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Abstract. Atmospheric modeling systems require econom-

ical methods to solve the non-hydrostatic Euler equations.

Two major differences between hydrostatic models and a

full non-hydrostatic description lies in the vertical veloc-

ity tendency and numerical stiffness associated with sound

waves. In this work we introduce a new arbitrary-order

vertical discretization entitled the staggered nodal finite-

element method (SNFEM). Our method uses a generalized

discrete derivative that consistently combines the discon-

tinuous Galerkin and spectral element methods on a stag-

gered grid. Our combined method leverages the accurate

wave propagation and conservation properties of spectral

elements with staggered methods that eliminate stationary

(21x) modes. Furthermore, high-order accuracy also elim-

inates the need for a reference state to maintain hydrostatic

balance. In this work we demonstrate the use of high vertical

order as a means of improving simulation quality at relatively

coarse resolution. We choose a test case suite that spans the

range of atmospheric flows from predominantly hydrostatic

to nonlinear in the large-eddy regime. Our results show that

there is a distinct benefit in using the high-order vertical co-

ordinate at low resolutions with the same robust properties as

the low-order alternative.

1 Introduction

The accurate representation of vertical wave motion is es-

sential for models of the atmosphere. The vertical coordi-

nate for the non-hydrostatic fluid equations has traditionally

been discretized in the Eulerian frame via a second-order

Charney–Phillips (Charney and Phillips, 1953) or Lorenz

grid (Arakawa and Moorthi, 1988), or via Lagrangian lay-

ers such as in Lin (2004). However, little work has been un-

dertaken to develop high-order vertical discretizations due

to a number of outstanding issues. First, higher-order gen-

eralizations must somehow incorporate the no-flux boundary

conditions at the model bottom and top without loss of ac-

curacy, especially near the surface where accurate treatment

of dynamics is paramount. Second, as observed by Thuburn

and Woollings (2005), Thuburn (2006), and Toy and Ran-

dall (2007), the choice of vertical coordinate (whether height

based, mass based or entropy based) implies an optimal verti-

cal staggering of prognostic variables for maintaining correct

behavior for wave motions relevant to the atmosphere. Third,

unstaggered discretizations (that is, discretizations where all

prognostic variables are stored on model levels) possess sta-

tionary computational modes, which represent gross errors in

the dispersion properties of the solution (Melvin et al., 2012;

Ullrich, 2014b). As in the horizontal, unstaggered Finite El-

ement Method (FEM) leads to waves with zero phase speed

in the limit as the wavelength tends to 21x, where 1x is

the average grid spacing between degrees of freedom. How-

ever, unlike the horizontal, these wave modes can be dramati-

cally enhanced by an implicit treatment of the vertical at high

Courant number.

This paper describes a new discretization for the vertical

that combines the accuracy of finite-element methods with

the desirable wave propagation properties of staggered meth-

ods. This method of vertical discretization was originally de-

scribed in Ullrich and Guerra (2015), but tested using a mod-

ified set of equations and validated with a single test case.

Here we extend this approach, referred to as the staggered

nodal finite-element method (SNFEM), in a similar frame-

work. Notably, this formulation is sufficiently general to be

compatible with essentially any form of the fluid equations.
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The SNFEM discretization can be easily composed in dif-

ferential form using interpolation and differentiation opera-

tors built in accordance with the discontinuous Galerkin and

spectral element discretizations that arise from the flux re-

construction method of Huynh (2007) (see Table 1).

Our staggered method is similar to the mixed finite-

element formulations of Cotter and Thuburn (2012, 2014)

where different functional spaces are used on the prognos-

tic fields in order to achieve desirable wave propagation and

conservation properties. The SNFEM utilizes different poly-

nomial spaces based on continuous and discontinuous grids

to achieve staggered configurations. The use of SNFEM is

natural for vertical discretizations, as no-flux conditions are

easily imposed on top and bottom boundaries in the general

finite-element framework (Zienkiewicz et al., 2005) without

loss of accuracy. Further, SNFEM inherits the mimetic prop-

erties of the spectral element method so the vertical operator

will automatically conserve both mass and discrete linear en-

ergy. The objectives of this paper are as follows:

1. To introduce our approach for the construction of

a generalized, staggered, variable order-of-accuracy,

finite-element vertical discretization. We emphasize dis-

cretization of the non-conservative differential form of

the Navier–Stokes equations (in vector invariant or so-

called Clark form), which is independent of coordinate

system.

2. To validate the implementation of this discretization

within the Tempest framework using a selection of test

cases in Cartesian geometry through a range of horizon-

tal scales from 1 to 1000 km.

3. To determine the qualitative and quantitative effect of

vertical order of accuracy on solutions by conducting

validation experiments at coarse resolutions relative to

finer reference solutions. We consider the effects of

Lorenz (LOR) and Charney–Phillips (CPH) staggering

both in the interior flow and at the lower boundary.

4. To determine whether a high-order vertical discretiza-

tion greatly improves the simulation quality, and con-

sequently to recommend whether there is an optimal

order-of-accuracy that provides the best tradeoff be-

tween accuracy and computational cost.

To assess the performance of SNFEM, this discretization

has been implemented in the spectral element Tempest model

(Ullrich, 2014a) and run through a suite of mesoscale test

cases. The test cases are as follows: baroclinic instability in a

3-D Cartesian channel of Ullrich et al. (2015), uniform flow

over the mountain of Schär et al. (2002), the density cur-

rent of Straka et al. (1993), and rising thermal convective

bubble tests as given in Giraldo and Restelli (2008). While

not exhaustive, this validation suite is intended to show the

treatment of waves, nonlinear vertical transport, and near-

boundary dynamics corresponding to a high-order vertical

coordinate with and without the influence of topography.

Therefore, the objectives of this paper are as follows:

We will show that a high-order vertical discretization at

coarse resolution more accurately approximates the refer-

ence solution relative to the low vertical-order alternative

when total count of degrees of freedom is kept constant.

Since the interpolation and derivative operators in the finite-

element approach are easily expressed as linear matrix opera-

tors, there is minimal cost in adjusting the order-of-accuracy.

We will present control experiments in Sect. 4 where only the

resolution and vertical order-of-accuracy vary. We leave the

rigorous analysis of staggered wave modes and discrete en-

ergy conservation using the interpolation/differentiation op-

erators for subsequent work.

The remainder of this manuscript is as follows: Sect. 2 de-

scribes the non-hydrostatic equations of fluid motion on an

arbitrary coordinate frame. Section 3 describes the discrete

form of these equations, including the spectral element hori-

zontal discretization, the operators used by the SNFEM ver-

tical discretization and the time-stepping scheme employed.

In Sect. 4, we describe the test case suite and discuss the

corresponding model results. The summary and conclusions

follow in Sect. 5.

2 The non-hydrostatic equations of fluid motion

In an arbitrary coordinate frame (α,β,ξ), the vector velocity

can be written as

u = uαgα + uβgβ + uξgξ , (1)

where gi (i ∈ {α,β,ξ}) are the local coordinate basis vectors

and ui are the contravariant velocity components. The asso-

ciated covariant components are

uα = u · gα,uβ = u · gβ ,uξ = u · gξ . (2)

Covariant components can be obtained in terms of con-

travariant components via contraction with the covariant met-

ric gij = gi · gj ,

ui = giαu
α + giβuβ + giξuξ . (3)

The reverse operation uses the contravariant metric gij ,

defined as the matrix inverse of the covariant metric. Con-

traction of the covariant components with the contravariant

metric returns the contravariant vector components,

ui = giαuα + giβuβ + giξuξ . (4)

The volume element J is computed in terms of the covari-

ant metric as

J =
√

detgij . (5)

Using covariant horizontal velocity components, verti-

cal velocity, potential temperature θ , and dry air density ρ
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Table 1. Composition of interpolation I and differentiation D operators for several choices of staggering, including collocated spectral

elements (SE), SNFEM with Lorenz staggering (SNFEM-LOR), and SNFEM with Charney–Phillips staggering (SNFEM-ChP). Script i

denotes variables defined on interfaces (Gauss–Lobatto nodes) and n represents variables defined on model levels (Gauss nodes). For operator

I and D, the subscript denotes the target (i or n) and the superscript denotes the origin.

Choice of staggering

Variable Term SE (ρi ,θi ,wi) SNFEM-LOR (ρn,θn,wi) SNFEM-ChP (ρn,θi ,wi)

u,v 5 5i(ρi ,θi) 5n(ρn,θn) 5n(ρn,I
i
nθi)

θ uξ
∂θ

∂ξ
(u
ξ
i
)Di
i
θi (Iinu

ξ
i
)(Dnnθ) (u

ξ
i
)(Di

i
θi)

w θ
∂5

∂ξ
θiD

i
i
5i (Iinθn)(D

n
i
5n) θi(D

n
i
5n)

ρ
1

J

∂

∂ξ
(Jρuξ )

1

Ji
D
i
i (Jiρiu

ξ
i
)

1

Jn
D
i
n

[
Ji(I

n
i ρn)u

ξ
i

] 1

Jn
D
i
n

[
Ji(I

n
i ρn)u

ξ
i

]

as prognostic variables, the Euler equations with shallow-

atmosphere approximation can be written with an arbitrary

coordinate frame as

∂uα

∂t
= − ∂

∂α
(K +8)− θ ∂5

∂α
+ (η × u)α, (6)

∂uβ

∂t
= − ∂

∂β
(K +8)− θ ∂5

∂β
+ (η × u)β , (7)

(
∂r

∂ξ

)
∂w

∂t
= − ∂

∂ξ
(K +8)− θ ∂5

∂ξ
+ (η × u)ξ , (8)

∂θ

∂t
= −uα ∂θ

∂α
− uβ ∂θ

∂β
− uξ ∂θ

∂ξ
, (9)

∂ρ

∂t
= − 1

J

∂

∂α
(Jρuα)− 1

J

∂

∂β
(Jρuβ)

− 1

J

∂

∂ξ
(Jρuξ ). (10)

The vertical velocity w is closely related to uξ via

w = |gξ |−1uξ . (11)

The specific Kinetic energy is

K = 1

2

(
uαu

α + uβuβ + uξuξ
)
, (12)

while the geopotential function 8 is given by the product of

gravitational acceleration (constant) with the elevation coor-

dinate r(ξ).

5= cp

(
p0

p

)Rd/cp
= cp

(
Rdρθ

p0

)Rd/cv
(13)

Here p0 denotes the constant reference pressure, Rd is the

ideal gas constant, and cv and cp refer to the specific heat

capacity at constant volume and pressure, respectively. The

absolute vorticity vector is given by

η = ζ + ω, (14)

where the relative vorticity vector is

ζ = 1

J

[(
∂uξ

∂β
− ∂uβ

∂ξ

)
gα +

(
∂uα

∂ξ
− ∂uξ

∂α

)
gβ

+
(
∂uβ

∂α
− ∂uα

∂β

)
gξ

]
, (15)

and, under the shallow-atmosphere approximation, the plan-

etary vorticity vector is

ω = f (∂r/∂ξ)−1gξ . (16)

Consequently, the rotational terms in the equation of mo-

tion take the form

(η × u)α = J
[
uβ(ωξ + ζ ξ )− uξζ β

]
, (17)

(η × u)β = J
[
uξζα − uα(ωξ + ζ ξ )

]
, (18)

(η × u)ξ = J
[
uαζ β − uβζα

]
. (19)

Note that this formulation does not specify a coordinate

system. Consequently, these equations can be used for either

Cartesian or spherical geometry. To account for topography,

terrain-following σ -coordinates are imposed by defining the

radius r = r(α,β,ξ) so that r(α,β,0) is coincident with the

surface. For example, Gal-Chen and Somerville (1975) coor-

dinates arise from the choice

r(α,β,ξ)= ξ
[
rtop − rs(α,β)

]
+ re + rs(α,β), (20)

where rtop denotes the model height and rs(α,β) denotes the

surface elevation from the mean Earth radius re. In Cartesian

coordinates r simply maps to the elevation zwhile neglecting

the mean radius re in Eq. (20). The symmetric covariant and

contravariant metric tensors in the (α,β,r) Cartesian system
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are written as

gij =



1 0 −
(
∂r

∂ξ

)−1(
∂r

∂α

)

1 −
(
∂r

∂ξ

)−1(
∂r

∂β

)

(
∂r

∂ξ

)−2
[

1 +
(
∂r

∂α

)2

+
(
∂r

∂β

)2
]




: i,j = (α,β,ξ) (21)

and

gij =




[
1 +

(
∂r

∂α

)2
]

∂r

∂α

∂r

∂β

∂r

∂α

∂r

∂ξ[
1 +

(
∂r

∂β

)2
]

∂r

∂β

∂r

∂ξ
(
∂r

∂ξ

)2




: i,j = (α,β,ξ). (22)

We note that in this framework, the discretization is decou-

pled from the grid definition. As such, Tempest is designed

to target flows on the sphere and in Cartesian domains si-

multaneously with or without terrain. This is convenient in

the analysis, implementation, and validation of the numeri-

cal techniques that follow. We focus our validation on Carte-

sian cases and will address test cases on the sphere in a sub-

sequent publication based on the same discretization frame-

work. Lastly, derivatives of the vertical coordinate in α and

β are evaluated using the discrete derivative operators devel-

oped in the next section while the vertical gradient of co-

ordinate surfaces can easily be obtained analytically from

Eq. (20).

3 Discretization

3.1 Horizontal discretization

The horizontal discretization of Eqs. (6)–(10) follows the

continuous element formulation of Ullrich (2014a), which

is analogous to earlier efforts with spectral elements (Gi-

raldo and Rosmond, 2004; Taylor and Fournier, 2010; Den-

nis et al., 2011; Giraldo et al., 2013) with coordinate infor-

mation completely contained in the definition of the metric

tensors Eqs. (21) and (22).

3.2 Vertical discretization

Each vertical column consists of nve nodal finite elements,

indexed a ∈ {0, . . .,nve − 1}. Throughout this manuscript, all

vertical indices are assumed to increase with altitude. Within

ξ̃a,0

ξ̃a,1

ξ̃a,2

ξ̃a,3

ξa,1

ξa,2

ξa,3

ξ̃a,0

ξ̃a,1

ξ̃a,2

ξ̃a,3

ξa,1

ξa,2

ξa,3

φ̃a,0

φ̃a,1

φ̃a,2

φ̃a,3
φa,3

φa,2

φa,1

(a) (b) (c)

Figure 1. (a) Vertical placement of (left) Gauss–Lobatto nodes

and (right) Gauss nodes within a vertical element with nvp = 3.

(b) Basis functions φ̃a,k for Gauss–Lobatto nodes within element

a. (c) Basis functions φa,k for Gauss nodes within element a.

each element, levels are placed at the nvp Gaussian quadra-

ture nodes and interfaces at nvp + 1 Gauss–Lobatto quadra-

ture nodes, leading to a staggering of levels and interfaces.

With vertical coordinate ξ , the location of model levels de-

noted ξa,k with k ∈ {0, . . .,nvp − 1} and model interfaces de-

noted ξ̃a,k with k ∈ {0, . . .,nvp}. Each finite element is then

bounded within the interval [̃ξa,0, ξ̃a,nvp ] with two associated

sets of basis functions – one over model levels, denoted by

the set φa = {φa,j |j = 0, . . .,nvp − 1} that includes charac-

teristic polynomials of degree nvp − 1, and one over model

interfaces, denoted by the set φ̃a = {φ̃a,j |j = 0, . . .,nvp − 1}
that includes characteristic polynomials of degree nvp. A de-

piction of the vertical staggering associated with levels and

interfaces is given in Fig. 1, along with basis functions in

each case. A scalar field q(ξ, t) can then be written approx-

imately, either as a linear combination of basis functions on

levels,

q(ξ, t)≈
nve−1∑

a=0

nvp−1∑

j=0

qa,j (t)φa,j (ξ), (23)

or on interfaces,

q(ξ, t)≈
nve−1∑

a=0

nvp∑

j=0

q̃a,j (t)φ̃a,j (ξ). (24)

For the remainder of this manuscript we will use script n to

denote variables stored on model levels and script i to denote

variables stored on interfaces.

3.2.1 Interpolation operators

Note that Eqs. (23) and (24) are not equivalent discretizations

since Eq. (23) cannot represent polynomials of degree nvp

and Eq. (24) cannot represent fields that are discontinuous at

element interfaces. Nonetheless, we can define interpolation

operators between these fields via Ini , representing interpo-
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lation from levels to interfaces, and I in, representing inter-

polation from interfaces to nodes. First, interpolation from

interfaces to levels is defined as

(I inq̃)a,k =
nvp∑

j=0

q̃a,j (t)φ̃a,j (ξa,k). (25)

To define the interpolant from levels to interfaces, a two-

step procedure is employed. Since basis functions on levels

are discontinuous, we define the left and right interpolants at

element boundaries as

(InLq)a,0 =
nvp−1∑

j=0

qa,jφa,j (̃ξa,0),

(InRq)a,nvp−1 =
nvp−1∑

j=0

qa,jφa,j (̃ξa,nvp−1) (26)

and then define the total interpolant as

(Ini q)a,k =




nvp−1∑
j=0

qa,jφa,j (̃ξa,k) if 0< k < nvp,

1

2
(InRq)a−1,nvp−1 + 1

2
(InLq)a,0 if k = 0,

1

2
(InRq)a,nvp−1 + 1

2
(InLq)a+1,0 if k = nvp.

(27)

These interpolation operators can also be obtained from

equivalence via the variational (weak) form. At model inter-

faces, the accuracy of Eq. (27) degrades for unequally spaced

finite elements. For the case of stacked finite elements with

unequal thickness 1ξa = ξ̃a,nvp − ξ̃a,0, a more accurate for-

mula can be obtained from

(Ini q)a,0 =
1ξ

nvp
a (InRq)a−1,nvp−1 +1ξnvp

a−1(I
n
Lq)a,0

1ξ
nvp
a +1ξnvp

a−1

, (28)

which arises on noting that the one-sided interpolant has er-

ror O(1ξ
nvp
a ).

3.2.2 Differentiation operators

Differentiation is required for all combinations of model lev-

els and interfaces: Di
i represents differentiation from inter-

faces to interfaces, Di
n represents differentiation from inter-

faces to levels, Dn
n denotes differentiation from levels to lev-

els, and Dn
i denotes differentiation from levels to interfaces.

A depiction of the behavior of these derivative operators is

shown in Fig. 2.

Differentiation from interfaces to levels is obtained by

simply differentiating Eq. (25),

(Di
nq)a,k =

nvp∑

j=0

q̃j
∂φ̃j

∂ξ
(ξa,k). (29)

D
i

n

D
n

i

ξ̃a,0

ξ̃a,1

ξ̃a,2

ξ̃a,3

ξa,1

ξa,2

ξa,3

ξ̃a,0

ξ̃a,1

ξ̃a,2

ξ̃a,3

Figure 2. A depiction of the derivative operators Din and D
n
i

, which

remap from interfaces to levels and levels to interfaces, respectively.

The gray line depicts a typical field variable within element a that

emerges from the expansion (left) (Eq. 24) or (center) (Eq. 23).

This works in practice as there is an exact mapping from

derivatives of the continuous polynomial space (over inter-

faces) to the discontinuous polynomial space (over levels).

Differentiation from levels to levels is computed via the

composed operator

Dn
nq = Di

nI
n
i q, (30)

where boundary conditions, such as the no-flux condition

(uξ = 0) at the top and bottom, are enforced after applica-

tion of the interpolation operator.

Differentiation from interfaces to interfaces requires aver-

aging the one-sided derivatives at element interfaces, but is

otherwise simply the derivative of Eq. (25) on the element

interior,

(Di
iq)a,k =





1

2



nvp∑

j=0

q̃a,j
∂φ̃a,j

∂ξ
(̃ξa,k)

+
nvp∑
j=0

q̃a−1,j

∂φ̃a−1,j

∂ξ
(̃ξa,k)

)
if k = 0,

nvp∑
j=0

q̃a,j
∂φ̃a,j

∂ξ
(̃ξa,k) if 0< k < nvp,

1

2



nvp∑

j=0

q̃a,j
∂φ̃a,j

∂ξ
(̃ξa,k)

+
nvp∑
j=0

q̃a+1,j

∂φ̃a+1,j

∂ξ
(̃ξa,k)

)
if k = nvp.

(31)

Differentiation from levels to interfaces (Dn
i ) should not

be defined via the composition Di
iI
n
i , since this procedure

would introduce a non-zero null space that can trigger an un-

physical computational mode in the discrete equations. In-

stead we define Dn
i using the robust differentiation technique

discussed in Ullrich (2014a), based on the flux reconstruction
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methods of Huynh (2007). This strategy leads to the discrete

operator

(Dni q)a,k= (D̂ni q)a,k + 1

2

dGR

dξ
(̃ξa,k)

[
(InLq)a+1,k − (InRq)a,k

]

+1

2

dGL

dξ
(̃ξa,k)

[
(InRq)a−1,k − (InLq)a,k

]
, (32)

where

(D̂n
i q)a,k =




1

2



nvp−1∑

j=0

qa,j
∂φa,j

∂ξ
(̃ξa,k)

+
nvp−1∑
j=0

qa−1,j

∂φa−1,j

∂ξ
(̃ξa,k)

)
if k = 0,

nvp−1∑
j=0

qa,j
∂φa,j

∂ξ
(̃ξa,k) if 0< k < nvp,

1

2



nvp−1∑

j=0

qa,j
∂φa,j

∂ξ
(̃ξa,k)+

nvp−1∑
j=0

qa+1,j

∂φa+1,j

∂ξ
(̃ξa,k)

)
if k = nvp,

(33)

andGL andGR are the local flux correction functions, which

are chosen to satisfy

GL(ξa,0)= 1,GL(ξa,nvp−1)= 0,

GR(ξa,0)= 0,GR(ξa,nvp−1)= 1, (34)

and otherwise approximate zero throughout [ξa,0,ξa,nvp−1].
There is some flexibility in the discretization that depends

on the specific choice of flux correction functions. Huynh

(2007) gives a family of flux correction functions on the

interval [−1,1] denoted by Gk for k = 1,2, . . .. In partic-

ular, we are interested in G1 (the Radau polynomials) and

G2, which have the special property of dG2/dx = 0 at all

Gauss–Lobatto points. Although either choice of flux correc-

tion function leads to a valid discretization for nvp > 1, when

nvp = 1 a consistent differential operator is recovered only

with G2. Hence, for the remainder of this text we will adopt

the flux correction function G2. For this choice, the flux cor-

rection function satisfies

∂G2

∂x
=
(nvp + 1)

[
Pnvp+1(x)− xPnvp(x)

]

2(x− 1)
, (35)

where PN (x) is the Legendre polynomial of order N . In the

limit as x approaches the boundaries of the reference ele-

ment, a simplified expression emerges:

lim
x→+1

∂G2

∂x
= nvp(nvp + 1). (36)

On the interval [̃ξj,0, ξ̃j,nvp−1] we have

∂GR

∂ξ
(ξ)= 1

1ξa

∂G2

∂x

[
2(ξ − ξj,0)
1ξa

− 1

]
,

∂GL

∂ξ
(ξ)= − 1

1ξa

∂G2

∂x

[
2(ξj,nvp−1

− ξ)
1ξa

− 1

]
. (37)

3.2.3 Second derivative operators in the vertical

The second derivative operators are used in viscosity and hy-

perviscosity calculations. They are obtained as approxima-

tions to the equation

L(ν)q ≈ ν
∂2q

∂ξ2
, (38)

subject to Neumann (no-flux) boundary condition

∂q

∂ξ
= 0 at ξ = 0 and ξ = 1. (39)

For the viscous operator from interfaces to interfaces, the

discretization is obtained from the variational (weak) formu-

lation. Specifically, from Eq. (38) and integration by parts,

1∫

0

(Liiq)b,nφ̃a,kdξ = ∂q

∂ξ
φ̃a,k

∣∣∣∣
1

0

−
1∫

0

∂q

∂ξ

∂φ̃a,k

∂ξ
dξ. (40)

Then using Eqs. (24), (39), and the assumption of orthog-

onality of basis functions φ̃ under quadrature,

(Liiq)a,k = − 1
∫ 1

0 φ̃
2
a,kdξ

nve−1∑

b=0

nvp∑

n=0

q̃b,n

1∫

0

∂φ̃a,k

∂ξ

∂φ̃b,n

∂ξ
dξ. (41)

For model interfaces on Gauss–Lobatto nodes, the integral

is discretized via Gauss–Lobatto quadrature.

The viscous operator from levels to levels is derived in

a similar manner, although the non-differentiability of q at

interfaces in the discontinuous basis means that we must rely

on differentiation via Eq. (32). Consequently, the weak form

ξ̃a,vnp∫

ξ̃a,0

(Liiq)b,nφa,kdξ = ∂q

∂ξ
φa,k

∣∣∣∣
ξ̃a,vnp

ξ̃a,0

−
ξ̃a,vnp∫

ξ̃a,0

∂q

∂ξ

∂φa,k

∂ξ
dξ. (42)

then leads to discrete operator

(Lnnq)a,k = 1

∫ ξ̃a,nvp

ξ̃a,0
φ2
a,kdξ

[
(L̂nnq)a,k + (Dn

i q)a,vnpφ(̃ξa,vnp)− (Dn
i q)a,0φ(̃ξa,0)

]
, (43)

where

(L̂nnq)a,k = −
nve−1∑

b=0

nvp−1∑

n=0

qb,n

ξ̃a,nvp∫

ξ̃a,0

∂φa,k

∂ξ

∂φb,n

∂ξ
dξ. (44)

For model levels on Gauss nodes, the integral is discretized

directly via Gaussian quadrature. Note that the boundary

condition implies that we must impose

(Dn
i q)0,0 = 0 and (Dn

i q)vne−1,vnp = 0. (45)
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3.2.4 Flow-dependent vertical hyperviscosity

The basic spectral element method is an energy conservative

scheme (Taylor and Fournier, 2010) that allows for the ac-

cumulation of energy at the shortest wavelengths. Following

Ullrich (2014a) and Dennis et al. (2011), we impose explicit

dissipation in the horizontal using a constant coefficient hy-

perviscosity. In the vertical, a constant coefficient hypervis-

cosity would have a rapid and adverse affect on hydrostatic

balance in the absence of a hydrostatic reference state (Gi-

raldo and Restelli, 2008). Consequently, in this paper we ap-

ply a localized hyperviscosity in the vertical column that is

weighted by the contravariant vertical flow velocity uξ ,

∂q

∂t
= ·· · + νz|uξ |

∂2kq

∂ξ2k
, (46)

where q ∈ {uα,uβ ,w,θ,ρ} and k is a positive integer. The

motivation for using uξ stems from the observation that ad-

vective transport in the vertical occurs with speed uξ , and

so this would be the corresponding wave speed that would

enter into, for example, the Rusanov–Riemann solver in the

context of discontinuous Galerkin or finite volume methods.

In this sense, the flow-dependent hyperviscosity is a gener-

alization of advective upwinding if applied simultaneously

with the vertical advective operator. The Riemann solver in-

terpretation also yields an appropriate estimate for the value

of νz,

k = 2 :νz = (1/2)(1ξ)−1,

k = 4 :νz = −(1/12)(1ξ)−3, (47)

k = 6 :νz = (1/60)(1ξ)−5,

where 1ξ = 1/(anvp) is the average spacing between nodes

in the vertical direction.

3.2.5 The staggered nodal finite-element method

The interpolation and differentiation operators given in the

previous sections provide a framework for constructing stag-

gered vertical grids in the context of the nonlinear sys-

tem Eqs. (6)–(10). Furthermore, the SNFEM allows for dis-

cretizations of arbitrary order-of-accuracy via adjustments in

nvp. For the present work, we investigate unstaggered (on

interfaces), LOR (u,v,ρ,θ on levels, w on interfaces), and

CPH (u,v,ρ on levels, w,θ on interfaces) configurations.

The two key diagnosed variables, 5 and uξ are collocated

with ρ and w, respectively. Table 1 provides a reference

nomenclature for the various discrete derivative operators

that arise in the SNFEM corresponding to the terms treated

implicitly. In general, we will use subscripts and superscripts

i and n denote quantities computed on “interfaces” or “lev-

els”, respectively. When needed, the contravariant α and ξ

velocity are computed via

(uj )= gjα(uα)+ gjβ(uβ)+ gjξ |gξ |w, (48)

where j ∈ {α,ξ} and all covariant velocities are first interpo-

lated to levels or interfaces (wherever uj is needed) prior to

evaluation.

For example, applying the discrete derivative operators

with Lorenz staggering to Eqs. (6)–(10) and neglecting flow

in the β direction gives

∂(uα)n

∂t
= −Dα(Kn+8n)− θnDα(5n)− (uξ )n
[
Dn
nuα −DαI

i
n(uξ )i

]
, (49)

(
∂r

∂ξ

)

i

∂wi

∂t
= −Dn

i (Kn+8n)− Ini θn
(
Dn
i 5n

)
︸ ︷︷ ︸

+(uα)iDi
nuα︸ ︷︷ ︸−Ini

[(
uα
)
n
DαI

i
n(uξ )i

]
, (50)

∂θn

∂t
= −(uα)n (Dαθn)−

[
I in(u

ξ )i

](
Dn
nθn

)

︸ ︷︷ ︸
, (51)

∂ρn

∂t
= − 1

Jn
Dα

[
Jnρn(u

α)n
]

− 1

Jn
Di
n[Ji(Ini ρn)(uξ )i]

︸ ︷︷ ︸
. (52)

Here the vertical interpolation operators are defined in

Sect. 3.2.1, the derivative operators are defined in Sect. 3.2.2,

and the horizontal derivative operator Dα represents the stan-

dard collocated spectral element derivative operator.

It is important to note the great deal of flexibility available

in the computation of spatial terms in Eqs. (49)–(52). In par-

ticular, covariant/contravariant velocity components (needed

in the advection of θ ) and the specific kinetic energy K

may be composed with different interpolation sequences and

preliminary experiments have suggested that stability of the

method may depend on such variations, particularly in the

presence of steep topography.

3.3 Temporal discretization

Many options are available for the temporal discretization of

the semi-discrete equations, including several fully explicit

and implicit–explicit schemes (Ascher et al., 1997). One sim-

ple temporal discretization is investigated here, which uti-

lizes Strang splitting for the dynamics and operator splitting

for the hyperviscosity. The Eqs. (6)–(10) are written in the

form

∂ψ

∂t
− f (x,ψ)= g(x,ψ), (53)

where f (x,ψ) denotes terms associated with non-stiff

modes, i.e., horizontally propagating modes and vertical ad-

vection of horizontal velocity. The function g(x,ψ) denotes

geometrically stiff terms associated with all vertical deriva-

tives except for vertical advection of horizontal velocity.

The model follows the approach of Ullrich and Jablonowski

(2012) by treating non-stiff terms using an explicit temporal
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operator and stiff terms using an implicit operator. For the

current study, the terms with under-braces in Eqs. (49)–(52)

are treated implicitly in order to avoid time step limitations

due to vertically propagating sound waves.

For the first time step, an implicit update is applied,

ψ (0) = ψn+ 1t

2
(I − 1t

2
DG(ψn))−1G(ψn), (54)

where G(ψn) represents the discretization described in

Sect. 3.2 and DG(ψn)= ∂G/∂ψn. For later time steps, the

implicit update is instead obtained from a stored tendency,

ψ (0) = ψn+ 1t

2
ψ. (55)

Explicit terms are evolved using a Runge–Kutta method,

which supports a large stability bound for spatial discretiza-

tions with purely imaginary eigenvalues. This particular

scheme is based on Kinnmark and Gray (1984a, b) and takes

the form

ψ (1) = ψ (0)+ 1t

5
f (ψ (0)),

ψ (2) = ψ (0)+ 1t

5
f (ψ (1)),

ψ (3) = ψ (0)+ 1t

3
f (ψ (2)), (56)

ψ (4) = ψ (0)+ 21t

3
f (ψ (3)),

ψ (5) = −1

4
ψ (0)+ 5

4
ψ (1)+ 31t

4
f (ψ (4)).

Hyperviscosity is then applied in accordance with Ullrich

(2014a), with scalar hyperviscosity used for all scalar quanti-

ties and vector hyperviscosity used for the horizontal velocity

field. Mathematically, the update takes the form,

ψ (6)s = ψ (5)s +1tH(ν)H(1)ψ (5)s , (57)

u(6) = u(5)+1tH(νd ,νv)H(1,1)u(5), (58)

where ψs ∈ {θ,w,ρ}.
When active, Rayleigh friction is applied via backward

Euler to relax all prognostic variables to a specified reference

state,

ψ (7) = γψ (6)+ (1 − γ )ψ ref, (59)

where γ = [1 + νr(x)1t]−1 is in terms of the Rayleigh fric-

tion strength νr(x).

In accordance with Strang splitting, a final implicit update

is applied,

ψ = (I − 1t

2
DG(ψ (7)))−1G(ψ (7)), (60)

ψn+1 = ψ (7)+ 1t

2
ψ. (61)

4 Validation

In this section we present a set of test cases with the pur-

pose of investigating the performance of the SNFEM for

mesoscale atmospheric modeling. Our emphasis is on a wide

range of resolutions from the global scale (200 km) to the

large-eddy scale (5 m). These scales transition from hydro-

static to scales where all nonlinear terms in the Eqs. (6)–(10)

become significant. For our experiments we will hold the fol-

lowing components of the computations constant:

1. The horizontal discretization is kept as a standard

fourth-order spectral element formulation for all sim-

ulations, as outlined in Sect. 3.1.

2. The time integration scheme is based on Strang-split

IMplicit EXplicit (IMEX) outlined in Sect. 3.3.

3. Vertical terms ∂
∂z

are integrated implicitly using the gen-

eralized minimal residual method (GMRES) with no

preconditioner. Efforts are underway to determine the

most efficient preconditioner for this system. We have

also implemented an analytical Jacobian for the verti-

cal solve, which appears to be the most computationally

efficient option.

4. Reference solutions employ consistent fourth-order ver-

tical and horizontal discretizations at a resolution at

least twice as fine as experiments

5. The total number of vertical levels in each test is kept

constant. Only the vertical order of accuracy is changed

and consequently the distribution of grid spacing ac-

cording to the locations of element nodes.

For these tests, we investigate the effect of a relatively

high-order nvp = 10 vertical coordinate on flow results at res-

olutions coarser than the reference solutions. Our hypothesis

is that flow structures and measures of interest will be better

approximated using the high-order discretization. We con-

sider the properties of our arbitrary order methods in the con-

text of meshes with mixed grid resolutions such as static and

adaptive variable resolution experiments. A primary benefit

of using the higher-order SNFEM is improved accuracy even

with a coarser vertical grid.

Reference results are computed with a consistent spatial

(horizontal and vertical) discretization or order “O4”. Exper-

iments done at coarser resolutions with varying vertical order

of accuracy are titled “VO(no.)”.

4.1 Steady-state geostrophically balanced flow in a

channel

The first test represents steady-state geostrophically balanced

flow in a channel and is based on a new test case defined

by Ullrich et al. (2015). The domain is a channel of dimen-

sions Lx ×Ly ×Lz with periodic boundaries in the x direc-

tion and no-flux conditions at all other interfaces. In this case
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Figure 3. Baroclinic wave in a 3-D Cartesian channel at the reference resolution 1x = 100 km, 1y = 100 km, 1z= 1 km at vertical fourth-

order accuracy (VO4). From top to bottom, temperature, vorticity, vertical velocity, and divergence are shown at day 10 (left) and 15 (right)

and at an elevation of 500 m. Contour intervals: temperature 2 K, vorticity 1.0 × 10−5 s−1, divergence 5.0 × 10−6 s−1, and vertical velocity

2.0 × 10−3 m s−1.

we chooseLx = 30 000 km,Ly = 6000 km, andLz = 30 km.

The shorter zonal width compared with that of Ullrich et al.

(2015) was chosen for reasons of computational efficiency

and did not affect the final solution. The initial flow is com-

prised of a zonally symmetric mid-latitudinal jet, defined so

that the wind is zero at the surface and along the y bound-

ary. Hyperviscosity is applied in the horizontal and vertical at

fourth order as well as a Rayleigh layer at the top and longitu-

dinal boundaries. The Rayleigh layers are used to prevent the

accumulation of standing wave reflections in the flow. This

formulation can either be on an f plane or β plane, which

have Coriolis parameters

f = f0, and β = f0 +β0(y− y0), (62)

respectively, where f0 = 2�sinϕ0 and β0 = 2a−1�cosϕ0

at latitude ϕ0 = 45◦ N. Here, the radius of the Earth is

a = 6371.229 × 103 m, its angular velocity is �= 7.292 ×
10−5 s−1 and y0 = Ly/2 is the center point of the domain in

the y direction.

The simulation is performed for the original β-plane con-

figuration outlined in Ullrich et al. (2015) where the jet is

perturbed directly by a “bump” in the zonal wind that is

vertically uniform where up = 1.0 m s−1 centered at xc =
2000 km and yc = 2500 km.

u′(x,y)= up exp

[
−
(
(x− xc)2 + (y− yc)2

L2
p

)]
(63)

The grid spacing for the reference solution is1x = 50 km,

1y = 50 km,1z= 0.75 km, and1t = 30 s. Experiments are

conducted at vertical order 2, 4, and 10 at a resolution of

1x = 200 km, 1y = 200 km, 1z= 1.5 km, and 1t = 240 s.

The fourth-order scalar and vector (vorticity and divergence

separately) diffusion coefficients are given by

νscalar = 1.0 × 1014

(
1x

Lref

)3.2

m4 s−1, (64)

νvorticity = 1.0 × 1014

(
1x

Lref

)3.2

m4 s−1, (65)

νdivergence = 1.0 × 1014

(
1x

Lref

)3.2

m4 s−1, (66)

where 1x is the element length in the x direction and Lref =
11.0×105 m is the reference length used for this test case. For

this test, vertical flow-dependent viscosity is disabled since it

did not have a clear impact on the solution.

The baroclinic instability is a primary mechanism for the

development of mid-latitude storm systems and so it is im-

portant that an atmospheric modeling platform reproduce
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Figure 4. Baroclinic wave in a Cartesian channel at vertical orders 2, 4, and 10. Vorticity at 500 m on days 10 and 15 at the resolution

1x = 200 km, 1y = 200 km, 1z= 1.5 km. Contour interval: 1.0 × 10−5 s−1.

these phenomena accurately. We present a reference solution

of the baroclinic wave shown in Fig. 3 that is approaching the

transition into the non-hydrostatic regime. We are interested

in estimates of vertical motion where the reference solution

shows maxima on the order of 2 cm s−1. Regions of strong

vertical motion correspond to strong horizontal gradients in

the vorticity and temperature fields and we expect that non-

hydrostatic effects will be locally significant.

The reference solution for temperature and vorticity at

500 m elevation shown here can be compared at day 10 with

the original results from Ullrich et al. (2015) produced with

MCore Ullrich and Jablonowski (2012) to verify that Tem-

pest is computing a consistent solution. In particular we ex-

pect that vertical motion will be under-predicted in coarser

models at a given order of accuracy.

The vorticity field at coarse resolution (Fig. 4) is largely

unaffected by changes in vertical order. However, the verti-

cal velocity (Fig. 5), and by association the horizontal diver-

gence (not shown), shows a substantial increase in magnitude

as order increases. This increase aligns the vertical velocity

more closely with the reference solution magnitude (greater

than 1 cm s−1) using the 10th-order vertical coordinate as

shown in Fig. 5. We conclude that although the higher-order

vertical coordinate does not substantially impact the horizon-

tal character of the solution, it does better capture the magni-

tude of vertical velocity, particularly in frontal regions. We

note that the coarse resolution chosen here is nearly dou-

ble that of current operational climate modeling systems and

well within the hydrostatic regime.

4.2 Schär mountain

Atmospheric flows are strongly influenced by the lower

boundary, where topographically induced waves transport

momentum and energy vertically. Schär et al. (2002) de-

scribed a uniform zonal flow field over orography that leads

to the generation of a stationary mountain response, con-

sisting of a linear combination of hydrostatic and non-

hydrostatic waves. The atmosphere is initially under uniform

stratification with constant Brunt–Väisälä frequency N =
0.01 s−1. The temperature and pressure are p0 = 1000 hPa

and T0 = 280 K at z= 0 m. To trigger the standing waves, an

initial uniform mean flow of u= 10 m s−1 is prescribed over

the topographic profile given by

hT (x)= hc exp

[
−
(
x

ac

)2
]

cos2
(πx
λ

)
, (67)

with parameters hc = 250 m, λ= 4000 m, and ac = 5000 m.

The simulation domain is (x,z) ∈ [−30,30]×[0,25] km with

a no-flux boundary specified along the bottom surface. Free-

flow boundary conditions are prescribed at the top and lat-

eral boundaries with a Rayleigh layer 10 km wide along the

lateral boundaries and 10 km deep at the model top. Note

that the domain bounds differ from Schär et al. (2002) to

minimize the effect of the Rayleigh layers on the flow in-

terior. Also, the Rayleigh layer is applied to progressively

and smoothly increase in strength up to the boundaries. The

simulation is run to t = 10 h, when the solution has reached a

quasi-steady state. For these simulations, no explicit dissipa-

tion is applied in either the horizontal or vertical and Coriolis

forcing is set to zero throughout.
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Figure 5. Baroclinic wave in a Cartesian channel at vertical orders 2, 4, and 10. Vertical velocity at 500 m on days 10 and 15 at the resolution

1x = 200 km, 1y = 200 km, 1z= 1.5 km. Contour interval: 2.0 × 10−3 m s−1.

Reference solution O4 - vertical velocity (m s  )-1 Momentum flux (kg m    s   )-1 -2

Figure 6. Schär flow at steady-state (10 h) vertical velocity in (m s−1) at VO4. Reference resolution shown compared to the analytical

solution (dotted contours) from linear mountain wave theory. 1x = 100 m and 1z= 100 m. Contour interval: 0.1 m s−1.

To validate that Tempest produces the correct mountain

wave response, the Schär mountain test was performed un-

til t = 10 h with a relatively fine resolution of 1x = 100 m,

1z= 100 m and 1t = 0.2 s. As shown in Fig. 6 (left) Tem-

pest accurately reproduces the vertical velocity field at the

reference resolution (for comparison with another numeri-

cally derived solution, see Giraldo and Restelli, 2008). We

also show the analytical solution based on linear mountain

theory following Klemp et al. (2003) and Smith (1979) over-

laid in dotted contours. As pointed out by Klemp et al.

(2003), an inconsistent treatment of the topographic metric

terms in this formulation can lead to the generation of spuri-

ous waves, which is not observed in this case.

As discussed in Thuburn and Woollings (2005) and

Thuburn (2006), staggering is necessary to eliminate station-

ary computational modes that arise in collocated discretiza-

tions. To better understand the impact of staggering, Fig. 7

demonstrates the use of the collocated or unstaggered con-

figuration, which shows a highly oscillatory stationary mode

that pollutes the solution relative to the Lorenz configuration

at the same resolution. The plots show errors in the verti-

cal velocity near the bottom boundary condition and errors

throughout the flow field due to the vertical mode. This arti-

fact is conspicuously absent from both LOR and CPH runs.

Because our model makes use of a terrain-following co-

ordinate, it is expected that a hydrostatically balanced rest

state is not exactly preserved over topography. Imbalance

will arise as a consequence of inexact cancellation of the

terrain-following and vertical pressure gradient terms in the

discrete equations. Experiments carried out with zero back-

ground flow in the presence of topographic features shown in

Fig. 8 indicate that errors in vertical velocity are dominated

by the horizontal discretization. We note that improvements

with vertical order of accuracy are apparent when going from

second order to fourth order, but differences are small at

higher orders of accuracy. These errors can be removed com-

pletely with a vertical reference state (Giraldo and Restelli,
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Collocated vertical order 4 - vertical velocity (m s  )-1 Collocated VO4 difference (m s  )-1

Figure 7. Schär flow at steady state (10 h). Collocated method (all variables on column levels) results compared to staggered (Lorenz)

solution at the same spatial order and resolution. 1x = 200 m and 1z= 200 m. Contour intervals: vertical velocity 0.1 m s−1 and vertical

velocity difference versus reference 0.0125 m s−1.

2008), but such a state is difficult to utilize for global simu-

lations and so may not be desirable in practice.

Experiments are conducted at vertical order 2, 4, 10, and

40 (in the limit where the polynomial order is equal to the

total number of levels, denoted ST) at a relatively coarse res-

olution of1x = 500 m,1z= 500 m, and1t = 0.4 s. Results

are depicted in Fig. 9 and the difference against the reference

solution in Fig. 10. The second-order results show substantial

disagreement with the reference solution that is enhanced at

altitude. This result appears to be associated with an overes-

timation of the vertical wavelength of the mountain response

that arises from the lower-order discretization. At fourth or-

der the upper atmosphere does not show substantial errors,

and most differences are instead constrained to the near sur-

face. These near-surface errors generally show consistent im-

provement as the vertical order-of-accuracy is increased. The

discrepancy that appears at the highest peak of the Schär

mountain (x = 0) is associated with slight differences in re-

solving the topography at coarser horizontal resolution than

the reference solution.

We further compare the resulting profiles of momentum

flux for all experiments in the Lorenz configuration (Fig. 11).

We observe that the flux profile for the 2nd-order method has

the greatest error, as expected from dispersion errors typical

of low-order centered schemes (particularly in the upper at-

mosphere and near the surface). The higher-order methods

show improvements in the structure and magnitude of the

profiles (especially at the near-surface, when compared to

the reference profile in black), but again appear to be influ-

enced by the lower-order horizontal discretization. Further-

more, the results are strongly influenced by the Rayleigh

layer showing a pronounced deviation in the flux profiles

throughout the domain. The Rayleigh layer approximation to

a free-flow boundary condition clearly introduces deficien-

cies that are exacerbated in the flux provided.

4.3 Straka density current

The density current test case of Straka et al. (1993) consid-

ered a cold bubble that sinks and spreads across the bottom

boundary, driving the development of Kelvin–Helmholtz ro-

tors. The original experiments by Straka et al. (1993) sought

a converged solution through the use of second-order uni-

form diffusion applied to all prognostic variables. A value

of ν = 75 m2 s−1 was chosen so that a horizontal resolution

of 1x = 25 m was sufficient for convergence. No-flux con-

ditions are applied on all boundaries and the Coriolis forcing

is set to zero.

The initial state consists of a hydrostatically balanced state

with a uniform potential temperature of θ = 300 K. A stan-

dard pressure of p0 = 1000 hPa is assumed. The cold bubble

perturbation is applied to the θ field and is given by

θ ′ =
{

0 if r > 1.0,

−θc
2

[1 + cos(πr)] if r ≤ 1.0,
(68)

where θc = −15 K and

r =

√(
x− xc
xr

)2

+
(
z− zc
zr

)2

. (69)

The domain is an enclosed box (x,z) ∈
[−25 600,25 600] × [0,6400] m with t ∈ [0,900] s. The

cold bubble is initially located at (xc,zc)= (0,3000)m with

radius (xr ,zr)= (4000,2000)m.

Geosci. Model Dev., 9, 2007–2029, 2016 www.geosci-model-dev.net/9/2007/2016/



J. E. Guerra and P. A. Ullrich: High-order vertical coordinate SNFEM 2019

Vertical order 2 - vertical velocity (m s  )-1

Vertical order 4 - vertical velocity (m s  )-1

Vertical order 10 - vertical velocity (m s  )-1

Figure 8. Still atmosphere experiment over Schär mountain profile

at vertical orders 2, 4, and 10 showing errors in vertical velocity.

1x = 500 m and 1z= 500 m. Contour interval: 2.0 × 10−5 m s−1.

The fourth-order horizontal hyperdiffusion coefficients for

all fields are given by

νscalar = 5.0 × 1012

(
1x

Lref

)3.2

m4 s−1, (70)

νvorticity = 2.0 × 1014

(
1x

Lref

)3.2

m4 s−1, (71)

νdivergence = 2.0 × 1014

(
1x

Lref

)3.2

m4 s−1, (72)

where 1x is the element length in the x direction and Lref =
51 200.0 m is the reference length used for this test case.

For the experiments with vertical flow-dependent hyper-

viscosity, the viscous coefficients are given by Eq. (47). The

uniform Laplacian diffusion requires further stabilization via

the addition of fourth-order scalar hyperviscosity in the hori-

zontal and fourth-order vertical flow-dependent diffusion on

all variables. This added diffusivity is necessary to control a

horizontal stationary mode in the scalar fields and fast mov-

ing vertical modes that are a consequence of sound waves

accumulating energy at the grid scale. However, the highly

scale-selective nature of the high-degree operators does not

significantly affect the structure of the reference solution as

shown in Fig. 12.

The grid spacing for the reference solution is 1x = 25 m

and 1z= 25 m with 1t = 0.01 s. Experiments are further

conducted at vertical order 2 and 10 at a resolution of 1x =
200 m and 1z= 200 m with 1t = 0.01 s.

For the density current, we emphasize results from the

Lorenz (LOR) staggering. Under CPH staggering, the ver-

tical advection term for potential temperature (see Table 1)

on the bottom-most and top-most interfaces is exactly zero

within our formulation. Consequently, within our formula-

tion there is no mechanism to transport θ vertically from

these interfaces leading to the development of a discontinuity

in θ along the lower boundary. These gradients then enhance

vertical heat fluxes above the surface, slowing the propagat-

ing cold pool as momentum is transported vertically. This in-

consistency is counteracted by the application of uniform dif-

fusion, which provides a mechanism by which θ can be ex-

changed with the bottom interface. However, flow-dependent

vertical diffusion, which is weighted by |uξ |, does not per-

mit exchange with the interface and so leads to inconsistency

between the LOR and CPH staggering. In Fig. 12, the CPH

staggering with flow-dependent diffusion leads to a relatively

slow density current that is more convective near the bound-

ary. Nonetheless, a better choice of flow-dependent coeffi-

cient could be made to mitigate this issue. Note that this is-

sue with CPH can be counteracted by rewriting the vertical

advection term as

uξ
∂θ

∂ξ
= ∂

∂ξ
(uξ θ)− θ ∂u

ξ

∂ξ
, (73)

although this form tends to be more unstable in practice

We often desire diffusion to be as weak as possible while

still preserving the stability of the underlying method. How-

ever, as can be seen here, the structure of the density current

is also strongly dependent on the dissipation mechanisms

employed in the simulation. Here we present the reference

solution equivalent to Straka et al. (1993) at the converged

resolution. We also compare solutions with different diffu-

sion mechanisms in Fig. 12 with corresponding cross sec-

tions in Figs. 14. The 1200 m cross sections indicate that ex-

perimental coarse resolutions are not converged in the case of

reference uniform damping. In Table 2 it is apparent the ref-

erence solutions are sensitive to diffusion and differ signifi-

cantly in structure, but the wave front positions compare with
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Vertical order 2 - vertical velocity (m s  )-1 Vertical order 4 - vertical velocity (m s  )-1

Vertical order 10 - vertical velocity (m s  )-1 Vertical order ST - vertical velocity (m s  )-1

Figure 9. Schär flow at steady-state (10 h) vertical velocity in (m s−1) at various vertical orders of accuracy (2, 4, 10, and ST) where

“ST” stands for single column element spectral transform (nve = 1) with Lorenz (LOR) vertical staggering. Colored contours from Tempest

compared to dotted contours for the analytical solution. 1x = 500 m and 1z= 500 m. Contour interval: 0.1 m s−1.

Vertical difference - VO2 (m s  )-1 Vertical difference - VO4 (m s  )-1

Vertical difference - VO10 (m s  )-1 Vertical difference - VOST (m s  )-1

Figure 10. Schär flow steady state (10 h). Vertical velocity difference with respect to the reference solution (Fig. 6, left). Results are in-

terpolated to a regular z coordinate with 1z= 500 m in experiments and reference solution for differencing. Computations performed at

1x = 500 m and 1z= 500 m. Contour interval: 0.0125 m s−1.

good precision to the solution given by Straka et al. (1993).

This would indicate that momentum fluxes are comparable,

but close inspection of the eddy structure suggests signifi-

cant differences exist throughout, as noted above, and with

the appearance of detached eddies when the high-order flow-

dependent viscosity is used exclusively.

From Table 2 it is apparent our coarse-resolution ex-

perimental solutions are slow with reference damping and
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J. E. Guerra and P. A. Ullrich: High-order vertical coordinate SNFEM 2021

Table 2. Cold wave front position (θ ′ = −1.0 K) for all orders of accuracy and diffusion methods. Reference damping is uniform second-order

diffusion on all prognostic variables such that ν = 75 m2 s−1 combined with horizontal hyperdiffusion on scalars and vertical fourth-order

up-wind diffusion. The reference solution wave front position (finite difference (FD) method at 25 m resolution) by Straka et al. (1993) is

shown in bold (REFC) compared to the equivalent result from Tempest.

Method-stagger Vertical order @ resolution Diffusion method Wave front (km)

SNFEM-LOR 2 @ 1x = 190 m Reference damping 14.21

SNFEM-LOR 2 @ 1x = 190 m Up-wind order 2 14.59

SNFEM-LOR 2 @ 1x = 190 m Up-wind order 4 15.68

SNFEM-LOR 4 @ 1x = 190 m Reference damping 14.18

SNFEM-LOR 4 @ 1x = 190 m Up-wind order 2 14.58

SNFEM-LOR 4 @ 1x = 190 m Up-wind order 4 15.47

SNFEM-LOR 10 @ 1x = 190 m Reference damping 14.22

SNFEM-LOR 10 @ 1x = 190 m Up-wind order 2 14.61

SNFEM-LOR 10 @ 1x = 190 m Up-wind order 4 15.33

FD-collocated 2 REFC @ 1x = 25 m Explicit ν0 = 75 m2 s−1 15.53

SNFEM-LOR 4 (REF) @ 1x = 25 m Reference damping 15.20

SNFEM-LOR 4 (REF) @ 1x = 25 m Up-wind order 2 15.77

SNFEM-LOR 4 (REF) @ 1x = 25 m Up-wind order 4 15.68
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Figure 11. Schär mountain vertical profile of momentum

flux for all experiments. The flux profiles are computed by∫X
−X

{[
ρ̄+ ρ′][ū+ u′]w′}dx at t = 10 h where overbars indicate

initial condition values and primes are departures thereof. Results

are interpolated to a regular z coordinate with1z= 500 m in exper-

iments and reference solution to compute the integral flux. Results

are normalized to the value at the surface in the reference solution.

second-order flow-dependent viscosity, but are closer to

the reference solution with fourth-order diffusion. Both

low- and high-order simulations show wave front positions

that accurately approximate the reference results. However,

Uniform diffusion (LOR) - O4 Uniform diffusion (CPH) - O4

W dependent diffusion  O2 (LOR) - O4 W dependent diffusion  O2 (CPH) - O4

W dependent diffusion  O4 (LOR) - O4 W dependent diffusion  O4 (CPH) - O4

Potential temperature (K)

Figure 12. Straka density current test reference solutions at verti-

cal order 4 in two staggering configurations LOR and CPH. Con-

verged resolution of 1x = 25 m and 1z= 25 m shown. Vertical

flow-dependent diffusion of order 2 and 4 (rows 2 and 3) is com-

pared with the reference solution where an explicit second-order

diffusion with ν0 = 75 m2 s−1 is used (top row). Contour interval:

1.0 K.

the structure of the Kelvin–Helmholtz rotors changes sig-

nificantly with vertical order-of-accuracy and dissipation

method shown in Fig. 13. The more scale-selective fourth-

order flow-dependent viscosity shows greater detail in the

structure of the rotors. In general, it is not recommended to

use hyperdiffusion with a higher order than the dynamical
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Uniform diffusion (LOR) - VO2

Potential temperature (K)

Uniform diffusion (LOR) - VO4 Uniform diffusion (LOR) - VO10

W dependent diffusion O2 (LOR) - VO2 W dependent diffusion O2 (LOR) - VO4 W dependent diffusion O2 (LOR) - VO10

W dependent diffusion O4 (LOR) - VO2 W dependent diffusion O4 (LOR) - VO4 W dependent diffusion O4 (LOR) - VO10

Figure 13. Straka density current test at vertical order 2, 4, and 10. Coarse, evaluation resolution of 1x = 190 m and 1z= 160 m shown.

Vertical flow-dependent diffusion of order 2 and 4 (rows 2 and 3) is compared with the reference solution where an explicit second-order

diffusion with ν0 = 75 m2 s−1 is used (top row). Results for Lorenz (LOR) staggering shown. Contour interval: 1.0 K.
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Figure 14. Straka density current test at vertical order 2, 4, and

10. Coarse, evaluation resolution of 1x = 190 m and 1z= 160 m

with explicit second-order diffusion with ν0 = 75 m2 s−1 compared

at 1200 m with the reference solution (1x = 25 m and 1z= 25 m).

Results for Lorenz (LOR) staggering shown.

discretization (bottom left) since more derivatives would be

required than the polynomial space allows.

The use of flow-dependent hyperviscosity in second and

fourth derivative order changes the structure of coarse ex-

periments tending toward a three-rotor flow field shown

in the reference solution as shown in Fig. 15. Curiously,

the 10th-order vertical discretization with fourth-order flow-

dependent viscosity produces a flow that more closely ap-

proximates the reference solutions at a resolution that would

otherwise be considered too poor for the dynamical features

considered. However, the authors have not found a dynam-

ical reason for correlation involving high-order vertical dis-

cretization coupled with high-order dissipation schemes and

the reference solution with uniform damping.

Moreover, Fig. 15 indicates that magnitudes are signifi-

cantly different for high-order dissipation cases. Wave front

position at the −1.0 ◦C contour further given in Table 2 con-

firm that momentum fluxes are also captured more accurately

as these are associated to the propagation speed of the wave

front.

4.4 Rising thermal bubble

Thermal bubble experiments have become a standard in the

development of non-hydrostatic mesoscale modeling sys-

tems. At very fine resolutions (< 10 m), we test the ability

to reproduce the simplest form of convection. This is a pre-

cursor to simulations of real atmospheric phenomena such

as thunderstorms and other convective systems. A positive,

symmetric perturbation to the potential temperature (buoy-

ancy imbalance) causes a vertical acceleration that moves

the bubble upward. Subsequently, shearing and compensat-

ing subsidence leads to two primary symmetrical eddies that

further break down as the simulation progresses. We are in-

terested in the evolution of the flow in terms of structure and

conservative properties on θ .

We present two flow scenarios: (a) the bubble rises and is

allowed to interact with the top and lateral boundaries and

(b) the so-called Robert smooth bubble experiment (as out-

lined in Giraldo and Restelli (2008)) that is a variation of

the experiments of Robert (1993). In the former, the bubble
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Figure 15. Straka density current test at vertical order 2, 4, and 10. Coarse, evaluation resolution of 1x = 190 m and 1z= 160 m shown.

Vertical flow-dependent diffusion of derivative order 2 and 4 compared at 1200 m with the reference solution (1x = 25 m and 1z= 25 m).

Results for Lorenz (LOR) staggering shown.

will meet the boundaries and develop shear instabilities and

in the Robert bubble, shear instabilities develop in the inte-

rior of the flow. For these experiments, fourth-order viscosity

is applied in the horizontal and vertical to the potential tem-

perature and horizontal velocity fields. Furthermore, at finer

resolutions we observe more fine-scale features of the ther-

mal bubble, including tighter winding of the trailing edges

at later times and sharper spatial gradients. Nonetheless, our

comparisons for this test case are purely qualitative but re-

main consistent with previous results.

The background consists of a constant potential tempera-

ture field θ = 300 K, with a small perturbation of the form

θ ′ =





0 for r > rc,
θc

2

[
1 + cos

(
πr

rc

)]
for r ≤ rc,

(74)

where

r =
√
(x− xc)2 + (z− zc)2. (75)

Here we choose the amplitude and radius of the pertur-

bation to be θc = 0.5 K and rc = 250 m, respectively. The

domain consists of a rectangular region (x,z) ∈ [0,1000] ×
[0,1000] m for the thermal bubble and (x,z) ∈ [0,1000] ×
[0,1500] m for the Robert bubble with t ∈ [0,1200] s. The

center-point of the bubble is located at xc = 500 m and zc =
350 m for the thermal bubble and zc = 260 m for the Robert

bubble. The boundary conditions are no-flux over all bound-

aries. No Rayleigh layer is used, and Coriolis forces are set

to zero.

The reference grid spacing is 1x = 5 m and 1z= 5 m

with 1t = 0.005 s. This is considered the reference resolu-

tion following Giraldo and Restelli (2008). Experiments are

conducted at a relatively coarser resolution of 1x = 10 m

and1z= 10 m with1t = 0.01 s. The fourth-order scalar and

vector (vorticity and divergence separately) diffusion coeffi-

Reference solution O4 - 700 sec Reference solution O4 - 1200 sec

Figure 16. Rising thermal bubble potential temperature reference

solution at vertical order 4. Reference resolution 1x = 5 m and

1z= 5 m. Flow at 700 and 1200 s. Contour interval: 0.05 K.

cients in are given by

νscalar = 1.0 × 106 m4 s−1,

νvorticity = 1.0 × 106 m4 s−1,

νdivergence = 1.0 × 106 m4 s−1. (76)

The fourth-order scalar and vector (vorticity and diver-

gence separately) diffusion coefficients are given by

νscalar = 1.0 × 106

(
1x

Lref

)3.2

m4 s−1, (77)

νvorticity = 1.0 × 106

(
1x

Lref

)3.2

m4 s−1, (78)

νdivergence = 1.0 × 106

(
1x

Lref

)3.2

m4 s−1. (79)

where 1x is the element length in the x direction and Lref =
1000.0 m is the reference length used for this test case.

Rising bubble experiments show the nonlinear dynamics

of dry 2-D convection. The classic thermal bubble test shown

in Fig. 16 shows potential temperature being advected con-

servatively throughout the domain at the reference resolu-

tion. These results use a dissipation mechanism that com-

bines fourth-order hyperdiffusion of θ for horizontal modes
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Reference solution O4 - 800 sec Reference solution O4 - 1200 sec

Figure 17. Rising Robert bubble potential temperature reference

solution at vertical order 4. Reference resolution 1x = 5 m and

1z= 5 m. Flow at 800 and 1200 s. Contour interval: 0.05 K.

and scale-adaptive fourth-order flow-dependent hyperviscos-

ity of θ for vertical modes. In this case, no diffusion is needed

in the velocity or density fields to obtain a stable simulation.

The rising thermal bubble experiment is typically carried

out and compared at 700 s precisely before the convective

bubble interacts with the top boundary of the domain. We

present this result for comparison with previous results in

Fig. 18. However, it is also important to evaluate the con-

servative properties of the method and we carry out the sim-

ulation to 1200 seconds. Since Eq. (9) is a strict statement

of constant potential temperature following fluid parcels, the

results of Fig. 18 compared to Fig. 16 demonstrate that our

method is stable and approximates conservation of θ closely

when a high-order vertical discretization is used.

The Robert smooth bubble experiment extends the vertical

domain allowing for the onset of Kelvin–Helmholtz instabil-

ities in the flow. The solution at the reference resolution is

shown in Fig. 17. The exact time and manner in which the

instabilities arise is strongly dependent on the vertical order

and dissipation method used in the simulation. In the refer-

ence solution, the onset of unstable eddies begins at approxi-

mately 900 s with the flow transitioning into vigorous mixing

in the region of the primary rotors.

High-order vertical discretizations are typically associated

with strong oscillations (Gibbs ringing) that can induce per-

turbations that can amplify turbulence, particularly if stabi-

lization (such as upwinding or diffusion) is weak. The net ef-

fect is that a high-order vertical discretization, given the same

horizontal discretization, changes the local mixing character-

istics of the flow. This effect is seen clearly in Fig. 19. The

10th-order simulation has a structure that more closely ap-

proximates the reference result in Fig. 17. In the context of

studies that seek to represent convective processes, we would

expect entrainment fluxes to be improved at a coarser resolu-

tion with the higher-order vertical discretizations.

4.5 Numerical characteristics of the method

We briefly characterize the combined discretization strategy

(horizontal spectral element, vertical SNFEM, and Strang

IMEX) described in Sect. 3.3. We use the rising thermal bub-

ble test (Sect. 4.4) to show that, overall, our method con-

Figure 18. Rising thermal bubble potential temperature at vertical

orders 2, 4, and 10. Convection bubbles at 700 and 1200 s. Coarse

resolution 1x = 10 m and 1z= 10 m. Extrema in θ shown. Con-

tour interval: 0.05 K

Table 3. Numerically computed estimates of the Courant–

Friedrichs–Lewy condition (maximum Courant number) using

Thermal bubble tests over a wide range of horizontal : vertical as-

pect ratios. The maximum wave speed corresponds to the speed

of sound given by c = √
γRdT where γ = 1.4, Rd = 286.07, and

T = 300.5 K.

Maximum Courant number Aspect ratio 1x :1z

Vertical order 1 10 100

2 1.95 1.95 1.95

4 1.95 1.95 1.86

10 1.61 1.14 0.14

verges at second order in space and time consistently across

different vertical orders of accuracy as shown in Fig. 20.

Theoretically, the maximal convergence rate for this test is

at most second order in space since the θ perturbation is

only continuous in its first derivative. Nonetheless, we ob-

serve sub-second-order convergence for the VO2 scheme ap-

plied to this test, driven by a loss of 1 order of accuracy

from the use of vertical flow-dependent hyperviscosity (see

Sect. 3.2.4).
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Figure 19. Rising Robert bubble potential temperature at vertical

orders 2, 4, and 10. Convection bubbles at 800 at 1200 s. Coarse,

evaluation resolution 1x = 10 m and 1z= 10 m. Extrema in θ

shown. Contour interval: 0.05 K.

A numerically computed estimate of the Courant–

Friedrichs–Lewy (CFL) condition (maximum Courant num-

ber) as a function of grid spacing and element aspect ratio is

given in Table 3 using the time integration technique outlined

in Sect. 3.3. These results indicate a maximum Courant num-

ber of 1.95 at low order that degrades at higher aspect ratios

and with higher vertical order. Moreover, all 2-D tests show a

maximum Courant number of 1.95 while the 3-D Baroclinic

wave test has a Courant number of 1.45. The theoretical CFL

conditions for the spectral element discretization with tem-

poral discretization (Eq. 56) are 2.12 and 1.49 for 1-D and 2-

D scalar advection, respectively. These results indicate that

the operator split method as shown in Eqs. (49)–(52) com-

bined with Strang integration allows 90 to 95 % of the maxi-

mum time step possible using a consistent fourth-order space

discretization. However, a more comprehensive evaluation of

the theory underlying this CFL condition will be pursued in

a future work due to changes observed with aspect ratio and

vertical order of accuracy.

Furthermore, we show preliminary parallel performance

scaling in Table 4 on a limited multi-core system. These re-

sults indicate a cost associated with denser element opera-

tions as vertical order of accuracy increases. However, more

Table 4. Thermal bubble test (1x = 20m) average processor time

taken per time step in seconds. Intel Core i7 4000 series under

Linux with four computational cores on die (no interconnect hard-

ware present). Results show relative scalability for Tempest using

Message Passing Interface (MPI) architecture and IMEX partition-

ing with variable vertical order of accuracy. The implicit equations

are solved using the GMRES with no preconditioner.

Computation time (s) No. cores

Vertical order 1 2 4

2nd 0.117 0.070 0.061

4th 0.163 0.102 0.082

10th 0.248 0.143 0.106

controlled experiments using a distributed platform will be

conducted as our parallel implementation is optimized.

Plots of the normalized change in mass and energy,

along with integrated zonal and vertical momentum from the

Robert smooth bubble test (Sect. 4.4) are given in Fig. 21. As

expected, total mass is conserved to near-machine precision.

Total energy is not explicitly conserved by this method, so

we observe small oscillations of total energy about its initial

value. Note that although total energy is not non-increasing,

it does not show exponential growth that would be charac-

teristic of a linear instability, and remains bounded over the

duration of the simulation. To ensure this result held for long-

term simulations, the rising thermal bubble experiments were

carried out to 1 h, and revealed no sign of instability.

Further investigation of this issue seems to suggest roots in

the way the stabilization mechanism interacts with the lateral

boundaries, since the purely advective scheme with no sta-

bilization shows nearly flat total energy. Consequently, we

hypothesize this result may be associated with the inverse

energy cascade from 2-D turbulence theory drawing energy

from the unresolved scales in a limited manner. Note that the

stabilization mechanisms described by this work (horizontal

and vertical hyperviscosity), which work directly on the u

and θ fields, do not act to explicitly diffuse energy; the strat-

egy is intended to emphasize flow features. A more aggres-

sive diffusion strategy could be implemented to ensure that

energy does not increase at the cost of increased diffusive

errors.

For a horizontally symmetric test such as the rising ther-

mal bubble (anti-symmetric in u), one would expect that

total zonal momentum is equal to zero over the duration

of the simulation. However, we clearly observe deviations

from symmetry by the end of the simulation. These viola-

tions of symmetry are associated with how the spectral el-

ement method is updated in the horizontal: since horizontal

derivatives are computed in an inherently asymmetric man-

ner, namely in the direction of increasing x, small differences

on the order of machine epsilon appear between the solution

x < 500 m and x > 500 m. The oscillatory signal in the ver-
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Figure 20. Spatial (left) and temporal (right) self convergence at various vertical orders of accuracy. Thermal bubble test at 200 s. Spatial

resolution for temporal convergence is 10 m with reference 1t = 0.001 s. Reference spatial resolution is 1x = 2 m.

tical momentum is attributed to strong vertically propagating

sound waves that emerge from the initial perturbation being

reflected by the no-flux boundary condition at the top and

bottom of the model grid. Note that it is not expected that

vertical momentum is conserved due to the presence of grav-

itational forcing.

5 Conclusions

The idea of separating the vertical and horizontal dynam-

ics in atmospheric modeling systems has roots in the scale

differences that characterize atmospheric flows. This prin-

ciple has been fully exploited in the development of global

and mesoscale models, along with the application of the hy-

drostatic approximation. This paper adds to the modern lit-

erature on modeling atmospheric dynamics by analyzing a

novel discretization technique for achieving high-order ac-

curacy in the vertical while maintaining the desirable prop-

erties of staggered methods. We refer to this technique as the

staggered nodal finite-element method (SNFEM).

The test suite we present in this work is not exhaustive, but

it is intended to evaluate the performance of the numerical

schemes under conditions of near-hydrostatic synoptic-scale

flow in Sect. 4.1, linear, mesoscale, non-hydrostatic flow with

topography in Sect. 4.2, and fully nonlinear, non-hydrostatic,

large-eddy simulation (LES) scale flow in Sect. 4.3 and

Sect. 4.4. As global models progress into the regime of non-

hydrostatic flows, real flow cases will be characterized by one

or more of the properties mentioned, and likely in combina-

tion when variable or adaptive meshing methods are used.

More importantly, we expect that uniform or mixed grids be-

ing prepared in research will begin to span the scale range

that includes the transition to non-hydrostatic dynamics and

on to large-eddy flows.

In general, we postulate that a higher-order method based

on finite elements will be more accurate at a given reso-

lution with minimal computational cost relative to a low-

order method. Our results demonstrate that a high-order ver-

tical coordinate approximates well-resolved reference results

at coarser resolutions that would be otherwise considered

poorly represented. Our experiments nonetheless are con-

strained by the order of horizontal and temporal discretiza-

tions. Therefore, we restrict our recommendation to the use

of fourth-order SNFEM as optimum for the tests given here.

In general the combined spatial order of accuracy should be

consistent to maximize the effect of increased accuracy. The

high-order approximation provides an improvement to the

vertical dynamics and so reduces the need for higher vertical

resolution. This benefit would prove effective when variable-

grid methods are considered and nesting mesh levels can be

saved by employing the SNFEM at high-order. The use of

staggering in conjunction with high order has further bene-

fits, in particular the avoidance of stationary computational

modes that are known to persist with collocated methods.

However, there are some trade offs when increasing the

vertical order: (1) for a vertically implicit method, fewer

high-order elements lead to a dense matrix structure that is

more expensive to invert, (2) the oscillatory nature of the

polynomial functions that make up the interpolants within

an element have physical consequences (involving nonlinear

processes) at the smallest scales, and (3) higher-order spa-

tial discretizations often require smaller time steps or higher

order temporal discretizations. Figure 4 shows the times re-

quired for computations of varying vertical order and pro-

cessor scaling. The results confirm that the relative cost in

moving to fourth order is indeed modest relative to the use of

higher orders.

The first point can be addressed in the construction of the

software where parallelization and correct use of hardware

resources minimizes the dense operations that high-order el-
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Figure 21. Observed normalized change in mass and energy (top row), along with zonal and vertical momentum (bottom row) using the

Robert bubble experiment in Sect. 4.4. The reference solution corresponds to Fig. 17 with 5 m resolution. Evaluation experiments use

variable vertical order (VO) SNFEM at 10 m resolution corresponding to Fig. 19. Total normalized mass and energy change are computed as

(Qt −Qinitial)/Qinitial.

ements imply. We saw in Fig. 19 that oscillations associated

with high-order interpolants helped to approximate fine-scale

structures, but these oscillations can also be harmful depend-

ing on the flow condition. While vertical order of accuracy

can be increased up to the total number of vertical levels,

e.g., results from the Schär cases in Fig. 9, increasing com-

putational expense indicates that intermediate orders of ac-

curacy will generally be most effective. In this study, many

of the results at fourth order sufficiently improve solutions

relative to low-order alternatives.

Furthermore, when physical instabilities arise, a consis-

tent, high-order, and scale selective dissipation strategy is

necessary. In this regard, finite-element methods allow for

the construction of diffusion operators for this purpose e.g.,

Sect. 3.2.3. We can experiment with different combinations

of diffusion operators including coefficients that are variable

in space. While scale-selective fourth-order operators with

some grid resolution dependence are sufficient for this work,

we intend to explore a wider range of strategies based on

polynomial filtering, variational multi-scale methods, etc.,

with the goal of eliminating the tuning procedure associated

with user-provided coefficients.

The numerical dissipation strategy implemented here

serves two primary goals: (1) stabilization of the computa-

tions and (2) as a form of closure for the Euler equations

solved on a truncated grid. The methods we employ allow

for the construction of derivative operators of various orders

in a consistent manner. Tempest features a system that allows

for diffusion to be applied in a selective manner on variables

that are split according to the time integration scheme.

Further experiments are necessary to test the extent of the

third point above. For this work, we used a second-order

Strang time integration scheme (Sect. 3.3) that was suffi-

ciently robust to carry out all of the experiments up to 10th

order without overly restricting time step size relative to the

second-order simulations.

The authors conclude the following based on the experi-

ments conducted and properties of the SNFEM:

1. Staggering has been generalized to finite-element meth-

ods combining continuous and discontinuous for-
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malisms. The result is a method that closely parallels

the behavior of staggered finite differences eliminating

stationary modes. This is strictly true for the lowest or-

der finite elements and we restrict ourselves to observe

that consistent behavior extends to high-order staggered

elements pending a formal wave analysis.

2. Variable order of accuracy is an effective strategy that

can compensate for limitations in grid-scale resolution.

However, the effects at very high order must be un-

derstood and controlled with appropriate stabilization

methods. In general, “intermediate” orders (about 4th

order) are recommended with consideration for consis-

tency in overall spatial order given an IMEX partitioned

architecture

We emphasize that, while the equations are formulated in

a coordinate-free manner, the results given all correspond

to regular Cartesian coordinates as defined by the metrics

in Eqs. (22) and (21). Experiments corresponding to small

planet and global domains are left for a subsequent work.

However, any curved geometry with a terrain-following sur-

face topography can be applied to the equations since all grid

information is held in the metric terms described in Sect. 2.

As such, the effects of curved geometry and variable verti-

cal order-of-accuracy are only addressed here in the Schär

and Baroclinic wave cases (using the β plane approxima-

tion). From a design perspective, metric terms are precom-

puted and derivative operators are built in the natural, local

coordinate frame when any grid is used.

Tempest is constructed to provide a unified multi-scale

platform for atmospheric simulation. Experiments can be

carried out readily at all scales of importance from long-

term climate simulations to high-resolution weather predic-

tion. Development is underway to include moisture transport

and phase transformations as well as to further improve time

integration performance. Coupled with highly accurate, ef-

ficient, and robust methods to compute dynamics, Tempest

will evolve to produce reliable precipitation forecasts as well

as long-term climate simulations as part of the greater effort

to understand the impending challenges brought on by rapid

climate change.

Code and data availability

The Tempest codebase used to generate the results in this

publication are available through the following Git reposi-

tory: https://github.com/paullric/tempestmodel.
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