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Abstract The purpose of this paper is to provide a high-order finite element method (FEM) formulation of
nonlocal nonlinear nonlocal gradedTimoshenko based on theweak formquadrature elementmethod (WQEM).
This formulation offers the advantages and flexibility of the FEM without its limiting low-order accuracy.
The nanobeam theory accounts for the von Kármán geometric nonlinearity in addition to Eringen’s nonlocal
constitutive models. For the sake of generality, a nonlinear foundation is included in the formulation. The
proposed formulation generates high-order derivative terms that cannot be accounted for using regular first- or
second-order interpolation functions. Hamilton’s principle is used to derive the variational statement which is
discretized using WQEM. The results of a WQEM free vibration study are assessed using data obtained from
a similar problem solved by the differential quadrature method (DQM). The study shows that WQEM can
offer the same accuracy as DQM with a reduced computational cost. Currently the literature describes a small
number of high-order numerical forced vibration problems, the majority of which are limited to DQM. To
obtain forced vibration solutions usingWQEM, the authors propose two different methods to obtain frequency
response curves. The obtained results indicate that the frequency response curves generated by either method
closely match their DQM counterparts obtained from the literature, and this is despite the low mesh density
used for the WQEM systems.

Keywords Functionally graded nanobeam · Nonlocal theory · Weak form quadrature element method
(WQEM) · Free and forced vibration · Nonlinear von’Kármán strain · Frequency response curve

1 Introduction

Nanobeams, nanoplates, nanoshells and other small-scale structural elements constitute the building blocks of
micro- and nanoelectromechanical systems (MEMS and NEMS), actuators, sensors and atomic force micro-
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scopes [1–3]. The choice of integrating small-scale components is related to exotic mechanical properties
and size effects experimentally observed [4–8] at the nanoscale. While these size effects can be accurately
captured and studied using molecular dynamics (MD) simulations, the computational cost of MD is generally
prohibitive. Hence, higher-order continuummechanics approaches have been widely adopted as an alternative
in the modeling of small-scale structures. Several higher-order continuum theories have been developed, each
of which was based on a different perspective of small-scale behavior. However, in general, most of these
theories can be classified into three different categories, namely micro-continuum, strain gradient family and
nonlocal elasticity theories.

The nonlocal elasticity theory postulates that the stress in a continuum at a given location depends not only
on the strain at that location but also on the strains in a finite neighborhood of such point. This dependency
on the nonlocal strain is captured by a size effect parameter called the nonlocal parameter. The nonlocal
elasticity theory was first proposed by Kroner [9] and then later improved by Eringen and co-workers [10–12].
To simplify the implementation of the theory in practical problems, a differential form was developed [13]
based on a specific kernel function. Lately, researchers have explored the possibility of combining nonlocal
strain effects with strain gradient theory in a single higher-order theory [14–16] referred to as nonlocal strain
gradient theory. These size-dependent theories were exploited to model nanorods [2], nanobeams [1,17,18]
and nanoplates [19–22]. These simple structures are conventionally modeled based on Euler–Bernoulli beam
theory (EBT) and classical plate theory (CPT), respectively. Other models like Timoshenko beam theory
(TBT) and first-order shear deformation theory (FSDT) account for shear to model thick beams and plates,
respectively, accurately [23,24].

To overcome the limitations of analytical solutions [24], methods like the finite element method (FEM),
the differential quadrature method (DQM), the mesh-free method, the Ritz method, the Galerkin method, etc.
were employed to solve small-scale problems and have become the most suitable methods for such problems.
In general, numerical techniques are used to solve either the equation of motion or the variational statement.
Although developing a solution to the former is generally simpler using collocation methods, solving the
variational statement offers several advantages. For example, FEM has weaker regularity requirements (i.e.,
existence of high-order derivatives) and can easily handle complicated geometries and boundary conditions
[25]. These advantages have made FEM the most commonly used method in the analysis of small-scale
structures [24].

A few selected studies that use FEM in size-dependent beam problems are summarized in this paragraph,
and amore comprehensive review can be found in [24]. Demir and Civalek used a linear nonlocal EBT element
in two separate studies [1,18] . The EBT element is based on Hermite cubic interpolation with two nodes and
two degrees of freedom per node. The effect of an elastic matrix was accounted for in both studies. Eltaher
and his colleagues developed [26–30] nonlocal EBT elements for both functionally graded (FG) nanobeams
[26–28] and homogeneous nanobeams [29,30]. The EBT element is a two-node element with three degrees of
freedom per node: axial and transverse displacements in addition to rotation. The axial displacement is based
on a Lagrange linear interpolation, while the transverse displacement is based on Hermite cubic interpolation.
Eltaher et al. investigated free vibration problems of FG nanobeams on two separate occasions [26,28]. In the
second paper, the authors reexamined the location of the nanobeam’s neutral axis based on the physical neutral
surface of FG beams [28]. In addition, Eltaher et al. [27] studied the buckling and bending response of graded
nanobeams. Like their FG counterparts, homogeneous nanobeams have received considerable attention in the
literature. The free vibration problem of homogeneous nanobeams was also examined by Eltaher et al. [29],
while static bending of homogeneous nanobeams was considered by Alshorbagy et al. [30]. Nguyen et al.
[31] proposed a mixed formulation consisting of developing a nonlocal mixed beam element to examine the
static bending response of homogeneous nanobeams. This two-node element uses Lagrange interpolation for
both deflection and bending. The literature also shows fewer nonlocal TBT elements. Reddy and El-Borgi [32]
developed a finite element formulation for both nonlocal homogeneous EBT and TBT beams. Their models
accounted formoderate rotations using the vonKármán strain nonlinearity. Hence, a nonlinear factorwas added
to themodel. Similarly, the nonlinear EBT element relies on amix of Lagrange andHermite cubic interpolation
for its axial and transverse displacements, while the nonlinear TBT element uses Lagrange interpolation for all
its dependent variables. Later this work was extended to graded nanobeams [33]. Eltaher et al. [34] investigated
the buckling and bending behavior of nonlocal graded Timoshenko nanobeams.

According to the literature, there have been several nonlocal beam element formulations. Each was tailored
or designed to treat a specific problem. Though some elements were developed for TBT, EBT elements
dominates the literature [24]. Technically, linear shape functions are sufficient to design an element model
for nonlocal TBT. However, when nonlinear behaviors such as von Kármán strain nonlinearity and nonlinear
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elastic foundations are considered, even second-order elements may fall short of addressing all the high-order
derivative continuity requirements in the variational statement. This problemwas noted by Reddy and El-Borgi
[32,33] where the authors chose to neglect high-order derivatives in the variational statement to be able to solve
using FEM. Moreover, the literature shows that none of the cited FEM studies have been used to investigate
force vibration response and generate frequency response curves (FRC). The lack of forced vibration response
prediction in numerical studies can be traced to difficulties in obtaining steady-state responses for a system
with a high number of degrees of freedom.

To address the shortcoming related to estimating higher-order derivatives, the problem was generally
solved using high-order collocation methods like DQM [35,36] or the quadrature element method (QEM).
This method is a high-order method used to solve FEM problems using a single or few high-order elements
without the need to explicitly identify shape functions [37]. It relies on DQM matrices and a clever choice of
the grid to simplify its implementation and hencemay eliminate the need of an assembly subroutine [37]. QEM
can be classified into two major families, namely the strong form quadrature element method (SQEM) [38,39]
and the weak form quadrature element method (WQEM) [37,40–47]. SQEM is also referred in the literature as
the differential quadrature element method [37,48] or the strong formulation finite element method [49]. This
approach is formulated similar to the regular DQM [37–39,48,49] with the additional freedom to subdivide
the domain into few elements connected by their respective boundary conditions. This allows more flexibility
and mitigates the weakness of DQM for discontinuous loading and geometries. On the other hand, WQEM
can be formulated in a similar manner as FEM based on the minimum energy principle or the weak form of
the integral or the variational statement. It has also been concluded that WQEM converges faster than FEM
[50] and it is also more flexible than SQEM since it is essentially a higher-order FEM [37,40,43]. On another
note, the applications to two-dimensional thin-plate problems by either DQM or SQEM have been mostly
limited to simple domain shapes. Handling more complicated geometries, though theoretically possible [51],
may come at the cost of accuracy and efficiency [52]. On the other hand, WQEM, and similar to FEM, can be
employed to solve problems with any irregular shapes without any loss of accurately [40,43]. Furthermore,
WQEM stiffness matrix is symmetrical, unlike that of SQEM which may have unstable complex eigenvalues.

WQEMispresent in several studies in the literature [46,50,52–63].Wanget al. [53] performeda comprehen-
sive state-of-the-art review ofWQEM and its applications in various engineering applications, including crack
propagation [57], 3D domains [55,58], graded media [46,58], beam and plate problems [46,50,52,54,59,63].
Such studies helped extend the range of applications of WQEM. Other studies focused on the accuracy and
high convergence rate of WQEM to solve challenging problems which are inaccurately solved using DQM
and FEM such as the case of vibration of skewed thin plates [52]. Finally, few other studies focused on solving
mathematical challenges such as integration accuracy [46,53], complex form system and system requiring
derivative degrees of freedom at the boundary such as the case of slender beams and thin plates [45,46,53].

In spite of the fact that WQEM is useful in estimating higher-order derivatives, few investigators have
realized, however, its importance in solving size-dependent continuum mechanics problems [64] and most
notably in the case of forced vibration. To fill this gap in the literature, the authors propose to develop a new
FEM formulation based onWQEM to model the free and forced vibration response of a nonlocal TBT resting
on a nonlinear elastic foundation accounting for moderate rotation through von Kármán strain. The foundation
models the interaction between the beam and the medium in which the beam is embedded such as a protein
microtubule embedded in a matrix [1] or a carbon nanotube (CNT) embedded in a foundation [3]. To model
[65] the forced vibration response, the authors propose two new numerical methods to estimate the frequency
response curves of the nanobeam which are validated based on results obtained by the main authors using the
differential quadrature method [36]. The closest study to this work is the paper published recently by Jin and
Wang [16] who investigated the free vibration response of a linear and classical Timoshenko graded beam
using WQEM. As an extension of this paper, the authors added nonlocal and nonlinear effects in addition to
forced vibration response.

Following this introduction, the size-dependent equations of motion and the corresponding variational
statement for a nonlocal nonlinear graded TBT are established. The following section outlines how the varia-
tional statement is discretized using WQEM to obtain the free vibration response of the nanobeam. Section 4
summarizes the WQEM-based forced vibration solution using two different strategies to obtain the frequency
response curves. Free and forced vibration results obtained byWQEM are presented and compared with DQM
results in Sect. 5. Finally, a summary of this study and concluding remarks are given in Sect. 6.
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2 Equations of motion and variational statement for a nonlocal TBT

2.1 Hamilton’s principle

According to Eringen’s nonlocal theory [10,13], the nonlocal stress is given by

σ̄ =
∫

�

K (|x′ − x|, τ0) σ (x′) dx′ (1)

where σ (x′) is the classical macroscopic Cauchy stress tensor at point x′ and K (|x′ − x|, τ ) is the kernel
function of the nonlocal modulus, |x′ −x| being the distance and τ0 being a material parameter that depends on
internal and external characteristic lengths. Unlike classical mechanics, this relation stipulates that the stress
at a given point in an elastic continuum depends on strains all over the body. An equivalent differential model,
based on the exponential kernel, was proposed [13] as

(
1 − μ2

0∇2)σ̄ = C : ε, μ0 = τ0� = e0a (2)

where e0 is a material constant, ∇2 is the Laplacian operator, and a and � are the internal and external
characteristic lengths, respectively. It is usually assumed that the nonlocal size effect is only significant along
the x-axis of the nanobeam which its along its longitudinal direction. In light of this assumption, Eq. (2) is
reduced to the following:

(
1 − μ2

0
∂2

∂x2

)
σ̄xx =Eεxx (3a)

(
1 − μ2

0
∂2

∂x2

)
σ̄xz =Gγxz (3b)

where ∇2 is reduced to ∂2/∂x2, E is the elastic modulus of the beam and G is its shear modulus.
It is worth noting at this point that the transformation from the integral to the differential form of the

nonlocal model comes with a paradox for beam bending problems with an exponential nonlocal kernel. In
fact, Fernandez-Saez et al. [66] and Romano et al. [67] reported that this transformation yields a relationship
that must be satisfied between the bending moment and the spatial derivative of the bending moment at the
boundaries. The bending moment obtained from the solution of the differential equation should be checked
to ensure the obtained solution is also a solution to the integral form of the model. This is easily done for
problems with displacement-type boundary conditions, since the bending moment will be the solution of a
second-order differential equation, and the constants of integration can be used to satisfy the bending moment
boundary conditions. However, it should be noted that the integral form is incapable to model local effects at
boundaries, which may result in some discrepancies between the actual and simulated bending moment at the
boundary. Knowing that neither the integral form nor the differential form can solve all possible discrepancies
at the boundaries, the differential form is selected in this study. These arguments were also used by the last
two authors in a previous paper for choosing the nonlocal differential model [68].

A Timoshenko beam resting on a nonlinear foundation shown in Fig. 1 is considered in this study. Within
the context of the small displacement and small deformation theory and only accounting for bending in the
x-z plane, the components of the displacement field in a TBT model are assumed to be written as

ux (x, z, t) =u (x, t) + zφx (x, t) (4a)

uz (x, z, t) =w (x, t) (4b)

Accounting for von Kármán strain, the Green–Lagrange strain components can be expressed as

εxx = ε(0)
xx + zε(1)

xx , γxz = γ (0)
xz (5)

where

ε(0)
xx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε(1)
xx = ∂φx

∂x
, γ (0)

xz = φx + ∂w

∂x
(6)
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Hamilton’s principle for the current nonlinear Timoshenko nanobeam can be written as

t2∫

t1

(δK − δU + δW ) dt = 0 (7)

where δK is the variation of the kinetic energy, δU is the variation of strain energy and δW is the variation of
the external work. These terms can be expressed as

δK =
∫ l

0

(
m0u̇δu̇ + m2φ̇xδφ̇x + m0ẇδẇ

)
dx (8a)

δU =
∫ l

0

∫
A

(σxxδεxx + σxzδγxz) d Adx +
∫ l

0
Fvδwdx

=
∫ l

0

{
M (0)

xx

(
∂δu

∂x
+ ∂w

∂x

∂δw

∂x

)
+ M (1)

xx
∂δφx

∂x
+ M (0)

xz

(
δφx + ∂δw

∂x

)
+ Fvδw

}
dx (8b)

δW = −
∫ l

0
(qδw) dx (8c)

where q is the distributed transverse load and Fv = μ f ẇ represents the damping force assumed to be
proportional to the velocity ẇ wherein μ f is the damping coefficient. It is worth noting that there is no

damping associated with rotation since the beam is considered elastic and not viscoelastic [69]. Finally, M (k)
i j

is a stress resultant defined as

M (k)
i j =

∫
A
zkσi j d A (9)

2.2 Equations of motion

Substituting Eqs. (8a), (8b) and (8c) into Hamilton’s principle (7), and then integrating by parts, yields the
motion equations of the nanobeam which can be written as

− ∂M (0)
xx

∂x
+ m0

∂2u

∂t2
= 0 (10a)

− ∂

∂x

(
M (0)

xz + M (0)
xx

∂w

∂x

)
+ μ f

∂w

∂t
+ m0

∂2w

∂t2
= q (10b)

M (0)
xz − ∂

∂x
M (1)

xx + m2
∂2φx

∂t2
= 0 (10c)

For a beam graded in the z direction, the elastic and shear moduli, appearing in Eqs. (3a) and (3b), are assumed
to follow the power-law function below [27,46]

E(z) = (EU − EL)

(
z

h
+ 1

2

)nk
+ EL , G(z) = Ks E(z) (11)

where the subscripts U and L designate the upper and lower faces of the beam. Here, h is the thickness of the
beam and nk is the material gradation index. In light of the above equations, the nanobeam is considered to be
nonhomogeneous with an isotropic stress–strain law. Combining (3a) and (3b) with Eq. (9) yields:

M (0)
xx − μ2

0
∂2M (0)

xx

∂x2
= Ãε(0)

xx = Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

(12a)

M (1)
xx − μ2

0
∂2M (1)

xx

∂x2
= B̃ε(1)

xx = B̃
∂φx

∂x
(12b)
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M (0)
xz − μ2

0
∂2M (0)

xz

∂x2
= G̃γ (0)

xz = G̃

[
φx + ∂w

∂x

]
(12c)

in which

Ã =
∫
A
E(z)d A, B̃ =

∫
A
z2E(z)d A, G̃ =

∫
A
G(z)d A (13)

Next, using the technique developed by Nayfeh and Pai [70], the axial displacement u is eliminated from the
equations of motion. To apply this technique, the following assumptions are adopted: (i) The beam is supported
at its both boundary points such that u(0) = u(l) = 0 and (ii) the longitudinal accelerationm0∂

2u/∂t2 and the
corresponding velocity are assumed to be very small and hence can be neglected. Applying these assumptions
yields the following expression of M (0)

xx which can be written as:

M (0)
xx = Ãε(0)

xx = C2(t) = 1

2S

{∫ l

0

(
∂w

∂x

)2

dx

}
(14)

where S = ∫ l
0

1
Ã
dx = l

Ã
. Further details about this simplification can be found in [36]. With further manip-

ulations, it can be shown that the nonlocal stress resultants can be written entirely in terms of displacements

M (0)
xx = Ãε(0)

xx = C2 (15a)

M (0)
xz =μ2

0

{
− ∂2

∂x2

[
∂w

∂x
C2

]
− ∂q

∂x
+ μ f

∂2w

∂x∂t
+ m0

∂3w

∂x∂t2

}
+ G̃

(
φx + ∂w

∂x

)
(15b)

M (1)
xx =μ2

0

{
− ∂

∂x

[
∂w

∂x
C2

]
− q + μ f

∂w

∂t
+ m0

∂2w

∂t2
+ m2

∂3φx

∂x∂t2

}
+ B̃

∂φx

∂x
(15c)

Finally, substituting the above equations into (10b) and (10c) yields the following reduced equations of motion:

[
1 − μ2

0
∂2

∂x2

]{
m0

∂2w

∂t2
+ μ f

∂w

∂t
− ∂2w

∂x2

{
1

2S

∫ l

0

(
∂w

∂x

)2

dx

}
− q

}
− G̃

∂

∂x

(
φx + ∂w

∂x

)
= 0 (16a)

[
1 − μ2

0
∂2

∂x2

]{
m2

∂2φx

∂t2

}
+ G̃

(
φx + ∂w

∂x

)
− B̃

∂2φx

∂x2
= 0 (16b)

The nonlinear elastic foundation is assumed to be a transversely acting stiffness. Hence, in the case of a forced
vibration load, q(x, t) is given by

q(x, t) = −kLw − kNLw3 + ks
∂2w

∂x2
+ F(x) cos(ωt) (17)

where kL , kNL and ks are, respectively, the linear, nonlinear and shear coefficients of the nonlinear medium
in which the beam is embedded and therefore represent the effect of the surrounding medium. It is also
worth noting that this model is a generalization of the linear models known as Winkler [71] and Pasternak
[72] foundations, although a more complex model could be a viscoelastic foundation [73]. Previous papers
published by the main authors [35,36] confirm that the effect of the surrounding material is crucial and the
nonlinear stiffness parameter kNL appearing in Eq. (17) plays a dominant role in the response of the nanobeam.
Therefore, it was decided to adopt the current nonlinear foundation in this study rather than the linear classical
Winkler-type and Pasternak-type foundations. Finally, F(x) andω, appearing in the above equation, designate,
respectively, the forcing function amplitude and frequency. Finally, the amplitude is set to zero for free vibration
case.
For scaling purposes, the following normalization is utilized:

ξ = x

l
, ŵ = w

r
, φ̂ = l

r
φx , s2 = B̃

l2G̃
, κ0 = r2 Ã

2B̃
(18a)
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τ =t
1

l2

√
B̃

m0
, r =

√
I

A
, μ̂0 = μ0

l
, m = m2

l2m0
, μ̂ f = μ f l2√

m0 B̃
(18b)

k̂L =kL
l4

B̃
, k̂N L = kNL

r2l4

B̃
, k̂s = ks

l2

B̃
, F̂(ξ) = F(x)

l4

B̃
, ω̂ = ωl2

√
m0

B̃
(18c)

This yields the following nondimensional equations of motion:

[
1 − μ̂2

0
∂2

∂ξ2

](
∂2ŵ

∂τ 2
+ μ̂ f

∂ŵ

∂τ
− κ0

∂2ŵ

∂ξ2

∫ 1

0

(
∂ŵ

∂ξ

)2

dξ − q̂

)
− 1

s2
∂

∂ξ

(
φ̂ + ∂ŵ

∂ξ

)
= 0 (19a)

[
1 − μ̂2

0
∂2

∂ξ2

](
m

∂2φ̂

∂τ 2

)
+ 1

s2

(
φ̂ + ∂ŵ

∂ξ

)
− ∂2φ̂

∂ξ2
= 0 (19b)

where q̂ = k̂s
∂2ŵ
∂ξ2

− k̂Lŵ − k̂N Lŵ3 + F̂(ξ) cos(ω̂τ ) and

(
q̂ − μ̂2

0
∂2q̂

∂ξ2

)
= k̂s

(
∂2ŵ

∂ξ2
− μ̂2

0
∂4ŵ

∂ξ4

)
− k̂L

(
ŵ − μ̂2

0
∂2ŵ

∂ξ2

)
− k̂N L

[
ŵ3 − 3μ̂2

0

(
2ŵ

(
∂ŵ

∂ξ

)2

+ ŵ2 ∂2ŵ

∂ξ2

)]

+
(
F̂(ξ) − μ̂2

0
∂2

∂ξ2
F̂

)
cos(ω̂τ )

For the hinged–hinged (HH) case, the following boundary conditions must be satisfied at the ends of the beam,
i.e., at both ξ = 0 and ξ = 1:

ŵ = 0, M̂ (1)
xx = 0 (20)

which is equivalent to

ŵ = 0 (21a)

∂φ̂

∂ξ
− κ0μ̂

2
0

(∫ 1

0

(
∂ŵ

∂ξ

)2

dξ

)
∂2ŵ

∂ξ2
+ μ̂2

0

[
∂2ŵ

∂τ 2
+ m

∂3φ̂

∂ξ∂τ 2
+ μ̂ f

∂ŵ

∂τ
− q̂

]
= 0 (21b)

A clamped–clamped (CC) nanobeam must satisfy the following boundary conditions at ξ = 0 and at ξ = 1:

ŵ = 0, φ̂ = 0 (22)

2.3 Variational statement

The aim of this study is to formulate a high-order variational method. To this end, Eq. (15) is substituted
into Eqs. (8a), (8b) and (8c). The resulting expressions are then substituted into the expression of Hamilton’s
principle (7). Finally, integrating (8a) by parts, the variational formulation can be written as a function of
displacements as follows:

∫ l

0

[
m0ẅ + μ f ẇ − q

]
δw

+
[
μ2
0m0ẅ

′ + μ f μ
2
0ẇ

′ − μ2
0q

′ + G̃
(
w′ + φx

)+ (
w′ − μ2

0w
′′′) 1

2S

∫ l

0
w′2dx

]
δw′

+
[
μ2
0m0ẅ

′ + m2φ̈x + μ f μ
2
0ẇ

′ + G̃
(
w′ + φx

)− μ2
0

(
q ′ + w′′′

(
1

2S

∫ l

0
w′2dx

))]
δφx

+
[
μ2
0m0ẅ + μ2

0m2φ̈x + μ f μ
2
0ẇ + B̃φ

′
x − μ2

0

(
q + w′′

(
1

2S

∫ l

0
w′2dx

))]
δφ′

xdx (23)
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which can be rewritten in scalar product form as follows:

∫ l

0

⎛
⎜⎜⎝

δw

δw′
δφx
δφ′

x

⎞
⎟⎟⎠
T

�

⎛
⎜⎜⎜⎜⎝

∂2

∂t2

⎛
⎜⎜⎝

m0w

μ2
0m0w

′
μ2
0m0w

′ + m2φx

μ2
0m0w + μ2

0m2φ
′
x

⎞
⎟⎟⎠+ μ f

∂

∂t

⎛
⎜⎜⎝

w

μ2
0w

′
μ2
0w

′
μ2
0w

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−q

−μ2
0q

′ + G̃
(
w′ + φx

)+
(
w′ − μ2

0w
′′′) 1

2S

∫ l
0 w′2dx

G̃
(
w′ + φx

)− μ2
0

(
q ′ + w′′′ ( 1

2S

∫ l
0 w′2dx

))

B̃φ
′
x − μ2

0

(
q + w′′ ( 1

2S

∫ l
0 w′2dx

))

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ dx

(24)

Since only one element will be used to model the nanobeam, the external forces at the boundaries of the beam
element are basically reaction forces. Hence, the work of external forces at the boundaries of the nanobeam is
zero and does not need to be added to the variational statement [32].

Examining the above variational statement reveals that w is raised to the third derivative in several terms.
One alternative used by Reddy et al. [33] is to neglect these terms and adopt a quadratic finite element model
that does not account for all mechanical aspects of the system. A better alternative is to raise the order of
the finite element model and one viable approach is the p-version of the finite element method. However, a
simpler alternative adopted in this paper is to deployWQEM to discretize the system, which in addition brings
high-order accuracy.

Finally, utilizing the normalized variables in (18), the normalized variational statement can then be
expressed as follows:

∫ 1

0

⎛
⎜⎜⎝

δŵ

δŵ′
δφ̂

δφ̂′

⎞
⎟⎟⎠

T

�

⎛
⎜⎜⎜⎜⎝

∂2

∂τ2

⎛
⎜⎜⎝

ŵ

μ̂2
0ŵ

′
μ̂2
0ŵ

′ + mφ̂

μ̂2
0ŵ + μ2

0mφ̂′

⎞
⎟⎟⎠+ μ̂ f

∂

∂τ

⎛
⎜⎜⎝

ŵ

μ̂2
0ŵ

′
μ̂2
0ŵ

′
μ̂2
0ŵ

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−q̂

−μ̂2
0q̂

′ + 1
s2

(
ŵ′ + φ̂

)
+ κ0

(
ŵ′ − μ̂2

0ŵ
′′′) ∫ l

0 ŵ′2dξ

1
s2

(
ŵ′ + φ̂

)
− μ̂2

0

(
q̂ ′ + κ0ŵ

′′′ ∫ l
0 ŵ′2dξ

)

φ̂′ − μ̂2
0

(
q̂ + κ0ŵ

′′ ∫ l
0 ŵ′2dξ

)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ dξ

(25)

The above nondimensional variational statement is the one subsequently solved in the free and forced
vibration studies (Sects. 4 and 5). Furthermore, it is obvious that the highest derivative ŵ′′′ appearing in Eqs.
(24) and (25) cannot be accounted for based on a regular FEM formulation even with second-order elements.
The formulation of classical FEM requires the definition of shape functions whose order defines the element’s
order. Modifying the element order to accommodate higher derivatives (or to increase elements precision)
requires the development of a brand new formulation. This locks the order FEM element at the formulation
stage. WQEM, however, does not require an explicit computation of shape functions or their derivatives [37].
This allows the use of adaptive order of precision and hence can avoid any unnecessary approximations.

3 Free vibration WQEM formulation

To simplify the computation of the discretized system and later write the variational statement in matrix form,
the following integral is first approximated

∫ b
a f (ξ)(m)g(ξ)(k)dξ . Here, f (ξ) and g(ξ) are arbitrary functions

that can be interpolated using a Lagrange polynomial basis of order n and f (ξ)(m) and g(ξ)(k) are, respectively,
the mth-order and kth-order derivatives of f (ξ) and g(ξ) with respect to ξ . To this end, an n-node mesh has
to be selected and the integral can be evaluated as

∫ b

a
f (ξ)(m)g(ξ)(k)dξ ≈

n∑
i=1

[ωξ ]i f (m)(ξi )g
(k)(ξi )

=
⎡
⎢⎣

[ωξ ]1 f (m)(ξ1)
...

[ωξ ]n f (m)(ξn)

⎤
⎥⎦
T

.

⎡
⎢⎣
g(k)(ξ1)

...

g(k)(ξn)

⎤
⎥⎦
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[ωξ ]
⎡
⎢⎣

f (m)(ξ1)
...

f (m)(ξn)

⎤
⎥⎦

︸ ︷︷ ︸
[ f (m)({ξ})]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

.

⎡
⎢⎣
g(k)(ξ1)

...

g(k)(ξn)

⎤
⎥⎦

︸ ︷︷ ︸
[g(k)({ξ})]

(26)

where ξi (1 ≤ i ≤ n) are the mesh coordinates, {ξ} is the mesh coordinate vector and [ωξ ]i are the integral
quadrature weights relative to ξi , (1 ≤ i ≤ n). In the above equation, the term [ωξ ][ f (ξ)] is an element

by element multiplication and
[
f (m) ({ξ})]T .

[
g(k) ({ξ})] is a regular matrix (or vector) multiplication. Using

DQM matrices, Eq. (26) can be further simplified as follows:

∫ b

a
f (ξ)(m)g(ξ)(k)dξ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[ωξ ][Mm].
⎡
⎢⎣

f (ξ1)
...

f (ξn)

⎤
⎥⎦

︸ ︷︷ ︸
[ f (m)({ξ})]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

.[Mk].
⎡
⎢⎣
g(ξ1)

...
g(ξn)

⎤
⎥⎦

︸ ︷︷ ︸
[g(k)({ξ})]

=
⎡
⎢⎣

f (ξ1)
...

f (ξn)

⎤
⎥⎦

[ f ({ξ})]

([ωξ ][Mm])T .[Mk].
⎡
⎢⎣
g(ξ1)

...
g(ξn)

⎤
⎥⎦

︸ ︷︷ ︸
[g({ξ})]

(27)

where [Mm] is the mth-order differentiation DQM matrix whose expression is given in “Appendix” 7. M0
designates the identity matrix which has the same order as the DQM matrices. Here, the notation [ωξ ][Mm]
indicates that the elements of [ωξ ] multiply the rows of [Mm]. It will be referred to later simply as [ωξ Mm].
Using (27), the integrals in (25) can be discretized and written in a matrix form. Technically, Y1 and Y2 are
defined as vectors of nodal displacements such as [Y1]i = ŵi (τ ) and [Y2]i = φ̂i (τ ) where (1 ≤ i ≤ n). In
addition, δY1 and δY2 are vectors of virtual displacements such as [δY1]i = δŵi (τ ) and [δY2]i = δφ̂i (τ ).

Finally, the general displacement vector Y is defined as Y =
[
Y1
Y2

]
, while the velocity and acceleration vectors

are denoted by Ẏ and Ÿ , respectively.
A WQEM discretization is utilized to obtain the free vibration solution of the nanobeam. The mesh

coordinates ξi (i = 1, . . . , n) for n nodes are chosen based on the Gauss–Lobatto–Legendre (GLL) quadrature
grid which yields an integration accuracy up to a polynomial of degree (2n – 3) [37,45]. For a general linear
TBT, this should result in a fully integrated stiffness matrix and reduced integrated mass matrix [37,45].
Applying the spatial discretization in (27) to the variational statement (25) yields the following:

[
ωξ M0

]T
.
(
M0.Ÿ1 − q̂

)+ μ̂2
0

[
ωξ M1

]T
.
(
M1.Ÿ1 − q̂ ′)+

[
ωξ M1

]T
.

(
iC (M1.Y1 − μ̂2

0M3.Y1
)+ 1

s2
(M0.Y2 + M1.Y1)

)
= 0 (28a)

− − − −
[
ωξ M0

]T
.

(
1

s2
(M0.Y2 + M1.Y1) + mM0.Ÿ2 + μ̂2

0M1.Ÿ1 − μ̂2
0iCM3.Y1 − q̂ ′

)
+

[
ωξ M1

]T
.
(
M1.Y2 + μ̂2

0

(
mM1.Ÿ2 + M0.Ÿ1 − iCM2.Y1 − q̂

)) = 0 (28b)

where

iC = κ0
({

ωξ

}
.
{
(M1.Y1)

2})
q̂ = k̂sM2.Y1 − k̂L M0.Y1 − k̂N L (M0.Y1)

3

q̂ ′ = k̂sM3.Y1 − k̂L M1.Y1 − 3k̂N L (M0.Y1)
2 M1.Y1
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and ωξ is an integral quadrature weight coefficient vector compatible with the GLL grid. M2M1 or M2
1 is an

element by element product (i.e., the Hadamard product) of either two vectors or twomatrices. Thematrix form
in Eqs. (28a) and (28b) produces a system of 2n coupled differential equations, n for each degree of freedom.
Hinged–hinged (HH) and clamped–clamped (CC) beams are the only boundary conditions considered herein.
Since all boundary conditions present in this study are homogeneous, only essential boundary conditions need
to be explicitly stated for variational methods. These boundary conditions are given by

[Y1]kb = 0

− − −
[Y1]kb = 0

[Y2]kb = 0 (29)

where kb is either 1 or n. The system of Eqs. (28a) and (28b) is then reduced to its basic degrees of freedom
using the procedure outlined in [35,64,65,74]

[
M {R}

Sys

]
.
[
Ÿ {R} ]+

[
K {R}

Sys

(
Y {R})] .

[
Y {R} ] = {0} (30)

Here, the superscript {R} denotes the reduced formulation of the system, MSys is the mass matrix and KSys(Y )

is the nonlinear stiffnessmatrix. To obtain the eigenvalues, Y is assumed to have the following form Y = Ỹ eiωt .
Then, Eq. (30) is rewritten in the following form:

([
K {R}

Sys

(
Y {R})]− ω2

[
M {R}

Sys

])
.Ỹ {R} = 0 (31)

To obtain the linear natural eigen-system, Y {R} is set to {0} in
[
K {R}

Sys(Y
{R})

]
in (31). The i th nonlinear natural

frequency is obtained through an iterative process which starts with the i th linear eigenvector to evaluate[
K {R}

Sys(Y
{R})

]
. The newly estimated eigenvector is used to update

[
K {R}

Sys(Y
{R})

]
until reaching convergence.

Since the nonlinear frequency is amplitude dependent, the i th eigenvector must always be scaled relative to
the mode shape of w (x, t) in order to keep the mode shape’s amplitude constant.

4 Forced vibration WQEM formulation

The free vibration studies related to the problems similar to the one under investigation largely outnumbered
their force vibration counterparts in the literature. In fact, there are limited number studies of forced vibration
involving DQM [36,65,74,75], especially in size-dependent mechanics. A number of nonclassical mechanics
WQEM studies are extremely rare and are focused on the free vibration response [64]. To the best of the authors
knowledge, there have been no forced vibration WQEM studies in the literature similar to the one present
with DQM. To fill this gap, two force vibration methods are proposed in this section. Each of the proposed
methods aims at finding the periodic steady-state solution of the system for different excitation frequencies.
For this aim, the time is discretized using a periodic grid and periodic derivation matrices. However, adding
a time discretization is equivalent to adding another dimension to the problem with consequential important
computational cost. Hence, knowing that the forcing term should only excite a few modes, it is necessary to
reduce the spatial degrees of freedom. In this section, each proposed method introduces a different approach
to perform this task.

Adding the forcing and the damping terms to (28a) and (28b) yields the following WQEM formulation of
the variational statement for the forced vibration case:[

ωξ M0
]T

.
(
M0.Ÿ1 + μ̂ f M0.Ẏ1 − q̂

)+ μ̂2
0

[
ωξ M1

]T
.
(
M1.Ÿ1 + μ̂ f M1.Ẏ1 − q̂ ′)+

[
ωξ M1

]T
.

(
iC (M1.Y1 − μ̂2

0M3.Y1
)+ 1

s2
(M0.Y2 + M1.Y1)

)
= 0 (32a)

− − − −
[
ωξ M0

]T
.

(
1

s2
(M0.Y2 + M1.Y1) + mM0.Ÿ2 + μ̂2

0

(
M1.Ÿ1 + μ̂ f M1.Ẏ1 − iCM3.Y1

)− q̂ ′
)

+
[
ωξ M1

]T
.
(
M1.Y2 + μ̂2

0

(
mM1.Ÿ2 + M0.Ÿ1 + μ̂ f M0.Ẏ1 − iCM2.Y1 − q̂

)) = 0 (32b)
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where

iC = κ0
({

ωξ

}
.
{
(M1.Y1)

2})
q̂ = k̂sM2.Y1 − k̂L M0.Y1 − k̂N L (M0.Y1)

3 + F̂ cos(ω̂τ )

q̂ ′ = k̂sM3.Y1 − k̂L M1.Y1 − 3k̂N L (M0.Y1)
2 M1.Y1 + M1.F̂ cos(ω̂τ )

in which μ̂ f is the normalized damping coefficient and F̂ denotes the normalized discretized force distribution.

4.1 WQEM formulation using a mode shape interpolation basis

The mode shape-based forced vibration approach follows three main steps [35,74]:

1. switching the interpolation basis from a Lagrange basis to a modal basis to reduce the number of degrees
of freedom;

2. discretizing time using a periodic method, such as the spectral method (SM) or the harmonic quadrature
method (HQM);

3. solving the discretized system for a different forcing frequency at the vicinity of its first eigen-frequency
and plotting the frequency response curve.

4.1.1 Switching the interpolation basis

As explained earlier, WQEM is a high-order FEM that relies on DQM to express the derivatives of the shape
functions at the integration points [64]. This is technically, equivalent to making the following assumptions:

ŵ (ξ, τ ) =
⎡
⎢⎣
L1(ξ)

...
Ln(ξ)

⎤
⎥⎦

︸ ︷︷ ︸
L(ξ)

T

(n×1)

.

⎡
⎢⎣

ŵ1 (τ )
...

ŵn (τ )

⎤
⎥⎦

︸ ︷︷ ︸
Y1(τ ) (n×1)

φ̂ (ξ, τ ) = L(ξ).Y2 (τ )

(33)

where L(ξ) is a vector of the Lagrange basis relative to {ξ} and the dimensions of each term are specified as a
subscript in parentheses. Note that this discretization applies for both the displacements ŵ (ξ, τ ) and φ̂ (ξ, τ ),
and virtual displacements δŵ (ξ, τ ) and δφ̂ (ξ, τ ). To reduce the size of the problem, ŵ (ξ, τ ) and φ̂ (ξ, τ ), as
well as δŵ (ξ, τ ) and δφ̂ (ξ, τ ), are expressed using a reduced number of mode shapes m. Terms related to the
reduced coordinates will use a double script font or will be underlined as indicated below

ŵ (ξ, τ ) =
⎡
⎢⎣
L1(ξ)

...
Ln(ξ)

⎤
⎥⎦
T

︸ ︷︷ ︸
L(ξ)

.
[
�1
]
(n×m)

.

⎡
⎢⎣

w1 (τ )
...

wm (τ )

⎤
⎥⎦

︸ ︷︷ ︸
Y1(τ ) (m×1)

(34a)

φ̂ (ξ, τ ) = [L(ξ)]T .
[
�2
]
(n×m)

.[Y2(τ )] (34b)

[�1](n×m) = [ {Ỹw,1} . . . {Ỹw,m} ]︸ ︷︷ ︸
The mode shape approximation basis for ŵ(ξ,τ )

(34c)

[�2](n×m) = [ {Ỹφ,1} . . . {Ỹφ,m} ]︸ ︷︷ ︸
The mode shape approximation basis for φ̂(ξ,τ )

(34d)

in which Y1(τ ) and Y2(τ ) denote, respectively, the reduced generalized coordinate vectors for ŵ (ξ, τ ) and
φ̂ (ξ, τ ). The virtual displacements δŵ (ξ, τ ) and δφ̂ (ξ, τ ) are also interpolated in a similar manner. [�1] and
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[�2] are a collection ofm columns representing linear eigenvectors relative to ŵ and φ̂, respectively, such that
{Ỹw,i } and {Ỹφ,i } are the i th linear eigenvectors with respect to ŵ and φ̂, respectively. The basic concept here
is to interpolate the dependent variables and the virtual displacements using the limited number of dominant
linear mode shapes. Hence, the reduced generalized coordinates in Y1(τ ) and Y2(τ ) are simply the amplitudes
of each dominant linear mode.

Substituting into (25) gives a system of equations similar to Eqs. (32a) and (32b) as

[
ωξ M1,0

]T
.
(
M1,0.Ÿ1 + μ̂ f M1,0.Ẏ1 − q̂

)+ μ̂2
0
[
ωξ M1,1

]T
.
(
M1,1.Ÿ1 + μ̂ f M1,0.Ẏ1 − q̂ ′)+

[
ωξ M1,1

]T
.

(
iC
(
M1,1.Y1 − μ̂2

0M1,3.Y1

)
+ 1

s2
(
M2,0.Y2 + M1,1.Y1

)) = 0 (35a)

− − − −
[
ωξ M2,0

]T
.

(
1

s2
(
M2,0.Y2 + M1,1.Y1

)+ mM2,0.Ÿ2 + μ̂2
0
(
M1,1.Ÿ1 + μ̂ f M1,0.Ẏ1 − iCM1,3.Y1

)− q̂ ′
)

+
[
ωξ M2,1

]T
.
(
M2,1.Y2 + μ̂2

0
(
mM2,1.Ÿ2 + M1,0.Ÿ1 + μ̂ f M1,0.Ẏ1 − iCM1,2.Y1 − q̂

)) = 0 (35b)

where

Mk,i = Mi . [�k]

iC = κ0
({

ωξ

}
.
{(

M1,1.Y1
) 2})

q̂ = k̂sM1,2.Y1 − k̂LM1,0.Y1 − k̂N L
(
M1,0.Y1

)3 + F̂ cos(ω̂τ )

q̂ ′ = k̂sM1,3.Y1 − k̂LM1,1.Y1 − 3k̂N L
(
M1,0.Y1

)2
M1,1.Y1 + M1,0.F̂ cos(ω̂τ )

Switching to a mode shape interpolation basis reduces the problem size from 2n equations (n is number of
nodes in the mesh) to 2m. This step is driven by the fact that a limited number of first mode shapes generally
dominate the dynamic behavior of the nanobeam. In addition, the forcing term is focused to mostly excite the
first w modes. Thus, F̂ or F̂ is selected such that

F̂ = μF F̄1{Ỹw,1} (36a)

F̂ = μF F̄1
{
1 0 · · · 0 }T

(m×1) (36b)

μF =
{∫ 1

0
ψ2dξ

}−1/2

= ‖ψ‖−1
2 ≈

{{ωξ }.{Ỹ 2
w,1}

}−1/2
(36c)

where F̄1 denotes the amplitude of the forcing term and μF represents a scaling factor.Finally, let us define

Y =
[

Y1
Y2

]
, so that Eqs. (35a) and (35b) can be expressed in the following form:

[MSys].Ÿ + [CSys].Ẏ + [KSys(Y)].Y − [FSys] cos(ω̂τ ) = 0 (37)

4.1.2 Time discretization

Introducing a new timescale τ̂ such that τ̂ = τ
T = τ

2π ω̂, Eq. (37) becomes

(
ω̂

2π

)2

[MSys].Ÿ +
(

ω̂

2π

)
[CSys].Ẏ + [KSys(Y)].Y − [

FSys
]
cos(2πτ̂ ) = 0 (38)

The choice of this timescale eliminates the need to update the forcing term for various values of ω̂. A periodic
steady-state solution must be reached to compute the frequency response of the system. This can be expressed
with the following periodic initial conditions:

{
Y|τ̂=0 = Y|τ̂=1

Ẏ|τ̂=0 = Ẏ|τ̂=1
(39)
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Anumerical solution for the forced vibration problem requires an adequate discretization of the time dimension.
Both spectral method (SM) and harmonic differential quadrature method (HQM) can be utilized for this aim
since both methods implicitly implement periodic initial conditions with additional accuracy of high-order
methods. Hence, the corresponding compatible mesh is adopted

τ̂i = i

nτ

, 0 < τ̂i ≤ 1, 1 ≤ i ≤ nτ nτ is even for SM (40)

τ̂i = i

nτ

, 0 ≤ τ̂i < 1, 0 ≤ i ≤ nτ − 1 nτ is odd for HQM (41)

where nτ designates the time increment number. Here, the SM and HQM differentiation matrices are, respec-
tively, provided in Appendices B and C and the discretized time space coordinate matrix is defined as

[Q] =
⎡
⎣ [Qw]

− − −
[Qφ]

⎤
⎦ =

⎡
⎣ Y1(τ̂1) · · · Y1(τ̂nτ )− − −

Y2(τ̂1) · · · Y2(τ̂nτ )

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(τ̂1) · · · w1(τ̂nτ )
...

...
wm(τ̂1) · · · wm(τ̂nτ )

__ __ __
φ1(τ̂1) · · · φ

n
(τ̂nτ )

...
...

φ
m
(τ̂1) · · · φ

m
(τ̂nτ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2m×nτ )

(42)

Here, the columns and lines of [Q] correspond to the discretized space and time, respectively. This approach
yields the following discretized equation of motion:

(
ω̂

2π

)2

[MSys].[Q].[D(2)
τ ]T +

(
ω̂

2π

)
[CSys].[Q].[D(1)

τ ]T + [KSys(Q)].[Q] − [FSys].[A] = 0 (43)

im which [D(k)
τ ] is the kth-order time derivative matrix and [A] is a (1 × nτ ) line matrix such as [A]i =

cos(2πτ̂i ). Finally, solving (43) for different values of ω̂ in the neighborhood of the first linear frequency is
required to obtain the frequency response curve.

4.1.3 Frequency response curve

A frequency response curve can be generated in the neighborhood of each resonance. This applies to both
system’s dependent variables, namely ŵ and φ̂. The amplitudes of ŵ’s mode shapes as a function of time are
obtained through the following transformation:

⎡
⎢⎣

w1(τ̂ )
...

wm(τ̂ )

⎤
⎥⎦

︸ ︷︷ ︸
{Y1(τ̂ )} (m×1)

=
⎡
⎢⎣

w1(τ̂1) · · · w1(τ̂nτ )
...

...
wm(τ̂1) · · · wm(τ̂nτ )

⎤
⎥⎦

︸ ︷︷ ︸
[Qw] (m×nτ )

.

⎡
⎢⎣

L1(τ̂ )
...

Lnτ (τ̂ )

⎤
⎥⎦

︸ ︷︷ ︸
{L(τ̂ )} (nτ ×1)

(44)

where [Qw] is defined in (42). Finally, [L(τ )], the time discretization basis is given by [76–78]

Li (τ ) = 1

nτ

cot

(
π

(
t − i

nτ

))
sin

(
πnτ

(
t − i

nτ

))
for spectral method

Li (τ ) =
nτ∏

j=1, j �=i

sin(π(τ − τ j ))

sin(π(τi − τ j ))
for HQM (45)

The frequency response curve was established such that the forcing term excited only the fundamental natural
frequency. This corresponds to finding max(w1(τ )) of the QEM system (32) at several values of ω̂ in the
neighborhood of the first natural frequency.
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4.2 WQEM formulation using Galerkin technique

It is also possible to write (32a) and (32b) as

[MSys].Ÿ + [CSys].Ẏ + [KSys(Y )].Y − [FSys] cos(ω̂τ ) = 0 (46)

Based on this form, the forced vibration problem can be treated similarly to the DQM case in [74,75,79,80].
Despite the similarity, there are few differences to be noted

1. In this case, a Galerkin projection is applied to discretize the variational statement.
2. Two nested integrals have to be calculated: the WQEM integral and the Galerkin integral.
3. Thanks to the careful mesh choice, it is possible to use the same high-order integration scheme for the

WQEM and Galerkin integrals.
4. This method is computationally more intensive than the method presented in the previous section.
5. The main difference between this approach and the one presented in the previous section is the procedure

of reducing the number of the degrees of freedom.

Going back to (46), all matrices present in this equation along with [FSys] are established using WQEM, i.e.,
the high-order variational statement. Now that the system looks like a time-dependent differential equation, the
Galerkin technique is adopted to limit the size of theWQEM system to 2m equations. As stated in the previous
section, only a limited number of mode shapes dominate the nanobeam’s vibrational response. Hence, the 2m
first linear nonlocal mode shapes are selected as the basis in applying the Galerkin technique [74,75,79,80].
Consequently, the following change of variables has to be made:

[
Y1
Y2

]
︸ ︷︷ ︸

Y (2n×1)

=
[ [�w] 0

0 [�φ]
]

︸ ︷︷ ︸
[�] (2n×2m)

.

[ {Y1(τ )}(m×1)
{Y2(τ )}(m×1)

]
︸ ︷︷ ︸

Y(τ ) (2m×1)

(47)

where Y(τ ) and [�] are, respectively, the reduced generalized coordinates and the Galerkin approximation
basis. The idea is similar to the one presented in the previous section except here the change of variable
is performed after the evaluation of the variational statement. {Y1(τ )} and {Y2(τ )} denote, respectively, the
reduced generalized coordinates relative to ŵ and φ̂. [�] is composed of two blocks [�w] and [�φ], which are
identical to the ones presented in the previous section. The Galerkin approximation consists of premultiplying
Eq. (46) by a numerical Galerkin projection operator denoted by [G] to yield the following:

[[S][�]]T︸ ︷︷ ︸
[G](2m×2n)

.
([MSys].[�].Ÿ + [CSys].[�].Ẏ + [KSys([�].Y)].[�].Y − [FSys] cos(ω̂τ )

) = 0 (48)

in which [S] is the integral quadrature weight coefficient matrix and [�] is given by (47). In the literature, [S]
is usually computed using the trapezoidal rule [36,65,75]. However, since a GLL grid is used, a more accurate
result can be obtained by setting [S] = [ωξ ]. The final system is given by

[MSys].Ÿ + [
CSys

]
.Ẏ + [

K Sys(Y)
]
.Y − [FSys] cos(ω̂τ ) = 0 (49)

where

[MSys](2m×2m) =[G](2m×2n).[MSys](2n×2n).[�](2n×2m)

[K Sys(Y(τ ))](2m×2m) =[G](2m×2n).[KSys([�].Y(τ ))](2n×2n).[�](2n×2m)

[CSys](2m×2m) =[G](2m×2n).[CSys](2n×2n).[�](2n×2m)

[FSys](2m×1) =[G](2m×2n).[FSys](2n×1)

This system looks similar to (37), although the resulting matrices are not the same. Nevertheless, the solution
procedure is exactly the same from this point onward.
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5 Numerical results and discussion

Various aspects of the graded nanobeam vibration are presented herein including nonlocal linear and nonlinear
frequencies in addition to force vibration frequency response curves. A schematic of the beam is presented in
Fig. 1. It is assumed that the beam has a square cross section such that b = h = 1

10 L . It is further assumed
that its material distribution is graded in the z-direction according to Eq. (11) where − h

2 ≤ z ≤ h
2 and PL and

PU designate aluminum and silicon properties, respectively. In this study, the utilized material properties are
reported inTable 1 and the considered boundary conditions include hinged–hinged (HH) and clamped–clamped
(CC).

5.1 Performance of WQEM

A mesh convergence study is the first step. To give a better assessment of the convergence performance of
WQEM, it was decided to conduct a mesh convergence study on all cases treated later in Table 5. Generally, the
CC case is the slowest to converge. A selection of these difficult CC cases are presented in Table 2 along with
their HH analogs. Table 2 shows that the errors for the CC cases fall below 0.5% for as few as 7 nodes. A choice
of 7 nodes is totally acceptable, although an 11-node grid is selected for better accuracy. In fact, the error for
the HH cases drops below 0.05% using just 7 nodes. This rapid convergence is one of the major advantages
for using a high-order variational statement. A similar system would have required 15 nodes to converge using
DQM [36]. It is important to note that these results are obtained despite the fact that the nanobeam is highly
nonlinear. In this study, a choice of 11 nodes is adopted. The DQM results in this paper were provided from a
study by Trabelssi et al. [36] which used a 15-node grid.

5.2 Free vibration response

The aim of this section is to replicate the results obtained by Trabelssi et al. [36] for a similar problem using
WQEM. The results obtained herein can be divided into two tables. First, the effect of different parameters
including thematerial inhomogeneity indexnk , the amplitudeof the free vibration A and the stiffness parameters
of the elastic foundation, on the free vibration of the nanobeam is investigated in Table 3 for HH and CC
nanobeams. The results reported in Table 3 were generated based on theWQEM discretization. For the sake of
comparison, Table 3 containsDQMdata obtained by Tarbelssi et al. [36], which helps to assess the performance
of the proposed approach. The present data utilize a range of values of the amplitude and the nonlocal parameter
A and μ̂0, while the inhomogeneity index nk varies from 1 to 4. Both HH and CC configurations are included
in this study, while L/h varies between 10 to 100. The foundation stiffness configuration is described with
the following parameters k̂s = 5, k̂L = 50 and k̂N L = 50. Table 3 shows that the frequencies obtained
using WQEM match their DQM counterparts up to the fourth digit regardless of the configuration of the

Fig. 1 A hinged–hinged nanobeam resting on a nonlinear elastic foundation

Table 1 Material properties of the constituent materials of the graded nanobeam [81]

Material Young modulus Poisson’s ratio Density
(GPa) (kg/m3)

Metal: Aluminum 70 0.24 2700
Ceramic: Silicon 210 0.3 2370
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Table 2 WQEM convergence performance ( Lh = 10,μ̂2
0 = 5,nk = 0.5,A = 1): slowest converging cases selected from the study

performed in Table 5

WQEM frequencies WQEM Error to the finest grid (nx = 15)
k̂L k̂N L k̂S nx 5 7 9 11 13 15 5 7 9 11 13

CC boundary condition
0 10 0 18.9494 18.8515 18.8457 18.8460 18.8459 18.8460 0.55% 0.03% 0.00% 0.00% 0.00%

50 39.1014 38.2234 38.3300 38.3410 38.3300 38.3349 2.00% 0.29% 0.01% 0.02% 0.01%
50 0 19.9220 19.6928 19.6725 19.6747 19.6744 19.6745 1.26% 0.09% 0.01% 0.00% 0.00%

50 39.5717 38.6928 38.6940 38.7806 38.7275 38.7479 2.13% 0.14% 0.14% 0.08% 0.05%
100 0 21.0748 20.7009 20.6692 20.6742 20.6739 20.6739 1.94% 0.13% 0.02% 0.00% 0.00%

50 40.1518 39.2720 39.1479 39.3220 39.2238 39.2559 2.28% 0.04% 0.28% 0.17% 0.08%
50 10 0 20.2043 20.1123 20.1069 20.1072 20.1071 20.1071 0.48% 0.03% 0.00% 0.00% 0.00%

50 39.7251 38.8613 38.9661 38.9769 38.9661 38.9709 1.94% 0.28% 0.01% 0.02% 0.01%
50 0 21.1192 20.9029 20.8838 20.8859 20.8856 20.8857 1.12% 0.08% 0.01% 0.00% 0.00%

50 40.1882 39.3230 39.3242 39.4094 39.3571 39.3773 2.06% 0.14% 0.13% 0.08% 0.05%
100 0 22.2099 21.8553 21.8253 21.8300 21.8297 21.8297 1.74% 0.12% 0.02% 0.00% 0.00%

50 40.7595 39.8931 39.7710 39.9422 39.8457 39.8772 2.21% 0.04% 0.27% 0.16% 0.08%
HH boundary condition
0 10 0 9.8477 9.8282 9.8283 9.8283 9.8283 9.8283 0.20% 0.00% 0.00% 0.00% 0.00%

50 24.2162 24.2082 24.2080 24.2081 24.2081 24.2081 0.03% 0.00% 0.00% 0.00% 0.00%
50 0 11.3241 11.2678 11.2698 11.2699 11.2699 11.2699 0.48% 0.02% 0.00% 0.00% 0.00%

50 24.8499 24.8191 24.8185 24.8187 24.8187 24.8187 0.13% 0.00% 0.00% 0.00% 0.00%
100 0 12.9362 12.8625 12.8692 12.8694 12.8693 12.8693 0.52% 0.05% 0.00% 0.00% 0.00%

50 25.6200 25.5649 25.5642 25.5645 25.5645 25.5645 0.22% 0.00% 0.00% 0.00% 0.00%
10 0 12.1068 12.0910 12.0910 12.0911 12.0911 12.0911 0.13% 0.00% 0.00% 0.00% 0.00%

50 25.2195 25.2118 25.2116 25.2117 25.2117 25.2117 0.03% 0.00% 0.00% 0.00% 0.00%
50 0 13.3354 13.2876 13.2894 13.2895 13.2895 13.2895 0.35% 0.01% 0.00% 0.00% 0.00%

50 25.8285 25.7990 25.7984 25.7985 25.7985 25.7985 0.12% 0.00% 0.00% 0.00% 0.00%
100 0 14.7290 14.6644 14.6703 14.6705 14.6704 14.6704 0.40% 0.04% 0.00% 0.00% 0.00%

50 26.5703 26.5172 26.5165 26.5168 26.5168 26.5168 0.20% 0.00% 0.00% 0.00% 0.00%

nanobeam, the vibration amplitude or the boundary conditions. Knowing that WQEM results were obtained
with a significantly lower mesh density, this truly assesses the accuracy of the WQEM data.

To assess the sensitivity of the proposed formulation to shear locking, the same configuration used to
generate the data in Table 3 is used to recompute the nonlocal nonlinear frequencies for thick nanobeams
where the aspect ratio L

h is kept below 10. To the best of the authors’ knowledge, there has been no study that
confirmed the presence of shear locking in DQM. In light of this, DQM data were also generated to assess the
accuracy of the WQEM results. According to Table 4, the data generated using WQEM are in good agreement
with DQM data, indicating the absence of shear locking. This is in agreement with Jin and Wang [82] who
also found no shear locking in their linear classical WQEM TBT model.

The effect of the nonlinear foundation is investigated in Table 5. Using the same set of boundary conditions,
the nonlinear nonlocal frequencies were computed usingWQEM along with DQM data [36]. The values of the
different parameters are chosen to underline the effect of the nonlinear elastic foundation which is the highest
nonlinear element in the system. It is also the only controllable nonlinearity in the system. The foundation’s
linear and nonlinear coefficients k̂L and k̂N L are set to vary between 0 and 100 for the former and between
10 and 100 for the latter. The shear coefficient k̂s varies between 0 and 50, while the inhomogeneity index nk
and the amplitude A are set to a fixed value of 0.5 and 1, respectively. Both k̂S and k̂N L are known to affect
considerably the behavior of the nanobeam [36]. Despite thewide range of the selected variables, Table 5 shows
that the WQEM and DQM results still show great consistency regardless of the selected configuration. In fact,
the WQEM low density mesh still performs as good as DQM’s higher-density mesh. Technically, variational
methods converge faster than their collocation counterparts indicating that these results were expected. The use
of the GLL grid helped improve the integration accuracy although the mass matrix is still not fully integrated.
It is still possible to improve the accuracy of WQEM with a higher-order integration technique, although this
may increase the complexity of the implementation [37].
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Table 3 Effect of the material inhomogeneity index nk on the nonlinear nonlocal frequencies of a FG TBT nanobeam (k̂s = 5;
k̂L = 50 and k̂N L = 50)

L
h A μ̂2

0 DQM [36] WQEM
nk 1 2 3 4 1 2 3 4

HH boundary condition
10 0 0 13.9369 13.9348 13.9333 13.9324 13.9369 13.9348 13.9333 13.9324

1 13.6251 13.6231 13.6218 13.6209 13.6251 13.6231 13.6218 13.6209
3 13.1293 13.1277 13.1265 13.1258 13.1293 13.1277 13.1265 13.1258

0.5 0 14.4771 14.4596 14.4491 14.4435 14.4771 14.4596 14.4491 14.4435
1 14.1774 14.1597 14.1491 14.1435 14.1774 14.1597 14.1491 14.1435
3 13.7021 13.6842 13.6734 13.6677 13.7021 13.6842 13.6734 13.6677

1 0 15.9917 15.9338 15.8994 15.8814 15.9917 15.9338 15.8994 15.8814
1 15.7242 15.6653 15.6304 15.6121 15.7242 15.6653 15.6304 15.6121
3 15.3027 15.2424 15.2066 15.1878 15.3027 15.2424 15.2066 15.1878

100 0 0 14.0261 14.0261 14.0261 14.0260 14.0261 14.0261 14.0261 14.0260
1 13.7107 13.7107 13.7106 13.7106 13.7107 13.7107 13.7106 13.7106
3 13.2092 13.2092 13.2092 13.2091 13.2092 13.2092 13.2092 13.2091

0.5 0 14.5671 14.5516 14.5425 14.5377 14.5671 14.5516 14.5425 14.5377
1 14.2639 14.2481 14.2387 14.2339 14.2639 14.2481 14.2387 14.2339
3 13.7830 13.7666 13.7569 13.7519 13.7830 13.7666 13.7569 13.7519

1 0 16.0844 16.0280 15.9948 15.9775 16.0844 16.0280 15.9948 15.9775
1 15.8133 15.7559 15.7220 15.7043 15.8133 15.7559 15.7220 15.7043
3 15.3863 15.3271 15.2921 15.2739 15.3863 15.3271 15.2921 15.2739

CC boundary condition
10 0 0 24.1208 24.0840 24.0594 24.0456 24.1208 24.0840 24.0594 24.0456

1 23.3367 23.3036 23.2814 23.2689 23.3367 23.3036 23.2814 23.2689
3 22.1324 22.1048 22.0863 22.0757 22.1324 22.1048 22.0863 22.0757

0.5 0 24.4560 24.4086 24.3778 24.3607 24.4560 24.4086 24.3778 24.3607
1 23.7261 23.6791 23.6487 23.6320 23.7261 23.6791 23.6487 23.6320
3 22.6093 22.5626 22.5329 22.5165 22.6093 22.5626 22.5329 22.5165

1 0 25.4351 25.3575 25.3090 25.2827 25.4351 25.3575 25.3090 25.2827
1 24.8580 24.7719 24.7185 24.6898 24.8581 24.7719 24.7185 24.6898
3 23.9850 23.8856 23.8247 23.7921 23.9850 23.8856 23.8247 23.7921

100 0 0 24.7300 24.7296 24.7293 24.7291 24.7300 24.7296 24.7293 24.7291
1 23.9267 23.9263 23.9261 23.9259 23.9267 23.9263 23.9261 23.9259
3 22.6875 22.6872 22.6870 22.6869 22.6875 22.6872 22.6870 22.6869

0.5 0 25.0640 25.0526 25.0459 25.0423 25.0640 25.0526 25.0459 25.0423
1 24.3167 24.3020 24.2933 24.2888 24.3167 24.3020 24.2933 24.2888
3 23.1672 23.1473 23.1356 23.1295 23.1672 23.1473 23.1356 23.1295

1 0 26.0404 25.9977 25.9725 25.9593 26.0404 25.9977 25.9725 25.9593
1 25.4515 25.3964 25.3639 25.3470 25.4515 25.3964 25.3639 25.3470
3 24.5520 24.4779 24.4342 24.4114 24.5520 24.4779 24.4342 24.4114

5.3 Forced vibration response

The forced vibration of the nanobeam is examined in this section. This investigation covers both WQEM
force vibration approaches detailed in Sects. 4.1 and 4.2 in addition to the previously validated DQM [36].
For each method, the FRC is plotted individually for various values of k̂s and for nk = 2, μ̂2

0 = 2, k̂N L =
50, k̂L = 10, F̄1 = 0.75 and L

h = 10. This configuration is chosen due to its highly nonlinear behavior and

its high dependency on k̂s . All WQEM FRCs were generated using only 9 nodes, while the DQM FRCs were
generated based on a 15-node grid. Figure 2 shows all of the FRC plots for each method as well as a plot of
all methods together. These plots are generated for the HH nanobeam. These results show that, despite the
lower mesh density, both WQEM methods were able to achieve the same level of convergence as the 15-node
DQM results. In fact, Fig. 2 shows that the FRCs totally overlap. The same FRCs are plotted for the CC case
in Fig. 3. For this configuration, F̄1 had to be raised to F̄1 = 1.5 in order to obtain a comparable deformation
to the HH case. The mesh density is left unchanged and the FRCs are plotted in a similar manner. Figure 3
shows similar convergence of all methods since again all of the FRCs overlap. Based on the reported results,
it is clear that WQEM offers a significant computational advantage over DQM. The method requires fewer
nodes than DQM, andWQEM solves this FEM problem using a single high-order element without the need to
explicitly identify the shape functions. This simplifies its implementation and eliminates the need of element
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Table 4 Effect of the material inhomogeneity index nk on the nonlinear nonlocal frequencies of a FG TBT thick nanobeam
(k̂s = 5; k̂L = 50 and k̂N L = 50)

L
h A μ̂2

0 DQM∗ WQEM
nk 1 2 3 4 1 2 3 4

HH boundary condition
4 0.5 0 14.0539 14.0294 14.0137 14.0052 14.0539 14.0294 14.0137 14.0052

1 13.7709 13.7470 13.7318 13.7235 13.7709 13.7470 13.7318 13.7235
3 13.3224 13.2994 13.2849 13.2769 13.3225 13.2995 13.2850 13.2771

1 0 15.5572 15.4943 15.4561 15.4358 15.5572 15.4943 15.4561 15.4358
1 15.3063 15.2433 15.2051 15.1848 15.3063 15.2433 15.2051 15.1848
3 14.9102 14.8469 14.8085 14.7882 14.9111 14.8479 14.8097 14.7894

5 0.5 0 14.2251 14.2031 14.1892 14.1817 14.2251 14.2031 14.1892 14.1817
1 13.9353 13.9136 13.8999 13.8925 13.9353 13.9136 13.8999 13.8925
3 13.4760 13.4546 13.4414 13.4342 13.4760 13.4547 13.4414 13.4342

1 0 15.7328 15.6715 15.6345 15.6149 15.7328 15.6715 15.6345 15.6149
1 15.4752 15.4134 15.3763 15.3566 15.4752 15.4134 15.3763 15.3566
3 15.0691 15.0066 14.9691 14.9492 15.0694 15.0069 14.9694 14.9496

8 0.5 0 14.4276 14.4091 14.3978 14.3918 14.4276 14.4091 14.3978 14.3918
1 14.1298 14.1112 14.1000 14.0939 14.1298 14.1112 14.1000 14.0939
3 13.6576 13.6389 13.6276 13.6216 13.6576 13.6389 13.6276 13.6216

1 0 15.9408 15.8821 15.8471 15.8287 15.9408 15.8821 15.8471 15.8287
1 15.6751 15.6156 15.5802 15.5616 15.6751 15.6156 15.5802 15.5616
3 15.2567 15.1959 15.1597 15.1407 15.2567 15.1959 15.1597 15.1407

CC boundary condition
4 0.5 0 22.0435 21.8872 21.7853 21.7288 22.0435 21.8872 21.7853 21.7288

1 21.4002 21.2564 21.1625 21.1104 21.4003 21.2566 21.1627 21.1106
3 20.4413 20.3165 20.2349 20.1896 20.4440 20.3197 20.2385 20.1933

1 0 23.0556 22.8748 22.7587 22.6950 23.0556 22.8748 22.7587 22.6950
1 22.5422 22.3654 22.2523 22.1904 22.5432 22.3664 22.2535 22.1915
3 21.7944 21.6215 21.5115 21.4513 21.8196 21.6510 21.5440 21.4857

5 0.5 0 22.9436 22.8219 22.7422 22.6979 22.9436 22.8219 22.7422 22.6979
1 22.2651 22.1519 22.0778 22.0367 22.2652 22.1520 22.0779 22.0368
3 21.2429 21.1425 21.0769 21.0405 21.2440 21.1438 21.0783 21.0420

1 0 23.9391 23.7905 23.6952 23.6429 23.9390 23.7905 23.6952 23.6429
1 23.3994 23.2506 23.1558 23.1040 23.3998 23.2511 23.1564 23.1045
3 22.6038 22.4543 22.3599 22.3084 22.6124 22.4640 22.3704 22.3194

8 0.5 0 24.1381 24.0733 24.0309 24.0074 24.1381 24.0733 24.0309 24.0074
1 23.4180 23.3555 23.3148 23.2922 23.4181 23.3555 23.3148 23.2922
3 22.3196 22.2602 22.2219 22.2008 22.3199 22.2605 22.2222 22.2010

1 0 25.1194 25.0251 24.9654 24.9329 25.1194 25.0251 24.9654 24.9329
1 24.5494 24.4484 24.3851 24.3508 24.5495 24.4485 24.3852 24.3509
3 23.6914 23.5800 23.5111 23.4739 23.6929 23.5815 23.5127 23.4756

∗Results computed based on the DQM formulation by Trabelssi et al [36]

assembly. It is important to note that the first approach requires less computational effort than the second one
since only one integration is required, while the second approach requires two integrations.

6 Conclusion

A general formulation of the WQEM with arbitrary element order is presented for an FG nonlocal nonlinear
nanobeam based on Timoshenko beam theory. Eringen’s nonlocal elasticity was employed to capture size
effects of the nanobeam, and a power-law function was utilized to model the material property distribution in
the nanobeam. The use of DQ rule simplifies the implementation of the proposed WQEM elements and easily
allows an increase in the element order, while the GLL mesh guarantees a significant integration accuracy. For
the sake of generality, the formulation accounts for the nonlinear von Kármán strain as well as the contribution
of the nonlinear elastic foundation.

The suitability and computational efficiency of the proposed quadrature elements for the vibration analysis
of FG beams are demonstrated. A free vibration study was carried out for several mesh densities as well as
a set of nonlinear configurations. The study shows an improved convergence rate compared to DQM. The
free vibration results indicate that the proposed quadrature FG Timoshenko nonlinear nanobeam element is
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Fig. 2 Frequency response curves for the HH TBT: effect of k̂s
[
nk = 2, μ̂2

0 = 2, k̂N L = 50, k̂L = 10, F̄1 = 0.75
]

Fig. 3 Frequency response curves for the CC beam: effect of k̂s
[
nk = 2, μ̂2

0 = 2, k̂N L = 50, k̂L = 10, F̄1 = 1.5
]
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Table 5 Effect of the nonlinear elastic foundation (A = 1; nk = 0.5)

L
h k̂L μ̂2

0 DQM [36] WQEM
k̂S 0 50 0 50
k̂N L10 50 100 10 50 100 10 50 100 10 50 100

HH boundary condition
10 0 0 11.3200 12.5710 13.9823 24.8524 25.4457 26.1699 11.3200 12.5710 13.9823 24.8524 25.4457 26.1699

1 10.9344 12.2295 13.6849 24.6790 25.2770 26.0073 10.9344 12.2295 13.6849 24.6790 25.2771 26.0074
5 9.8283 11.2699 12.8693 24.2081 24.8194 25.5671 9.8283 11.2699 12.8693 24.2081 24.8187 25.5645

50 0 13.3319 14.4093 15.6558 25.8310 26.4023 27.1009 13.3319 14.4093 15.6558 25.8310 26.4023 27.1009
1 13.0061 14.1124 15.3908 25.6641 26.2398 26.9440 13.0061 14.1124 15.3908 25.6641 26.2398 26.9441
5 12.0911 13.2895 14.6704 25.2117 25.7992 26.5193 12.0911 13.2895 14.6704 25.2117 25.7985 26.5168

100 0 15.0777 16.0383 17.1669 26.7738 27.3255 28.0010 15.0777 16.0383 17.1669 26.7738 27.3255 28.0010
1 14.7904 15.7720 16.9255 26.6129 27.1684 27.8492 14.7904 15.7720 16.9255 26.6129 27.1684 27.8492
5 13.9926 15.0403 16.2734 26.1768 26.7432 27.4384 13.9926 15.0403 16.2734 26.1768 26.7425 27.4360

100 0 0 11.4053 12.6570 14.0696 24.9703 25.5655 26.2918 11.4053 12.6570 14.0696 24.9703 25.5655 26.2918
1 11.0158 12.3114 13.7676 24.7946 25.3946 26.1272 11.0158 12.3114 13.7676 24.7946 25.3946 26.1272
5 9.8982 11.3395 12.9381 24.3177 24.9303 25.6785 9.8982 11.3395 12.9381 24.3177 24.9303 25.6785

50 0 13.4193 14.4981 15.7464 25.9521 26.5252 27.2260 13.4193 14.4981 15.7464 25.9521 26.5252 27.2260
1 13.0899 14.1974 15.4772 25.7831 26.3606 27.0671 13.0899 14.1974 15.4772 25.7831 26.3606 27.0671
5 12.1643 13.3634 14.7442 25.3248 25.9136 26.6342 12.1643 13.3634 14.7442 25.3248 25.9136 26.6342

100 0 15.1682 16.1304 17.2611 26.8981 27.4515 28.1292 15.1682 16.1304 17.2611 26.8981 27.4515 28.1292
1 14.8775 15.8607 17.0159 26.7351 27.2924 27.9754 14.8775 15.8607 17.0159 26.7351 27.2924 27.9754
5 14.0701 15.1187 16.3520 26.2933 26.8610 27.5568 14.0701 15.1187 16.3520 26.2933 26.8610 27.5568

CC boundary condition
10 0 0 22.5928 23.2288 24.0011 33.0229 33.4639 34.0078 22.5928 23.2288 24.0011 33.0229 33.4639 34.0078

1 21.5853 22.2663 23.0918 34.6531 35.0810 35.6096 21.5853 22.2663 23.0918 34.6531 35.0810 35.6096
5 18.8460 19.6745 20.6739 38.3348 38.7472 39.2540 18.8460 19.6745 20.6739 38.3349 38.7479 39.2559

50 0 23.6637 24.2716 25.0118 33.7649 34.1964 34.7288 23.6637 24.2716 25.0118 33.7649 34.1964 34.7288
1 22.7012 23.3496 24.1381 35.3593 35.7787 36.2971 22.7012 23.3496 24.1381 35.3593 35.7787 36.2971
5 20.1071 20.8857 21.8297 38.9708 39.3766 39.8753 20.1071 20.8857 21.8297 38.9709 39.3773 39.8772

100 0 24.6882 25.2715 25.9832 34.4911 34.9136 35.4352 24.6882 25.2715 25.9832 34.4911 34.9136 35.4352
1 23.7647 24.3848 25.1409 36.0516 36.4631 36.9719 23.7647 24.3848 25.1409 36.0516 36.4631 36.9719
5 21.2937 22.0304 22.9274 39.5966 39.9960 40.4872 21.2937 22.0304 22.9274 39.5967 39.9967 40.4890

100 0 0 23.2071 23.8323 24.5923 33.7209 34.1567 34.6943 23.2071 23.8323 24.5923 33.7209 34.1567 34.6943
1 22.1771 22.8480 23.6622 35.4379 35.8614 36.3848 22.1771 22.8480 23.6622 35.4379 35.8614 36.3848
5 19.3667 20.1872 21.1769 39.1219 39.5310 40.0378 19.3667 20.1872 21.1769 39.1219 39.5310 40.0378

50 0 24.2603 24.8590 25.5886 34.4542 34.8808 35.4075 24.2603 24.8590 25.5886 34.4542 34.8808 35.4075
1 23.2769 23.9171 24.6960 36.1364 36.5518 37.0654 23.2769 23.9171 24.6960 36.1364 36.5518 37.0654
5 20.6170 21.3895 22.3260 39.7557 40.1583 40.6573 20.6170 21.3895 22.3260 39.7557 40.1583 40.6573

100 0 25.2697 25.8451 26.5476 35.1723 35.5903 36.1066 25.2697 25.8451 26.5476 35.1723 35.5903 36.1066
1 24.3271 24.9403 25.6883 36.8216 37.2294 37.7338 24.3271 24.9403 25.6883 36.8216 37.2294 37.7338
5 21.7957 22.5278 23.4188 40.3795 40.7760 41.2675 21.7957 22.5278 23.4188 40.3795 40.7760 41.2675

highly accurate and efficient. A study of the nonlinear free vibration of thick nanobeams revealed that the
proposed element is shear locking free and can yield accurate solutions with a small number of nodes for
both thin and moderately thick nanobeams. This approach offers the precision of high-order methods such as
DQM without sacrificing the flexibility of variational methods such as FEM. In addition, due to the presence
of von Kármán strain and the nonlinear foundation, high-order derivatives are required to evaluate accurately
the system response. Such behavior is hard to capture using conventional low-order methods and high-order
collocationmethods can be used to overcome this problem.WQEM solves this by offering high-order accuracy
in a variational method.

The study also aims to establish a standard procedure to solve forced vibration WQEM problems. In
general, plotting FRCs using numerical methods is challenging due to limitations related to time integration
and transient response. Various types of periodic time discretization are generally used which allows time to be
treated similarly to a space dimension. However, it consequently adds an extra dimension to the computational
problem. Generally DQM force vibration systems resort to Galerkin techniques to reduce the computational
cost. To achieve a similar goal for WQEM problems, the authors proposed two different methods to reduce the
number degrees of freedom of theWQEMsystem. The first approach replaces the Lagrange interpolation shape
functions generally used in WQEM with mode shape-based functions. The second method utilizes a similar
approach to the one used in DQM. Both methods were validated based on a previous DQM study performed
by the authors. Despite the lower WQEM mesh density, the FRCs generated using either of these methods
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overlapped with the DQM FRCs. Obtaining FRCs generally requires that time is discretized like a space
dimension which relatively adds a considerable computational cost. The fact that regardless of the approach,
WQEM offers comparable results to DQM using a much smaller mesh and this highlights the accuracy and
efficiency of WQEM.
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A DQM differentiation matrices appearing in Eq. (27)

[Mm]i, j =

⎧⎪⎨
⎪⎩

�ξi/
(
�ξ j [�ξ ] i, j

)
m = 1, i �= j

m
(
[M1]i, j [Mm−1]i,i − [Mm−1]i, j

[�ξ ]i, j

)
m > 1, i �= j

−∑n
k=1,k �=i [Mm]i,k m > 0, i = j

(A.1)

where m is the order of the derivative and

[�ξ ] i, j = ξ i − ξ j , 1 ≤ i, j ≤ n

�ξi =
n∏

k=1,k �=i

[�ξ ]i,k, 1 ≤ i ≤ n

B spectral method time differentiation matrices appearing in Eq. (43)

[
D(1)

τ

]
i, j

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 i = j

2π
{ 1
2 (−1)i−1 cot

(
π
n (i − 1)

)}
j = 1

2π
{ 1
2 (−1)n− j+1 cot

(
π
n (n − j + 1)

)}
i = 1

[D(1)
τ ]i+1, j+1 = [D(1)

τ ]i, j i, j > 1

(B.1a)

[
D(2)

τ

]
i, j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2π)2
(
− n2

12 − 1
6

)
i = j

(2π)2
{
1
2 (−1)i−1 csc

(
π
n (i − 1)

)2}
j = 1

(2π)2
{
1
2 (−1)n− j+1 csc

(
π
n (n − j + 1)

)2}
i = 1

[D(2)
τ ]i+1, j+1 = [D(2)

τ ]i, j i, j > 1

(B.1b)
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C HQM time differentiation matrices appearing in Eq. (43)

[Hm]i, j =

⎧⎪⎪⎨
⎪⎪⎩

�Sξi/
(
2 [�Sξ ] i, j�Sξ j

)
m = 1, i �= j

[H1]i, j
(
2[H1]i,i − [�Ctξ ]i, j

)
m=2, i �= j

−∑n
k=1,k �=i [Hm]i,k m > 0, i = j

(C.1)

where

[�Sξ ] i, j = sin

(
ξ i − ξ j

2

)
, 1 ≤ i, j ≤ n

[�Ctξ ] i, j = cot

(
ξ i − ξ j

2

)
, 1 ≤ i, j ≤ n

�Sξi =
n∏

k=1,k �=i

[�Sξ ]i,k, 1 ≤ i ≤ n

These formulas are valid for a 2π periodic case. The derivative matrices D(m)
τ for x ∈ [0, 1[ are given by

[76,78]

D(m)
τ = (2π)mHm (C.2)
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