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Abstract

A method for the prediction of acoustic scatter from
complex geometries is presented. The discontinuous
Galerkin method provides a framework for the devel-
opment of a high-order method using unstructured
grids. The method's compact form contributes to
its accuracy and e�ciency, and makes the method
well suited for distributed memory parallel comput-
ing platforms. Mesh re�nement studies are presented
to validate the expected convergence properties of the
method, and to establish the absolute levels of a error
one can expect at a given level of resolution. For a
two-dimensional shear layer instability wave and for
three-dimensional wave propagation, the method is
demonstrated to be insensitive to mesh smoothness.
Simulations of scatter from a two-dimensional slat con-
�guration and a three-dimensional blended-wing-body
demonstrate the capability of the method to e�ciently
treat realistic geometries.

Introduction

Despite recent advances in computational aeroa-
coustics (CAA), the simulation of acoustic scatter
o� realistic complex geometries remains problematic.
The high-accuracy schemes developed for CAA gen-
erally have spatial operators with large stencils that
require smooth meshes and are poorly suited to grids
around realistic aircraft con�gurations. Even the pro-
cess of generating a block-structured mesh without the
smoothness required for a high-accuracy method is a
time-consuming process often measured in weeks. Un-
structured grids about complex geometries are more
easily generated, and for this reason, methods using
unstructured grids have gained favor for aerodynamic
analyses. However, they have not been utilized for
acoustics problems because the methods are generally
low-order and incapable of propagating waves with-
out unacceptable levels of dissipation and dispersion.
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Attempts to extend �nite-di�erence and �nite-volume
methods for unstructured grids to high-order by in-
creasing the stencil size have introduced storage and
robustness problems.

The discontinuous Galerkin method1,2 is a compact
�nite-element projection method that provides a prac-
tical framework for the development of a high-order
method using unstructured grids. Higher-order accu-
racy is obtained by representing the solution as a high-
degree polynomial whose time evolution is governed by
a local Galerkin projection. This approach results in a
compact and robust method whose accuracy is insen-
sitive to mesh smoothness. The traditional implemen-
tation of the discontinuous Galerkin method employs
numerical quadrature for the evaluation of the inte-
gral projections and is prohibitively expensive. Atkins
and Shu3 introduced the quadrature-free formulation
in which the integrals are evaluated a-priori and ex-
actly for a small collection of similarity elements. The
approach has been demonstrated to possess the ac-
curacy required for acoustics even in cases where the
grid is not smooth. Other issues such as non-reecting
boundary conditions and the treatment of non-linear
uxes have also been studied in earlier work.4,5

A major advantage of the discontinuous Galerkin
method is that its compact form readily permits a
heterogeneous treatment of a problem. That is, the
element topology, the degree of approximation, even
the choice of governing equations, can be allowed to
vary from element to element with no loss of rigor
in the method. To take advantage of this exibility,
an object-oriented C++ computer program that im-
plements the discontinuous Galerkin method has been
development and validated. To date, however, most of
the applications have involved benchmark problems for
aeroacoustics6 with relatively simple two-dimensional
geometries. Recent work has been aimed at adding
and validating additionally capability that is essential
to the aeroacoustic analysis of large complex con�gu-
rations.

This paper describes the extension of the method to
three-dimensions, the treatment of nonuniform mean
ows, and the e�cient use of parallel computing plat-
forms. With these new capabilities, this tool will
enable rapid aeroacoustic analyses of realistic aircraft
con�gurations. When coupled with currently available
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grid generators and large parallel computers, the en-
tire process of mesh generation, problem setup, and
calculation can be performed in the time span of a few
hours or days instead of weeks or months.

Governing Equations
Numerical Method

The discontinuous Galerkin method is readily ap-
plied to any equation of the form

@Q

@t
+r � ~F = S (1)

on a domain that has been partitioned into non-
overlapping elements that cover the domain. The
method is de�ned by approximating the solution in
each element 
 in terms of an appropriate local set of
basis functions fbk j 1 � k � Ng

Q � V =
NX
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vkbk

and by performing a local integral projection of the
governing equations onto the basis set in each element.Z
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The coe�cients of the approximate solution vk are the
new unknowns, and the local integral projection gen-
erates a set of equations governing these unknowns.
Equation (2) is solved in the weak form and, for con-
venience, is rewritten in terms of local element coordi-
nates (�; �; �)Z
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where E denotes the number of edges, �V denotes the
trace of V on edge e, �W denotes the trace of the ap-
proximate solution in the neighboring element on edge
e,

J =
@(x; y; z)

@(�; �; �)
; and J = jJj:

The term edge will be used to refer to any segment of
an element boundary that is shared with a neighboring
element or with the physical boundary of the domain.
Edges will be referred to as interior edges or boundary
edges when it is necessary to distinguish between the
two.
Because each element has a distinct local approx-

imate solution, the solution on each interior edge is
double valued and discontinuous. An approximate

Riemann ux FRe (�V; �W) resolves the discontinuity
and provides the only mechanism by which adjacent
elements communicate. The fact that this communi-
cation occurs in an edge integral means the solution
in a given element V depends only on the edge trace
of the neighboring solution �W, not on the whole of
the neighboring solution W. Also, because the ap-
proximate solution within each element is stored as
a function, the edge trace of the solution is obtained
without additional approximations.
The compactness of the discontinuous Galerkin

method has broad implications on the accuracy, ro-
bustness, and e�ciency of the method. Boundary
conditions are easily implemented4 either by supplying
the approximate Riemann ux with the exact external
solution �W = �Wexact (if known), or by reformulating
the approximate Riemann ux in terms of the interior
solution �V and the physical boundary conditions. In
either case, the basic formulation of a boundary ele-
ment is no di�erent from that of an interior element.
This is in stark contrast to high-order �nite-di�erence
and �nite-volume methods in which the standard inte-
rior operator must be reformulated near the boundary,
usually with a negative impact on the accuracy and ro-
bustness of the method.
When the basis functions are polynomials of de-

gree p, the order of accuracy of the method has been
proven1 to be at least p + 1

2
. In practice, the order of

accuracy of the method is observed in most cases to
be p+1. In the present work, the basis set will be the
complete set of local polynomials of a speci�ed degree
p:

fbkg =
�
�i�j�k for 0 � i + j + k � p

	
The Riemann ux will be approximated by a simple
Lax-Friedrechs ux of the form

FRe (�V; �W) � �
�F(�V) + �F( �W)� �

�
�W � �V

��
=2

where �F(�V) = J�1J~F(�V) � ~n, � is greater in
magnitude than the eigenvalues of the Jacobian of�
�F(�V) + �F( �W)

�
=2, and ~n is an outward pointing edge

normal.

Discretization

The discrete form of equation (3) is usually obtained
by evaluating the integrals using quadrature formu-
las of the required order7 which is 2p for the volume
integral and 2p + 1 for the edge integral. Although
this approach is straightforward, it limits the useful-
ness of the discontinuous Galerkin method. Tensor
products of one-dimensional quadrature formulas can
be used to integrate quadrilateral and hexahedral ele-
ments to any required degree; however, the number
of terms in the quadrature summation exceeds the
number of unknowns by a considerable margin (e.g.
3.5 times greater for p = 4 in three dimensions).
Aside fromDudiner's8 approach in which triangles and
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tetrahedrons are mapped into quadrilaterals and hex-
ahedrons, there are no general quadrature formulas for
elements such as triangles or tetrahedrons. For these
general elements, the only available quadratures are
those that have been computed numerically and tabu-
lated for a limited range of p. This has restricted most
implementations of the discontinuous Galerkinmethod
to quadrilateral, hexahedral, or relatively low order tri-
angular elements. Furthermore, the implementations
are computationally expensive. The authors are not
aware of any discontinuous Galerkin implementations
using tetrahedral elements.
The quadrature-free approach3 was developed to cir-

cumvent this di�culty and to allow the discontinuous
Galerkin method to be easily and e�ciently imple-
mented on general unstructured grids to any order of
accuracy. To implement the quadrature-free approach,
the uxes and sources are also written as an expansion
in terms of the basis functions:

~F(Q) �
MX
j=1

~fj(V)bj ; S �
MX
j=1

sjbj

When ~F(Q) is a linear function of Q, then M = N ,
and the expansion is trivial and exact. When the ux
is a non-linear or a linear but non-constant coe�cient
function of Q, then the degree of the ux expansion
must be at least p + 1 and M will be greater than
N . The same comment applies to the source term S

except that the source expansion may be truncated to
degree p.
Similar treatment of the approximate Riemann ux

is only slightly more complex due to the fact that the
solutions on either side of an interior edge, V andW,
are de�ned in terms di�erent coordinate systems. The
evaluation of the edge integral is simpli�ed by rewrit-
ing the edge trace of V and W in terms of a lower
dimensional (��; ��) coordinate system associated with

the edge: �V =
PN

k=1 �vk
�bk, and �W =

PN

k=1 �wk
�bk.

�bk denotes a lower-dimensional basis associated with
the edge coordinate system. This, of coarse, is just
a coordinate transformation, and the coe�cients �v
are easily computed from v by a linear matrix op-
erator [�v] = T [v]. The trace of the ux can be
computed either by taking the trace of the volume

ux,
�
�f
�
= T

h
J�1J~f � ~n

i
, or by recomputing the ux

from the trace of the solution. Generally, the later is
prefered for a linear problem. Now the approximate
Riemann ux can be expanded in terms of �bk as

FRe �
MX
k=1

fRe;k
�bk

=
MX
k=1

�
�fRe;k(�v) +�f

R
e;k(�w) � � (�w � �v)��bk=2

without regard for the type of element or the orienta-
tion of the coordinate system of the adjacent elements.

As illustrated in �gure 1, this approach allows elements
of di�erent type to be freely mixed in a calculation.

ξ
ξ

ηη ξ
ξξ

ηη

Fig. 1 Edge coordinate system (��; ��) provides a
common interface between dissimilar elements.

Now that the functional form of the solution, source,
and uxes is explicit, the integrals are analytically
evaluated to give
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The matrices M, ~A, and B, depend only on the
shape of the similarity element and the degree of the
solution p. Thus, the set of matrices associated with a
particular similarity element can be precomputed and
applied to all elements that map to it at a considerable
savings of both storage and computation. Finally, as
a result of symmetry in the similarity elements, the
matrices ~A, Be, and Te, are sparse in a predictable
manner that is taken advantage of readily.
Arbitrary, at-sided, triangular and tetrahedral el-

ements and a subset of other element types can be
linearly mapped into a small set of similarity elements.
A boundary element in which one or more sides are
curved is a case in which the physical element cannot
be linearly mapped to a similarity element. Illustrated
in �gure 2 for a triangle, the physical element can still
be linearly mapped to a computational element, but
now its curved sides are described by a polynomial.
The integrals in equation (4) can still be evaluated an-
alytically; however, the matrices are distinct for each
element, and in general, the matrices are full. This
wall treatment allows the elements to be sized as re-
quired to resolve acoustic waves and not be restricted
by the need to resolve wall curvature. Experience thus
far indicates that only a few such elements are required
in most cases, so the additional storage and computa-
tion does not impact the overall calculation.
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Fig. 2 Mapping for curved wall element.

p Maximum �t=�x
Hu scheme 5-stage scheme 6 stage scheme

1 1.70 1.61 1.77
2 0.567 0.543 0.572
3 0.287 0.271 0.300
4 0.177 0.167 0.185
5 0.122 0.106 0.127
6 0.089 0.073 0.930

Table 1 Stability constraints for 5 and 6 stage
linear Runge-Kutta schemes, and Hu's10 low-
dispersion Runge-Kutta scheme.

The solution is advanced in time using a Runge-
Kutta scheme. Earlier work used the three-stage
third-order TVD Runge-Kutta scheme of Shu and Os-
her.9 A stability analysis establishing the the time step
constraints has been previously published.3 The low-
dissipation and low-dispersion Runge-Kutta scheme of
Hu10 is used in the present work. This scheme pro-
vides fourth-order accuracy by an alternating sequence
of 5- and 6-stage Runge-Kutta schemes with modi-
�ed lower-order coe�cients. A stability analysis of
this scheme applied to a one-dimensional discontin-
uous Galerkin method, given in table 1, indicates that
the time step constraint falls between that of 5- and
6-stage linear Runge-Kutta schemes.

Physical Modeling

The scatter of acoustic waves is well represented by
the linearized Euler equations. In two-dimensions, the
Q, ~F, and S of equation (1) are given by

Q =

0
BB@

�
p
u
v

1
CCA ; F1 =

0
BB@

U 0 � 0
0 U P 0
0 1=� U 0
0 0 0 U

1
CCAQ;
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0
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0 V 0 P
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�(UUx + V Uy)=� 1=�x
�(UV x + V V y)=� 1=�y

����������������
0 0

( � 1)P x ( � 1)Py

V y �Uy

�V x Ux

1
CCAQ: (5)

An overline has been used to denote local temporal-
mean quantities, and subscripted values denote di�er-
entiation. � and p are the density and pressure, and u
and v are the x and y directed velocities, respectively.
 is the ratio of speci�c heats. The equations have
been made dimensionless using the ambient speed of
sound co as the reference velocity. The density and
the pressure have been normalized by �o and �oc

2
o, re-

spectively. Time t is normalized by lr=co where the
reference length scale lr is case speci�c. In the ab-
sence of a mean ow, an acoustic wave will propagate
a unit in the non-dimensional distance in each unit of
non-dimensional time.
When the mean ow quantities are spatially con-

stant, the ux expansion in terms of the basis functions
bk is a trivial operation. However, when the mean
ow quantities are non-uniform, their spatial variation
must be accounted for in the ux expansion. A general
approach is to approximate the mean ow by poly-
nomials and then derive the ux expansion in terms
of polynomial products. To ensure the formal order
properties of the discontinuous Galerkin method, the
mean ow quantities should be represented to the same
degree as the solution (degree p). The polynomial
products can be truncated to degree p + 1. However,
this general approach requires considerable storage for
the mean ow quantities. Fortunately, in wave scat-
ter simulations, the assumption of linearity is based
on the premise that the perturbation amplitude is
small relative to its wavelength (to neglect non-linear
steepening), and the wavelength is small relative to
variations in the mean ow (to neglect feedback from
the acoustics to the mean ow). Thus, for the pur-
poses of simulating the scatter of acoustic waves, it is
su�cient to represent the mean ow by a lower-order
polynomial such as a piecewise linear representation.

Results

Parallel Computations

The program has been ported to parallel comput-
ing platforms using MPI calls. The initial port was
performed on the two-dimensional version of the code.
The port required only minimal changes to the code
and was performed in only a few weeks.11 Aside
from the mesh partitioning step, the port involved cre-
ating and inserting three functions containing about
120 lines of code: InitPid, BeginSendRecv, and
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EndSendRecv. The InitPid function allocates the
send and receive bu�ers and initializes domain connec-
tivity data structures. The BeginSendRecv function
loads the send bu�er and posts both the MPI sends
and receives, and the EndSendRecv synchronizes the
calculation. The latter two functions are simply in-
serted into the Runge-Kutta scheme at the appropriate
points. The three-dimensional version of the code,
which was created sometime later, ran in parallel with
no changes to the above three functions. The speed
and exibility of the port is attributed to the modu-
lar nature of the code and the language in which it is
written (C++).

In the two-dimensional case, the mesh is partitioned
using the PARMETIS12 software package. The three-
dimensional results are preliminary, and the mesh is
partitioned simply by distributing the list of elements
as they are read in from a mesh �le.

Figure 3 gives the speed-up for the SP2 and clusters
of workstations for a small case (800 third-order trian-
gular elements). As the domain is divided over more
processors, the number of elements assigned to each
processor becomes too small, and the communication
overhead becomes apparent. Also, the workstations
were not isolated or dedicated, so the performance
�gures are well below ideal; however, four to eight
distributed workstations still provide a valuable per-
formance improvement.

Number of processors

S
p

e
e

d
u

p

0 4 8 12 16
0

4

8

12

16
Ideal

SP2

SGI Cluster
SUN Cluster

Fig. 3 Speed-up on SP2 and workstations for a
domain with 800 elements.

Figure 4 gives the speed-up on the Origin 2000
(O2K) using an improved version of the program that
has been optimized for cache usage on SGI machines.
The parallel implementation has not been modi�ed ex-
cept for the partitioning and initialization procedures.
Results are given for two domain sizes using �fth-order
triangular elements (p = 4). The superlinear speed-up
observed on the O2K is attributed to the cache per-
formance of the code. As the number of processors
is increased, the domain is broken into smaller parts

that such that, at some point, all of the data �ts in
cache. This is clearly evident in �gure 5 which shows
the computational rate as a function of the number of
elements on each processor. For comparison, the �gure
also shows results for a range of problem sizes run on a
single processor. Although there is a consistent degra-
dation in performance between the single-processor
and multi-processor cases, the computational rate of
the multi-processor cases are similar indicating good
scalability. Thus, computational rate may be a better
indicator of scalability then the usual \speedup" mea-
sure. The scatter in the data gives an indication as
to the quality of the load balancing provided by the
PARMETIS mesh partitioner.
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Fig. 4 Speed-up for large domain on Origin 2000.
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Fig. 5 Computational rate gives a clear indication
of the cache performance.

Preliminary performance results for the three-
dimensional code are shown in �gure 6 for two large
domains. The performance is encouraging considering
the simplistic method by which the mesh is parti-
tioned.
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Fig. 6 Speed-up of three-dimensional code on Ori-
gin 2000.

Nonuniform Mean Flows

To validate the code for nonuniformmean ows, the
growth rate of a temporal instability in a shear layer
is calculated. The mean velocity pro�le is given by
M (1 + tanh(y))=2 where the maximumMach number
is M = 0:2. The computational domain is comprised
of triangles and extends from -4.25 to 4.25 in y and
from -10 to 10 in x. The triangular mesh is gener-
ated by dividing cells of a Cartesian mesh with equal
spacing in x and sinh stretching in y. All of the calcu-
lations are performed with degree p = 4 polynomials
which provides �fth-order accuracy. The spatial scales
of the mean ow and the instability wave are similar
so it is also necessary to approximate the mean ow
with degree four polynomials. The eigenfunction for a
particular instability mode, calculated by the stability
code developed by Macaraeg et al.,13 is used to pro-
vide initial pro�les for all of the variables. Figure 7
shows instantaneous contours for the u velocity after
several periods of oscillation. During the simulation,
the pressure is sampled at ten points in the vicinity of
the shear layer. Figure 8 shows the evolution of the
pressure at the center of the shear layer over four pe-
riods. The growth rate from the stability code is used
to determine the amplitude envelope which compares
very well with the computed solution. The average
growth rate of the pressure over the second two pe-
riods is compared with the result from the stability
code in �gure 9. As the mesh is re�ned, the solu-
tion quickly attains the value from the stability code.
A second mesh re�nement is performed by randomly
perturbing the initial mesh by 20% in both the x and
y directions at each triangle vertex. Except for the
coarsest meshes, the solution on the perturbed mesh
is nearly as good as that on the original mesh.

Deployed Slat

Computations are being performed on the scattering

x

y

4 2 0 2 4
6

4

2

0

2

4

6

20.0

12.0

4.0

4.0

12.0

20.0

u

Fig. 7 Instantaneous u velocity contours for a tem-
poral instability.

Time

p

0 100 200 300 400
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5

0

5

10
Discontinuous Galerkin

Envelope from Stability Code

Fig. 8 Temporal evolution of the pressure at the
center of the shear layer for a temporal instability.

and resonance characteristics of a slat geometry using
the discontinuous Galerkin method. An example grid
is shown in �gure 10. The actual grid used in the
simulations has 6.2 times as many elements. Acoustic
sources at various frequencies and with di�erent ori-
entations have been placed at several locations around
the slat. The region of primary interest is the trail-
ing edge of the slat where unsteady Reynolds-averaged
Navier-Stokes (RANS) calculations14 have shown sig-
ni�cant vortex shedding. Figures 11 and 12 show the
scattered �elds for dipole sources oriented normal and
parallel to the slat edge. A frequency of 50 kHz is used
that corresponds to the dominant frequency observed
in the RANS calculations. There is signi�cant beam-
ing and a strong dependence on the source orientation.

These calculations can be performed at a rate of 62
seconds/period using 6 O2K processors and 32 sec-
onds/period on 10 O2K processors. With this level of
performance, it is practical to rapidly investigate the
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Fig. 9 Growth rate comparison for a temporal
instability using uniform and perturbed meshes.

e�ects of variations in the acoustic source and geome-
try.
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Fig. 10 Example mesh for a slat geometry.

Three-Dimensional Simulations

Three dimensional mesh re�nement studies are per-
formed to verify that the code produces the expected
convergence rate as well as to determine the absolute
levels of error one can expect for a given resolution.
With methods for structured grids, the latter studies
can be performed exclusively in one-dimension with
reasonable expectations that the same error behavior
will be observed in two or three dimensions. When
using unstructured grids, however, the topology of the
element changes dramatically, and it is not at all clear
that the studies in one dimension will carry over to
two or three dimensions. All of the three-dimensional
results shown here are for a �fth-order method (p = 4).
The mesh re�nement tests are performed on a unit

cube using the linear Euler equations with no mean
ow, and an initial solution of the form p = cos(2�(x+
y)), and u = v = p=

p
2. A degree four polynomial

Fig. 11 Scattering of a dipole source at the trailing
edge of the slat. The source is oriented normal to
the streamlines at the trailing edge.

Fig. 12 Scattering of a dipole source at the trailing
edge of the slat. The source is oriented parallel to
the streamlines at the trailing edge.

approximation to the initial solution is obtained by �t-
ting a polynomial at a collection of points within each
element. A tetrahedral mesh is constructed from an
NxxNyxNz Cartesian mesh in which each cube is sub-
divided into �ve tetrahedrons (Nx denotes the number
of elements in the x direction). With this construction,
the distance between vertices varies by a factor of

p
2.

The initial test propagates the wave for 10 periods on
an NxNxN mesh for N = 2; 4, and 8. A second test
propagates the wave for 100 periods on an NxNx2
mesh for N = 2; 4, and 8. The reported error is the
L2 norm of the local error in the solution sampled at
2500 points in the domain. Figure 13(a) gives the con-
vergence rate at times = 1, 10, and 100. Between the
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two �ner grids (N = 4 and 8), all cases converge at
a rate of about 5.5. Figure 13(b) gives the growth in
the error as a function of time, which is equivalent to
distance propagated. With as little at two elements
per wavelength the error is still less than 3% at time
= 100.
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Fig. 13 Propagation error as a function of (a) mesh
size, (b) distance propagated.

It has been claimed that the discontinuous Galerkin
method is insensitive to mesh smoothness. This prop-
erty has been demonstrated for two-dimensional scalar
advection4 and for a two dimensional shear layer ear-
lier. It is demonstrated here for three-dimensional
wave propagation. A Gaussian pressure pulse centered
(x, y, z) = (0.75, 0.5, 0.5) generates a spherical acoustic
wave within a unit cube. The mean ow is uniform but
with �U = 0:5, �V = �W = 0. A tetrahedral mesh with
6000 elements is generated from a 10x10x10 Cartesian
mesh in which each cube is divided into six tetra-
hedrons. The solution is approximated with degree
four polynomials. Figure 14(a) shows the perturba-
tion pressure on three planes of the box at time =

0.25. Next, each grid point is randomly perturbed by
20% of the mean mesh size and the case is rerun. Fig-
ure 14(b) shows very good agreement between the two
solutions on the line y = z = 0:5. The uniform case is
shown as a solid line, and the case with the randomly
perturbed mesh is shown with symbols. Contour plots
of the solutions are indistinguishable.

(a)

(b) x

p

0 0.25 0.5 0.75 1
0.006

0.004

0.002

0

0.002

0.004

0.006 Uniform mesh

Perturbed mesh

Fig. 14 Perturbation pressure of an acoustic wave
initiated by a Gaussian pulse. a) solution from
uniform mesh on three planes b) solution on line
y = z = 0:5 with smooth and randomly perturbed
meshes.

Finally, a computation is presented on a generic
blended-wing-body con�guration in which the mesh
is generated by commonly available tetrahedral mesh
generation software. Figure 15 shows the surface mesh
and several planes and a line on which results are
shown. The aircraft has a length of 150 ft. and a
simi-span of 145 ft. to be representative of a con�gu-
ration currently under study by NASA and industry.
The outer boundary of the computational domain is
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a box de�ned by �50 < x < 200, �200 < y < 0,
and �50 < z < 50. The geometry and surface

0 z

0

50

100

150

x

150

100

50

0

y

A

Fig. 15 Generic blended-wing-body con�guration
with planes and lines on which data is examined.

mesh are generated using the commercial software
MSC/Patran, and volume meshes are generated us-
ing VGRID15 and AFLR3.16 These volume meshers
were developed for aerodynamic performance calcula-
tions in which the mesh size is expected to grow away
from the body. Both meshers have di�culty gener-
ating meshes with uniformly sized tetrahedrons. To
ease the problem, the aircraft surface is meshed with
an average edge length of �ve, and the bounding box
is meshed with an average edge length of seven. The
results shown here are for a mesh with 78048 tetra-
hedrons generated by AFLR3. In general, meshes
generated by AFLR3 are more uniform; however even
the mesh used here has volumes ranging from 2.2 to
243.
An initial pressure disturbance of the form

p =

�
cos2(�R=8) for R � 4
0 for R > 4

;

where R =
p
((x� 140)2 + (y + 102 + (z � 5)2), cre-

ates a transient wave that is propagated to a time of
160. The calculation required approximately 48 hours
using eight processors of an Origin 2000. Based on the
parallel performance shown earlier, it is reasonable to
expect that such a calculation can be performed in only
a few hours on a large array of 80 to 100 processors.
Figure 16(a) shows the initial evolution of this pulse

along line \A" shown in �gure 15. The pulse should
to decay at a rate proportional to 1=R. Figure 16(b)
shows the solution along line \A" at time = 50, 100,
and 150 with an appropriate scaling. The �nal two
sample times are in close agreement which indicates
the wave is decaying at the correct rate. Figures 17(a-
c) show the pressure on a horizontal cut through the
winglet at time = 130, 140, and 150. Figures 18(a-
c) show a similar set of solutions on a spanwise cut

(a) R
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0.5

1
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t= 3
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t= 5

(b) R  t

P
*

R

10 5 0 5 10
1

0.5

0

0.5

1
t = 0

t = 50

t = 100

t = 150

Fig. 16 Perturbation pressure along line \A"
shown in �gure 15: (a) initial transient (b) later
solutions scaled to show the 1=r decay.

through the wing and winglet. Though qualitative,
these �gures show the propagation and reection of
waves in the expected manner.

Conclusions

Several improvements to the high-order discontinu-
ous Galerkin program have been validated. The capa-
bility to treat non-uniform mean ows was veri�ed by
comparison with an instability wave on both smooth
and random meshes. The accuracy of the solution is
not sensitive to the smoothness of the mesh. The com-
pact form of the discontinuous Galerkin method allows
easy and e�cient ports to parallel platforms. The
parallel implementation gives superlinear speed-up for
large problems. This is attributed to the compact
form of the discontinuous Galerkin method which al-
lows useful work to be overlapped with communication
as well as cache accelerations that occur when a large
problem is broken into smaller components. The ex-
tension to three dimensions has been performed and
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veri�ed for smooth and non-smooth meshes. Solu-
tions converge to the exact solutions at the expected
rate, and the accuracy is not greatly e�ected by mesh
smoothness. Results are presented establishing the
absolute levels of error one can expect for a given
resolution and distance of propagation when using
tetrahedral elements. It is demonstrated that the
three-dimensional �fth-order method can propagate
a wave for 100 wavelengths with less than 3% error
while using only two elements per wavelength. Fi-
nally, application of the program to the analysis of a
two-dimensional slat and a generic blended-wing-body
con�guration demonstrates that the method and pro-
gram can rapidly provide analysis of real geometries.
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(a)

(b)

(c)

Fig. 17 Perturbation pressure on a horizontal cut
through the winglet at time = (a) 130, (b) 140, (c)
150.

(a)

(b)

(c)

Fig. 18 Perturbation pressure on a spanwise cut
through the wing and winglet at time = (a) 130,
(b) 140, (c) 150.
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