < Rmax
p=0,...,m-2

and

(7-6b) maX      {(tm-l - to)HTj+ 1 - *))> <Ämax-
j=\,...J-X

We call this the relative spacing condition and throughout we assume it holds with a
fixed value of Ämax.

If the a's in (7-5) are bounded, then the facts above remain true for a general
operator M J= Dm, provided A is sufficiently small, because the terms in (7-5) involv-
ing am_x, . . . , a0 merely perturb the coefficients (7-5a) of the ß's by at most 0(A).

After computing the ß's, one computes the 7's in (7-3b) by using basis elements
(74) with / = 0, 1, . . . , ra - 1.   For each p=l,...,m-l, one solves

(tp - t0)'/h' = ypßp - t0)'/h'

+ Z ßP j\Pm'ln aiiTj) + * " • + hr"aoiTj)iTj - t0)'/h'],
i=i

1 = 0,1,. .. ,m- 1.
For the special case that M = Dm, all the a's are zero; hence, all the 7's are

equal to unity.   For general M + Dm, the coefficients of the ß's might be as small as
0(Am) or as large as 0(Am_,)> so if the relative spacing conditions hold as A I 0, then

ypl= 1 +0(Am_'),      I = 0,1,. . . ,m-l,p= I, . . . ,m-l.

Consequently, for any u ECL + 1 we have by construction
m-l /

(7-7a)   u(tp)= £  yp¡qD«it0Xtp-toyiq\ + hm Z ßp pW,)\ +T„iP[u],
q = 0 j=\

where the truncation error of the boundary conditions approximation is

(7-7b) Tnp[u] =OihL + 1)

provided the relative spacing condition holds.  (We omit a formal proof of (7-7b); one
can be obtained easily by modifying the discussion in Section 3.)  When one writes a
specific bound, such as

IT     [u] I < KnphL + 1,      A sufficiently small,
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the constant Kn p depends on u, the coefficients aQ, . . . , am_x, and Rmax of the
relative spacing condition.

With the relative spacing condition (7-6) and the conditions in Theorem 6-1,
then for sufficiently small Hn, as in Theorem 6-1, there is one and only one solution
of (7-2)-(7-3).

To prove convergence, we consider a solution v of the differential equation Mv
= f which takes on the same initial values as U.  Thus, v satisfies

(7-8) Mv = f,      v(tp) = Up,      p « 0, 1.m - 1.

The function v depends on A and the locations of the mesh points t0, . . . ,tm_x.
Since u and v satisfy the same differential equation, we can write v as u plus an

element of the null space of M. We choose the basis u^, I = 0, . . . , ra - 1, of the
null space which satisfies

(7-9) M/'> = 0,      DPu«\t0) = 5pI,      l,p = 0,...,m-l.

where Ô   ¡ is the Kronecker delta function.  Thus, for some coefficients bk, we can
write (since u(t0) = v(tQ) = U0)

(7-10) v = u+ bxu(1) +■■■ + bm_xu(-m-1\

The A's depend on A; we obtain bounds on them below.
We assume that u ECL + 1 and w(/) GCL + 1,/ = 0,...,ra-l; these assump-

tions hold, for example, if the coefficients of the differential operator and the right
side of the differential equation are in cL~m + i.  It then follows for p = 0, . . . , m
- 1, that u(tp) - v(tp) = 0(hL + 1); this is because by (7-7), (7-3), and (7-8), we have

<tp) = "Z yp,qDq»it0)itp - tofW + hm f A./Ai"^) + 0(¿L + 1)
(7-11) "=0 /=1

= Up + 0(hL + 1) = v(tp) + 0(hL+l),      p=l,...,m.

Consequently, because of this and (7-10), we have

(7-12)      bxuil)(tp) + ---+bm_ym-1\tp) = 0(hL+1),      p=l,...,m-l.

The functions u^ axe fixed elements in the null space of M which satisfy (7-9).
From Taylor's Theorem we obtain

u«\tp)=(tp-t0)'/n + o(h>").

Therefore, since (7-12) holds, h'bjñ satisfies a linear system whose right side is
0(AL_1) and whose matrix is an 0(A) perturbation of a Vandermonde matrix involv-
ing points in [0, 1] which are well separated.  Hence

hibi = 0(hL + l)   or   A,. = 0(hL + l~'),      f - 1,.... m - 1.

We now obtain bounds on the differences between divided differences of« and v.
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We have

»['*.• • -'tk+p] -v[tk,. .. ,tk+p]

m-lz
/=1

m-lz
1=1

where the £fc ¡   's are some values between 0 and 1.  Hence

^[tk,...,tk+] ~v[tk,.. . ,tk+  ]\
(7-13)

< llzyUW(OlL max { IA,I } = 0(hL~m + 2),
i

where II -11^ denotes the max norm on [A, B].
From (7-10) it follows that all derivatives of v axe uniformly bounded in terms

of derivatives of u, u*-1', . . . , wm~x^. From Theorem 3-1, the truncation error for
v satisfies

H^Mll = 0(^-m + 1).

Since v(t ) = U , p = 0, . . . , m - 1, and since we are assuming that the mesh points
satisfy the restrictions of Theorem 6-1, we can apply this theorem with c   = 0 and
F =Tn [v] to obtain

Htk, • • - , tk+p] - U[tk, ..., tk + p] I <K2HLn-m+1exp(KxnHn),

where K¡ denote constants.   Thus, from (7-13) we obtain

'«['*. ■ • • . tk+p] - U[tk, ..., tk+p] I <K3Hn--"' + lexp(Kx nHn).

The preceding analysis applies to HODIE solutions on each of a sequence of
mesh points:

(7"14a) A=to,n<tUn<---<tn,n=B>

and sets of auxiliary points:

(7"14b)     tkn<TkAn<---<Tkjn<tk + mn,      k = 0,...,n-m,

and sets of boundary auxiliary points:

(7-14c) t0n <rAAt„<-< 7AJn < tm_Xn.

Set

hk,n - itk + m,n ~ '*.„)/(« +  0>        hA,n = ('m-l,„ " tQ/l)lm,
(7-14d)

Hn=      max     {Afc„}
k=0.n—m
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and

Rn = max max      {hAnl(tp+Xn-tpn)},
p=0,...,m-2

max     {hAnIÍTAJ+Xtn-TAJtn)},
j=l,...J-X

(7-14e)
max     {HJ(tk+Xn-tkn)},

k=0.n-1

max       {HJ(rkj+qn - rk>/> „)}
fc=0,...,m-n

j=l,...J

The HODIE initial value difference equations for one of the sets of mesh points are
then

m /

(7-15a)      (1/Afc>„r Z <*k,i,nUk+i - Z ßk,j,nfiTk,j,n)>      k = 0,...,m-l,
i= 0 j= 1

(7-15b) U0 = u(A),

m-l J
UP=Z   yP,q,nCpitp-A)Vql + (hA¡nT   Z   ßA,p,j,nfirA,j,nl

q = 0 j=l
(7-15c)

p = 1, . . . ,ra- 1.

Then, we have the following result:

Theorem 7-1.   Suppose a0, ... ,am_x,f G cL~m + 1.  Let u denote the solu-
tion of(l-l). For mesh points, auxiliary points, and parameters in (7-14), assume
that

Rn < Rmax   and   nHn < const   as n —► °°.

Then for sufficiently small Hn, there are coefficients a, ß, y such that the HODIE ap-
proximation (7-15) is exact on PL and, for each n, defines a unique solution U =
U-"\  Its first (ra - l)st divided differences are 0(HL~m + 1) approximations to the
divided differences of u

^n)[tk,n, ..., tk+pJ = u[tkn, ..., tk + pJ + 0(HLn~m + i),

for k = 0, . . . , n - p, p = 0, . . . , ra - 1.

Corollary 7-1.   Let u^l\ I = 0, . . . , ra, denote the solutions of the problems

MuO) = 0,      1 = 0,. . . ,m-l,      MuW=f      A<t<B,

Dpu«\t0) = opl,      l,p = 0,l,...,m-l,

Dpu(mXt0) = 0,      p = 0,l.m-l.

Let l/n,l\ / = 0, . . . , m, denote corresponding HODIE approximations.   Under the
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same hypotheses of Theorem 7-1, for all sufficiently small Hn,

iA"''Htk,..., tk+p] = uM[tk,..., tk+p] + 0(^-+1),

k = 0, . . . ,n - p, p = 0, . . . , m- 1,1 = 0, . . . ,m.

8.   Discretization Error for the Separated Two-Point Boundary Value Problem.
We now treat the separated two-point boundary value problem:

(8-1) Mu(t)=f(t),      A<t<B,
m-l

(8-2a) MAqu = Z  aAopVvi*) = cAa>      q=0,...,qA,
p = 0

m-l
(8-2b)       MBqu=  Z "BqpDpu(B) = cBq,      q=qA + l,...,m-l.

p = 0

We assume that this problem is well-posed. We also assume that 0 < qA < ra - 2
and then neither (8-2a) nor (8-2b) is vacuous, otherwise this reduces to the initial
value problem treated in Section 7.

The general solution of (8-1) can be written in terms of a set of constants b0,
■ ■ ■ , bm_x and the functions u^, I = 0, . . . , ra, given in Corollary 7.1

(8-3a) u = A0«(°) + • • ■ + bm_xu^m-^ + «(m>.

The solution of (8-1)—(8-2) is then (8-3a) where the A's satisfy the algebraic system
m-l
Z  aAqpbp =cAq>      q = 0,...,qA,

p = 0

m —1 m —1
(8-3b)       Z   aBap   Z   bflPu^iB)

p = 0 1=0

m-l
= cBo-Z    aBqpDPu^m\B),      q=qA+l,...,m-l.

p = 0

The assumption that the boundary value problem (8-1)—(8-2) is well-posed implies
that the coefficients aA  , aB   axe such that this system is satisfied by one and only
one set of A's.

In the following, we assume that the mesh points are as in Section 7 and as n
—► °° the conditions on the mesh points given in Theorem 7.1 are satisfied.  We set

hA = ('m-l - t0)Hm - 0»      hB = itn - tn-m-x)lim - !).

suppressing the dependence on n for brevity, and take Hn as in Section 7.
For the HODIE estimate, we obtain approximations to the boundary conditions

at t = A = t0 in (8-2a) from the initial conditions (7-3). The system (7-3) can be
solved for u(A), DuiA), . . . , /)m_1«(4)/(ra - 1)!.  This is because the7Pi£?'s are
1 + OQiA) and thus the matrix multiplying the vector of these derivatives, after multi-
plication by a diagonal matrix with elements du = hA~', is an 0(A) perturbation of a
Vandermonde matrix with well separated points on the interval [0, 1].  We can write
the result as
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m-1 J
(8^a)        Z   eAPiUi = VuiA) + Z  *ApjfiiAj)>      P = 0,...,m-l,

1=0 j=x

where rA¡,j = 1, . . . , /, denote the auxiliary points in (7-3c).   By construction,
(84a) is exact for u G PL, L = J + m - l,iff=Mu.   Furthermore, the j3's in (7-3)
are uniformly bounded; hence, we conclude that the resulting 0's in (84a) are
0(hm~p).  Finally, if the values of « G Cl+l and Mu at the stencil and auxiliary points
are substituted in (7-3) and if the resulting system (7-7) is similarly solved for the de-
rivatives, we find

m-l j
(84b)    £   £Api«(ti) = VW + Z <>ApjMuiTAj) + 0(hLA + i-P),
v      '    i=i j=i

P = 0, . . . ,m- 1.
Multiplication of (84) by oA     and summation with respect to p gives

(8-Sa)
m-l /

*Apfi -   £   ^"(4) - Z   *AP,f(TA,)\ = 0,
p = 0 /=!

m — 1 [~m -1

Z   aAqp\    Z
p=0 |_('=0

m-l [m-l m-l J
(8-5b)   Z "A<,P\ £   *A,#t¡>- £  tfH4)-E  *APfM«ÍTAi)\ =(KhLA~m + l

p = 0 |_/=0 p = 0 /=1 J
).

where, as above, u &CL + X.
Similar equations in terms of values at the right end of the interval are obtained

for distinct auxiliary points rB¡ such that tn_m + x < tB/- < tn = B. The analogues of
(8-5) are

m-l
(8-6a) Z aBqP

p = 0

m —1 m —1 /
£   eBptUn-t- £ DP<B)-Z <t>BpjfirBj)
i=0 p = 0 /=i

= 0,

(8-6b)

m-l
£   flB<7P

p = 0

m—1 m—1 /

£ %,,«('„-,)- £ öP"W-£ 0B„/W«(rfl/)
p = 0 /=!<=o

= 0(A^-m + 1).

HODIE boundary conditions are obtained from (8-5a) and (8-6a)
m —1 m-l m —1    J
£     £    aAqp€ApiUi = CAq+   Z    £ aAqp*A pjfiTAj)<

(8-7a)   p=o <=o p=o j=x

q = 0, ., «¿ =

m —1 m —1 m —1    /
£      £    aBqpeBpiUn-i = Cfi<?  +    £   £   aBqp<$>BpjfirBj)>

(8-7b) p=o ,=o P=o /=i

? = ^j| + l,...,m-l.
The HODIE approximation Í/ of the solution « of (8-1)—(8-2) is obtained by solving
MnUj = Infj subject to (8-7). It is a consequence of the proof of convergence below
that this system has a unique solution for all sufficiently small A = max{A^, hB,Hn}.
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The sums over,' above can be expressed in terms of divided differences, for ex-
ample, for any function g,

m —1 m —1
£    eApi?iti) =   £    VApiS[to> •••>'/]•
,= 0 ,'=0

We now exhibit the structure of these v's; (84b) becomes
m-l /
Z   vApAt0, •••>',] = DPuiA) + Z <t>ApjM<TA¡) + 0(^ + 1-p).
( = 0 j=X

By construction, the 0(hA + 1~p) term vanishes if u G PL and for u(t) = s ¡it) =
(t-A)'/l\, we have

0(h'A'),        i = 0,...,l~l,

»,[f0» • • • » '<1 - \ I/«, i = h
0, i > I.

Thus, for each fixed p = 0, I, ... ,m - I,
j

%o=^oW+E <t>ApjMs0irAi),

vApl/p\ = D?s,(A) + Z t'ApjMs^r^)
/=!

-ZO(uApkh'Ak),       1 = 1,..., m-I;
k=0

and

S|04) = |   '
(o,

P = /,

Therefore, since <pApj is 0(A™ p), we have

0(h"¡-P), i = 0,...,p-l,

vAPi=  \p}+0(h™-n,      i = P,

0(hA), i = p + l,...,m-l.

Subtract (8-5b) from (8-5a) and express the sums over i in terms of divided dif-
ferences to obtain

m — 1 m—1
£     £    aAqpVApiU\to> ■ ■ •'',]

p = 0   1=0

m— 1  m—1
= £ £ °AqP»Aprtt<» • • •. M + 0(^-m+1).

p=0   ,'=0
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The general solution of MnUj = Infj can be written in terms of constants B- and func-
tions IF*-"'1) given in Corollary 7-1 as

(8-9) (7 = 50f/"'0) + • • • +ßm_1i/"'m_1) + l/(n.m)

Substitute from (8-3) and (8-9) for u and U to obtain

m —1 m—1

£ £«
p = 0   ,= 0

Aqp  Api ^w>[í0,...,í/]+ Z B,u("^[t0,...,t

m-l m-l
=   £     Z   aAqpVApi

p = 0   ,'=0

+ 0(A¿Tm + 1).

u^>[t0,...,t

']

m-l "1

,)+ Z  *,«(°['o,. •-.',]1=0 J

We assume w(/) G CL+ !, / = 0, . . . , ra, and thus by Corollary 7-1,

(8-10) uW[t0, ...,t,}= C/<"''>[f0, ...,*,] + 0(/Y^m + 1).

Therefore, because of (8-8),

(8-11)

m-l m-l m-l
£      £    °Aqp»ApiZ    (B.-b^'Hto,..-,^

p = 0   1=0 1=0

= OiHLn~m + l) + OihLA-m + l),      q=0,...,qA.

The left side can be expressed in terms of the vectors

iT   =1Aq (aAqO' ■ > aAq,m .,),      q = 0, . . . ,qA,

V1 =iB0-b0,...,Bm_x-bm_x),

and the matrices (vA), (&UA) with elements

Íva)pí = vAPi> p,i = 0,...,m-l,

(AUA)., = U«)[t0, . . . , t¡],      i, 1 = 0,..., m - 1,

as aAq(vA)(AUA)D,   q = 0, . . . ,qA.  The elements of (AUA) satisfy

(Af7<)fl-u<'>tf0,...,íí] +0(HLn-™ + l)

= Dru(l)(A) + 0(hA) + 0(H^-m + l).

Thus, because of (8-8), the elements of the product (vA)(AUA) differ by at most
0(hA) from elements of the Wronskian matrix (DuA),

(DuA)u = Dru«\A),       i,l =0,...,m-l,

of the functions ¡/'', / = 0, . . . , ra - 1, evaluated at A (which, in this instance,
makes DuA the ra-by-ra identity matrix).

Hence the (qA + l)-by-ra matrix &AqivA)i^UA) *s an 0(Hn) perturbation of
the first qA + 1 rows of the linear system (8-3b).
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Similarly, we obtain
m — \ m —\ m —1

, , IZ    "Bqp'Bpi    £   iB.-b^'Ht,,...,^]
(8-12)     p=o ,= o      qp    P   z=o

= 0(H^m + l) + 0(hLB-m + l),      q=qA-l,...,m-l,

and the left sides can be written as

■^("bXAÍW      q=qA+l,...,m-l,

where (vB){AUB) is an 0(Hn) perturbation of the Wronskian of the functions u^l\
1 = 0,... ,m- I, evaluated at B. Hence, for all sufficiently small hA, hB,Hn the
matrix

(8-13) a^(^)(A«7B),      q=qA+l,...,m-l,

consists of an 0(Hn) perturbation of the last ra - qA - 1 rows of the linear system
(8-3b).

It then follows from (8-3b), (8-11), and (8-12), that

Bl-b, = 0(hL-m + l),      h = xnax{hA,hB,Hn};

and thus, because of (8-10)

Ul**> ■ ■ • » '*+/] = «['*.•••>'*+/] +0(hL-m + 1),      1 = 0.m-l.

We augment (7-14) with boundary auxiliary points:

(8"14a) tn-m + l,n < TB,l,n < ' ' " < TB,J,n < Un

and set

(8-14b) hBn=(tnn-tn_m + xJ(m-l),

(8-14c) R'n=xnax\Rn,     max     {Afli„/(rBp/+ M - rBj „)}1.L      /=i,...,/-i J
We have then proved the following

Theorem 8-1.  Assume that the problem (8-1)—(8-2) is well-posed.   In addition
to the hypotheses and notation of Theorem 7-1, include boundary auxiliary points
and parameters of (8-14). Suppose that

R'n < i?max    and    nHn < const    as n —■+■ °°.

Then for all sufficiently small A = max{A^ ,hB,Hn }, there are coefficients a, ß, e, </>
such that the HODIE approximation given by MnU = Inf and (8-7) is exact on PL.
The system has a unique solution U = U^ whose first im - l)st divided differences
are OihL~m + 1) approximations to the corresponding divided differences ofu.

9.  Computation Analysis.   In this section, we consider the computational as-
pects of the HODIE method.  We discuss specific features of our implementation,
and we compare the amount of work with other available methods.  The discussion
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is restricted to the case of second-order equations subject to Dirichlet boundary con-
ditions for four reasons:   it is simple, it is the most important case, it is readily gen-
eralized, and there are detailed analyses of other methods available for comparison.

The differential equation problem is

Mu(t) = a2(t)u"(t) + ax(t)u'(t) + a0(0«(0 = fit),      A<t<B,

u(A) and u(B) given,

where, for generality, we have taken the coefficient ofu" in M to be a positive function
a2 rather than unity.   Estimates Uk = U(tk) of u(tk) at mesh points A = t0 < tx <
■ • • <tn = B are obtained by solving the HODIE difference equation problem for
ft = 0,.... n - 2

MnUk = Ko"* + «w°»+l + ak,2Uk + 2]lh2k = Z ßk,jArk,i)^Ihfk,
i=i

U0 = u(A),    Un=u(B),   hk = (tk+2-tk)/2,

where the coefficients a, ß satisfy Mn [s,] k = I„ [Ms¡] k for s¡, I = 0, . . . , /, a basis
for PL. We consider two choices of the auxiliary points rk -, j = 1, . . . , /:

Regular auxiliary points:   rfc • = tk + (j - l)hk/J,
Gauss-type auxiliary points:   the generalized Ä-spline Gauss points.
There are two distinct parts in an implementation of a specific HODIE approxi-

mation.  The first part consists in the determination of the values of the coefficients
ak j, i = 0, 1, 2, and ßk -, / = 1, . . . , /, for each ft = 0, . . . , n - 2, and then the
determination of the values I„fk, k = 0, . . . ,n - 2.  The second part is the deter-
mination of the values Uk,k = 1, . . . , n - 1, of the solution of the resulting
in - l)-by-(n - 1) tridiagonal system of difference equations.

In the first part, the system of algebraic equations for the a's and |3's is reduc-
ible: one solves a /-by-/ system for the 0's and then a 3-by-3 system for the a's; this
is done for each ft = 0, ...,«- 2.  This reducibility results in significant savings of
work for the special second-order case, ra = 2, as well as in the general case.   Although
the Lagrange basis is convenient for theoretical analysis, we have found that it is com-
putationally more efficient to use a different basis:

so(0=l,   sxit) = t-tk+x,   s2it) = it - tk\t - tk+2),

s3+lit) = it- tk\t - tk+x\t - tk+2)p,_3it),

where

P0(0=1.     Plit) = it-tk+l)>     P2Ít) = it~tk+l)2,

PAO = it~ h)p2it),  p4(0 - it - tk)2P2it),

Psit) = it-tk + 2)p3it),   P6it) = it-tk+2)2p3it),   and so on.

With 5, = tk+x _rfc,S2 = tk + 2 - tk+x, this choice leads to the following system
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Vk,0 + 'îfc.l  + %,2 = £ ßk,MTk,j)>
j

Sl%,0  + M*,2  =  £ ßk.jfcliTk.j) + iTk,j - tk+X)aoÍTkt,)] ,
j

5is2%,i = T.ßk,ji2a2iTk,j) + 2(T*,/ - '*+i>»iO*,/)
/

+ (Tfc/-i*Xr*7T'*+aMr*./)l-

Use of the normalization ßk x = 1 eliminates one of the / HODIE equations.
The final equations for the ß's are

£ "iAj—vi.i>    i=i>...,J-i,
1=2

Vl,j = s2 + li*k,j)a2ÍTk,j) + S2 + liTk,j)aliTk,j) + S2+/(7-fc,;>oK,/)-

The choice of the basis elements makes the evaluation of the coefficients simple and
it also gives a structure to the system which allows it to be solved easily.   Specifically,
for the regular case, three of the auxiliary points are at mesh points.  Arranging the
system so that its first three columns correspond to tk+ x, tk, tk + 2, one finds that
these columns have the special form

-ô1ô2a1(rfc+1)      -6Ô1a2(rfc) + 261ô2a10k)      6ô2a2(ifc + 2) + 261ô2«1(ffc+2)

28xô2a2itk+x)                        X X
OX X
OX X
0                                      0 X
0                                      0 X
0                                      0 0

where the X's indicate nonzero elements.   This, of course, is very advantageous for
solving for the ß's in the regular case.

We consider the computational effort required first for a uniform partition:
tk = kh, k = 0, . . . , n.   We measure the effort in terms of the number F of func-
tion evaluations (a2, ax, a0, ox f) and the number M of multiplications required.  In
regard to the nonfunction evaluation work, we assume:   the total computational ef-
fort is proportional to the number of multiplications.  Table 9-1 lists the effort re-
quired for various parts of an implementation of the HODIE scheme.
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Table.9-1

Number of multiplications and function evaluations required for each
interior mesh point for HODIE approximations of orders 4, 6, 8, 10
for the Regular and the Gauss-type Cases for auxiliary points.

Computation step Regular Case
/= 3 5 7

Gauss-type Case
2 3 4

Compute the 0-matrix elements (multiplies) 8 39 89 137

Solve for the (Ts 3 17 47 111

Evaluate right sides of the Q-equations 13 21 33 43

Solve for the a's 3 3 3 3

Solve the tridiagonal system for the t/*s 7 9 11 13

6 14

1 7

12 18

3 3

6 7

36

38

24

3

50

47

30

3

9

Total number of multiplications

Total number of function evaluations

34M      89M        183M       307M

4F      12F 20F 28F

28M       49M       109M

8F        12F 16F

139M

20F

The (3-matrix elements are found from a simple examination and assuming that
the values of s", s', and s have been previously computed and stored (these values are
independent of k since a uniform partition is assumed).  The special structure of this
matrix for the Regular Case is assumed for estimating the work to solve this matrix
equation.   For the Gauss-type Case, we have a general (/ - l)-by-(/ - 1) system to
solve.  Note that we assume that the Gauss-type auxiliary points have been previously
computed or are otherwise known.  The right sides of the a-equations are of a special
form and the computation is carried out by forming ßk fiÍTk .) and then combining
these appropriately.  The solution of the a-equations is trivial and the final multiplica-
tions occur in solving the large tridiagonal system plus the evaluation of its right side.
In the Regular Case the function values at the mesh points, and the auxiliary points
are used more than once without recomputation.

We now use these work estimates to compare, roughly, the work of the HODIE
method with other methods.  The comparison is presented in Table 9-2 for seven
methods, three different orders of accuracy (4, 6,and 8), and for both uniform and non-
uniform partitions.  The data for collocation by C1 piecewise polynomials at Gauss
points, least squares by splines, and discrete-Ritz are derived from Russell and Varah
[1975], where they are described in detail.  We have had to modify the multiplication
counts in order to account for the slightly different differential equations used here
and to rationalize the effect of the EL term used by Russell and Varah.  Note that
the discrete-Ritz method is limited to self adjoint problems and is, therefore, not strict-
ly comparable to the other methods included in Table 9-2.  Collocation by splines and
extrapolation of the trapezoid rule are analyzed in detail by Russell [1977], and we
have adapted his results for our particular equation.  Russell also considers collocation
with Hermite cubics and quintics in detail.
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Table 9-2

Summary of number of multiplications (M) and function evaluations (F)
for seven different methods.   The counts are given per interior mesh point
or interval, and one would hope that methods with the same order give
comparable accuracy.

Order of the method and mesh tvne

Fourth
Uniform        General

Sixth
Uniform General

Eighth
Uniform General

HODIE, Regular Case

HODIE, Gauss-type Case

Collocation, C1
piecewise polynomials

Collocation, splines

Extrapolation of the
trapezoid rule

Least squares, splines

Discrete Ritz, splines
or piecewise Hermite

34M + 4F 40M + 4F

28M + 8F 32M + 8F

38M + 8F       42M + 8F

24M + 4F

32M + 8F

S6M + 4F

32M + 8F

89M +  12F 113M + 12F

49M + 12F 57M + 12F

62M +  12F 72M + 12F

37M + 4F 99M + 4F

70M +  16F 70M +  16F

183M + 20F

109M + 16F

145M + 16H

S2M + 4F

165M + 32F

241M + 20F

140M + 16F

159M + 16F

I52M

165M

4F

32F

66M + 8F     90M + 8F 198M + 16F    270M + 16F 440M + 24F       S80M + 24F

Í33M + 9F     1S7M + 9F       46SM + I5F    S2SM + 15F       1200M + 21F     1300M + 21F

We emphasize that the exact values of these operation counts depend on small
details of the implementation of a particular algorithm and one can trade multiplica-
tions for additions, and so on, in some instances.

The changes for collocation, least squares, and discrete-Ritz from the equal to
nonequal spaced meshes come from the need to evaluate the basis functions at each
point.  The changes for the HODIE method come from the need to evaluate the de-
rivatives of the basis functions in each interval, and we have assumed that two more
multiplications are needed for each element of the ß-matrix.   A minor increase also
occurs in the computation of the right side of the a-matrix equation.  There are only
insignificant changes in the extrapolation method's work, but it is not clear how ef-
fective extrapolation is for non uniform spacing (consider extrapolation, even for uni-
form spacing, for a problem for which the error behavior is as in Figure 10-3).

Considerable caution should be taken in attaching importance to the specific
numbers in Table 9-2.  These give only rough comparisons and various other consider-
ations can completely override the difference between, say, 28 and 35 multiplications
per point.   We can only conclude that the first five methods are generally comparable
in work and the last two seem unlikely to be competitive.  Collocation with splines
seems to gain a work advantage as the order increases, but it is simultaneously
increasingly complicated near the boundaries, which may well negate this advantage
somewhat.

To obtain a realistic evaluation of these methods, one needs not only actual ex-
ecution times for the different methods for a range of problems and accuracies, but
one also needs to consider other factors such as numerical reliability and stability,
ease of programming, and memory requirements.

The operation counts for the HODIE method for ordinary differential equations
given here indicate that the work is close to the work involved in a number of other
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available methods.  But, the comparisons for partial differential equations indicate
that the work for the HODIE method is significantly less than for other available
methods; see Lynch and Rice [1975, 1978a, 1978b].

10.   Experimental Results.   For two-point, second-order problems we present
support for the following points:   (1)  The HODIE method converges as predicted by
theory; there are no unforeseen numerical complications. (2) There are no unforeseen
difficulties or complexities in implementation.  (3)  There is a definite pattern in the
relationship among the accuracy actually achieved, the actual computation time, and
the order of the method.  Specifically, the higher the desired accuracy, the higher
should the order of the method be to minimize computation time.  (4)  The use of
the Gauss-type auxiliary points associated with a particular operator M gives the rate
of convergence predicted by theory.  (5)  The use of Gauss-type auxiliary points for
the operator D2 for a general second-order operator M improves the rate of con-
vergence over that expected for a general set of auxiliary points.

The first two points must be verified for any new method; the third point ap-
plies to collections of methods with varying orders; and the last two points apply to
the HODIE method and to certain other schemes, such as collocation and Galerkin
which have "superconvergence" characteristics.

We note that most of the content of these five points is supported by the theory
presented explicitly or implicitly in the preceding sections, or is part of the general
folklore about numerical computations.  Nevertheless, experience shows that points
such as these must be verified experimentally for a new method and, for the rates of
convergence, they must be verified in the sense of establishing that asymptotic results
are valid in the range of ordinary application.

Accordingly, we have run hundreds of cases for numerous second-order ordinary
differential Dirichlet boundary value problems. The results of these experiments sup-
port the points listed above, and we have acquired confidence in the reliability of the
HODIE method.

The Fortran program we wrote seemed to be as easy to write and to debug as
a program for any other method of solving this class of problems.  However, we
found that in order to verify the rates of convergence for very high-order HODIE
schemes, we had to use a very high precision because the accuracies obtained were so
high.  In the remainder of this section, we discuss only a small subset of the experi-
ments which we performed.

All computation was done on the Purdue University CDC 6500 with double-
precision arithmetic, which uses values with about 28 decimal digits.  In each experi-
ment, the domain of the problem was partitioned by an equal spaced mesh with TV sub-
intervals, so the mesh spacing A was proportional to l/N.

Example 10-1.

«"(0 - 4«(0 = 2 cosh(l),      0 < t < 1,

uiO) = uil) = 0,

solution:  u(t) = cosh(2r - 1) - cosh(l).
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DDU - 4*U  = 2«C0SH( 1)     ON     10.11
SOLUTION    U(T)  =  C0SH(2«T  -  1)  - C0SH11)

.000

100        20°

5 H = 0 GRUSS POINTS

16     25 32     50 64     100        200
J-1_|-LJ-1-1-

.500 1.000 1.500
LOG 10 (  N   1

2.000 2.500

Figure 10-1
Behavior of the error as a function of number N of subintervals
for eleven different 5 r-point HODIE schemes for Example   10-1.

This problem has been used by Russell and Shampine [1972], de Boor and Swartz
[1973], and others.

Figure 10-1 summarizes one set of experimental results.  The logarithm of the
maximum error is plotted versus the logarithm of the number of subintervals for
eleven different sets of / = 5 auxiliary points.  We describe the various curves in this
figure and give our interpretation of the results.

(a) The topmost curve gives the results when five regular (equal-spaced) auxiliary
points were used. One expects at least 0(AS) rate of convergence with a set of five
auxiliary points because the approximation is locally exact on at least P7. The curve
shows a very consistent 0(A6) rate of convergence. The central auxiliary point is the
central mesh point of the three-point difference operator MN and it is clear from the
symmetry of the differential operator that this auxiliary point is a zero of every odd-
degree generalized 5-spline orthogonal polynomial. This (or symmetry) shows that one
expects 0(A6) rather than (3(A5) convergence.

(b) There is a set of nine curves in Figure 10-1 which have sharp downward spikes
at N = 4, 8, 16, 25,32, 50, 64,100, and 200, respectively. The set of five auxiliary
points used for each one of these curves is the set of five Gauss-type points for that
value of N at which the spike occurs.  One has nine different sets of these Gauss-type
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points because their locations depend on A = l/N. The curve with spike at N = 8 is
typical, and we describe some of its features.  First, the spike is very abrupt, for the
curve also shows the error for the cases of N = 7 and N = 9.  Second, for N different
from 8, the auxiliary points are not the Gauss-type points, hence one expects only
0(A6)—one of the points is the central mesh point of the operator MN—and this behav-
ior can be seen for large values of N, say N greater than about 16 for the curve with
spike at N = 8.

(c) Consider the tips of the spikes from the collection of nine curves discussed
in (b). If one joins the tips, one sees a very consistent 0(A10) rate of convergence
for TV up to 64. This is what one expects, since this new curve gives the behavior of
the error when five Gauss-type points are used for each N. The maximum error atN =
64 is about 10~25 and the 0(A10) rate of convergence breaks down beyond N = 64
because of roundoff error; the values of the Gauss-type points were accurate only to
about one part in 1015 (single precision on the CDC 6500).

(d) The last curve (with vertical ties above the spikes) is the one for five Gauss-
type points for the operator M = D2. Except for the central auxiliary point, these
are not the Gauss-type points for the operator D2 - 4. One expects at least (9(A6)
rate of convergence; however, a very consistent 0(A8) rate of convergence is observed.
As A tends to zero, the Gauss-type auxiliary points tend to those of the operator D2,
hence one expects improvement over an arbitrary set of auxiliary points, even a set
which contains the central mesh point of the operator MN.

Example 10-2.  Typical of a fairly difficult problem is one taken from Rachford
and Wheeler [1974]:

f0 = 0.36388,

|[(.01+100(í-ío)|«(0]

= -2{ 1 + 100(i - r0)(tan-1 [100(r - t0)] - tan-1 [100f0])},

w(0) = u(l) = 0,

solution:   «(0 = (1 - 0Í tan-1 [100(r - r0)] + tan-1 [lOOrJ }.

The solution has a very sharp rise near t = 0.36; it increases from about 0.1 at t =
0.3 to about 1.7 at t = 0.4, and then it decreases nearly linearly to 0 at t = 1.  See
Rachford and Wheeler for a graph of the solution.

Results for two sets of auxiliary points are shown in Figure 10-2, three Regular
auxiliary points-which is an extension of the 0(A4) St^rmer-Numerov scheme equiv-
alent to that obtained by Swartz [1974, pp. 304—304]-and the seven Gauss-type
auxiliary points for the operator D2.  One sees that there is a considerable irregularity
for N up to about 100; and then, for large N the error decreases smoothly at rates of
0(A4) and 0(A10), respectively.   For a general set of seven auxiliary points, one ex-
pects 0(A7) rate of convergence; the use of the Gauss-type points for the operator
D2 apparently improves the rate of convergence to 0(A10).
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Figure 10-2
Behavior of the error as a function of the number N of subintervals
for two HODIE schemes, one the St<j>rmer-Numerov scheme, and one
with seven Gauss-type r-points for the operator D2 for Example 10-2.

To compare efficiency, we note that the St0rmer-Numerov scheme with N =
300 required almost exactly the same amount of computation time as the seven-point
scheme with 100 points.  The St0rmer-Numerov scheme achieved a maximum error of
.00026, which is almost exactly 100 times greater than the error for the higher-order
scheme.

Finally, we note that the usefulness of extrapolation techniques is doubtful for
either of these schemes for N less than about 100.

Example 10-3.  The final example we discuss is:

u"(t) + sin(t)u(t) + 4t2u(t) = 2[l+ t sin(0] cos(r2),      0 < t < 5,

k(0) = «(5) = 0,

solution:  u(0 = sin(r2).
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The solution has several oscillations as t ranges from 0 to 5.
We solved this problem with a wide variety of HODIE schemes and Figure 10-3

summarizes the results for a selection of them.  This figure shows the relationship be-
tween work, order, and accuracy.  The logarithm of the execution time is plotted
versus the logarithm of the maximum error.  Since the error is, asymptotically, pro-
portional to N~p and the time is proportional to N, one expects straight-line graphs
for large N; the slope gives p.

1.500

DDU  + SIN(T)*DU + 4*T*T*U = 2«( 1  + T«SIN(T))*C0S(T«T)     ON     (0.5)
SOLUTION    UtT)  = SIN(T*T)

i_¿ 1 H = 0 GPUSS POINT

l_| STORMER NUMEROV

„_« 5 EOURL SPACED POINTS

a_B 3  H = 0 GPUSS POINTS

v_y 7 H = 0 GAUSS POINTS

-1-1-1-1-1-1-
-8.000    -7.000    -6.000    -5.000    -1.000    -3.000    -2.000

LOG 10 ( MRX ERROR )

"I-1
.000     1.000

Figure 10-3
Illustration of the relationship between work (execution time),

accuracy achieved, and order of the HODIE method for Example 10-3

One sees the advantage that comes from using a higher-order method for higher
accuracy.  All of the methods require a fairly large value of A^ to achieve any signif-
icant accuracy.  The low-order methods are competitive only for very low accuracy
requirements.  The 5-point regular method and the 3-point D2 Gauss-type method
both are 0(h6) methods, but the maximum error of the regular method is about 10
times larger than the Gauss-type method for the same execution time.
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