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ABSTRACT OF THE DISSERTATION

A HIGH PERFORMANCE ADVANCED ENCRYPTION STANDARD (AES)

ENCRYPTED ON-CHIP BUS ARCHITECTURE FOR INTERNET-OF-THINGS

(IOT) SYSTEM-ON-CHIPS (SOC)

by

Xiaokun Yang

Florida International University, 2016

Miami, Florida

Professor Jean H. Andrian, Major Professor

With industry expectations of billions of Internet-connected things, commonly

referred to as the IoT, we see a growing demand for high-performance on-chip bus

architectures with the following attributes: small scale, low energy, high security,

and highly configurable structures for integration, verification, and performance

estimation.

Our research thus mainly focuses on addressing these key problems and finding

the balance among all these requirements that often work against each other. First

of all, we proposed a low-cost and low-power System-on-Chips (SoCs) architecture

(IBUS) that can frame data transfers differently. The IBUS protocol provides two

novel transfer modes the block and state modes, and is also backward compatible

with the conventional linear mode. In order to evaluate the bus performance auto-

matically and accurately, we also proposed an evaluation methodology based on the

standard circuit design flow. Experimental results show that the IBUS based design

uses the least hardware resource and reduces energy consumption to a half of an

AMBA Advanced High-Performance Bus (AHB) and Advanced eXensible Interface

(AXI). Additionally, the valid bandwidth of the IBUS based design is 2.3 and 1.6

times, respectively, compared with the AHB and AXI based implementations.
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As IoT advances, privacy and security issues become top tier concerns in addi-

tion to the high performance requirement of embedded chips. To leverage limited

resources for tiny size chips and overhead cost for complex security mechanisms,

we further proposed an advanced IBUS architecture to provide a structural sup-

port for the block-based AES algorithm. Our results show that the IBUS based

AES-encrypted design costs less in terms of hardware resource and dynamic energy

(60.2%), and achieves higher throughput (×1.6) compared with AXI.

Effectively dealing with the automation in design and verification for mixed-

signal integrated circuits is a critical problem, particularly when the bus architec-

ture is new. Therefore, we further proposed a configurable and synthesizable IBUS

design methodology. The flexible structure, together with bus wrappers, direct mem-

ory access (DMA), AES engine, memory controller, several mixed-signal verification

intellectual properties (VIPs), and bus performance models (BPMs), forms the ba-

sic for integrated circuit design, allowing engineers to integrate application-specific

modules and other peripherals to create complex SoCs.
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CHAPTER 1

INTRODUCTION

The Internet of Things (IoT) represents a major departure in the history of

the Internet, as connections move beyond computing devices, and begin to power

billions of everyday things, such as Google glasses, Apple watch, Fitbit body scale,

Philips smart lights, and the Nike wristband. Basically, IoT is a term that describes

a system where the Internet is connected to the physical world via embedded chips

and ubiquitous sensors. By sensing our surrounding environment, IoT will create

many practical improvements in our world, increasing our convenience, health, and

safety, while at the same time improving energy efficiency and comfort.

The full vision of IoT will become a reality when billions of tiny devices can

securely and intelligently connect and interoperate, and can be simply and securely

accessed by applications and cloud services. In the future, we expect most new

physical objects to have some sort of chips and sensors implanted with them. It

will change the world in an even more profound way than has the Internet. As the

prediction shown in Figure 1.1, it is estimated by Cisco’s Internet Business Solutions

Group (IBSG) that by 2020 as many as 50.1 billion devices of all types, shapes, and

sizes will be wirelessly connected to the Internet. Billions of things will be going

online soon, thanks to IoT, and new bus architectures that are high-performance

and high-security - with low cost and low power system on chips - will be needed to

power them.

1.1 High Performance On-Chip Bus Architecture

With industry expectations of billions of new smart Internet-connected things, com-

monly referred to as IoT, we see a growing demand for highly customized embedded

chips with two attributes: low-cost and low-power [145, 43, 66, 89, 111].
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Figure 1.1: Number of Internet-Connected Things [11].

For the energy-limited IoT and wearable devices, low power technologies to pro-

long the life of the battery becomes the important constraint of the embedded chip

design. Since more than 50% of the total dynamic power dissipation in a processor

is due to interconnection [133], the on-chip bus becomes one of the main design

issues, which dominates the power consumption and degrades the performance due

to its poor scalability. Therefore, a reduced interface complexity and minimal power

consumption on-chip bus architecture is necessary to the smart devices.

However, nearly all the existing bus protocols, such as AMBA Advanced High-

Performance Bus (AHB) [1] and Advanced eXensible Interface (AXI) [5] from ARM

Holdings, Wishbone from Silicore Corporation [6], OCP from OCP-IP [4], CoreCon-

nect from IBM [2], and STBus from STMicroelectronics [7], define their standards

either from high-throughput communication features and/or using complex struc-

tures for a wide variety of controllers, rather than a particular set of IoT circuits.

As an example shown in Figure 1.2, a typical AMBA system consists of a number of

master and slave devices connected together through some form of interconnection.

It supports high-performance, high-frequency system designs, and provides a single
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Figure 1.2: A Typical AMBA Architecture [1].

interface definition, for the interfaces between a master and the interconnection,

between a slave and the interconnection, and between a master and a slave. The

interface definition supports a variety of different interconnection implementations.

Hence, the protocol:

• is suitable for high-bandwidth and low-latency designs.

• meets the interface requirements of a wide range of components.

• provides flexibility in the implementation of interconnect architectures.

Because of the highly flexible nature and the complex structure, such buses can

incur significant area and power penalties, and thus are not well-suited to the small-

scale and resource-limited IoT circuits.

In this context, we propose a compact and power-efficiency IoT bus architec-

ture (IBUS) that can balance performance with cost and implement the features

required for low-power and high-throughput. In brief [186], IBUS is a dual-bus

structure providing two novel transfer modes, block and cipher transfer types, and

also backward compatible with the conventional linear transfer mode. The control

bus, termed IC bus, has only one master - the microprocessor. Likewise, the data

bus, named as ID bus, has only one slave - the ID Direct Memory Access (DMA).

As a typical IBUS System-on-Chip (SoC) architecture shown in Figure 1.3, all the
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Figure 1.3: A Typical IBUS Architecture.

peripherals, such as UART, Timer, Flash Controller, and GPIO, as well as all the

application-specific devices, are IC bus’s slaves. They are configured by micropro-

cessor through IC bus directly. In the other side, all the devices, including USB

On-The-Go (OTG), Graphic module, Bluetooth, and Wi-Fi Media Access Control

(MAC), are the masters of ID bus. They access the only slave memory through ID

bus. Experimental results from both the analytical models and the practical tests

show that the latency of IBUS is close to 63% of the AXI, and the energy con-

sumption of IBUS-based designs can be reduced to a half compared with AXI-based

implementations.

1.2 High Security On-Chip Bus Architecture

Another top tier concern of IoT embedded chips is privacy and security. Using in-

secure Internet-connected circuits to transfer data may suffer from significant risk,

resulting in huge loss. One of the most useful methods for chip security is employing

a cryptographic system, as the design of cipher algorithms is based on an advanced

mathematical theorem. In January 1997, the National Institute of Standards and

Technology (NIST) invited proposals for security algorithms for the Advanced En-

cryption Standard (AES) to replace the old Data Encryption Standard (DES). After
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two rounds of evaluation on the 15 candidate algorithms, NIST selected the Rijndael

as the AES algorithm in October 2000 [19].

Today, many AES algorithm implementations for Rijndael have been proposed

and their performance has been evaluated by using application-specific integrated

circuit (ASIC) [72, 193, 47] and field programmable gate-array (FPGA) [175, 132].

Moreover, some structural optimization approaches have been widely employed to

speed up the AES engines, such as parallel, pipelining, and subpipelining [117,

41, 30, 159, 163]. However, all the previous research focused on analyzing AES

performance from the circuit perspective, based on the assumption that the 128-bit

states can be input to AES engines immediately. From the system perspective, the

bus protocol overhead for data transfers is necessary for all the SoC architectures.

Particularly due to limited computing resources in IoT embedded chips, the bus

protocol actually plays an important role in advancing the AES-encrypted circuit

performance.

Traditional buses, such as AMBA AHB and AXI, only define data transfers

by the linear mode. When transferring data by block, additional commands are

required for each non-linear boundary operation. When processing data by AES

state, a complex bus structure for data scheduling and buffering should be designed

by architects, because the AES standard is a symmetric block cipher that processes

on a 4×4 matrix of bytes in the column-major order and cyclically-shifted/cyclically-

inverse-shifted.

Therefore, IBUS protocol is further upgraded to provide an architectural support

for small-scale AES-encrypted circuits, in addition to being optimized for minimal

power consumption and compact interface complexity. Figure 1.4 shows a typical

IBUS structure with the AES security engine. Using the block transfer mode, the

block boundary-crossing addresses can be calculated by the initial command. Us-
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Figure 1.4: A Typical IBUS Architecture with an AES Engine.

ing the AES state transfer mode, IBUS can read/write data in the column-major

order and cyclically-shifted/cyclically-inverse-shifted between memory and the AES

engine. In this way, the data on IBUS is optimally reordered and prepared for

the AES engine, thus the encryption/decryption processing can start immediately,

without a scheduling and buffering delay on data bus. Comparing with AXI3, large

reduction in IBUS architecture area and power consumption has been achieved.

1.3 Verification And Performance Evaluation Methodology

Discovering problems with system performance and power consumption late in the

development cycle can be catastrophic to project schedules and product competi-

tiveness, causing failure in the market. To predict the dynamic system performance

and power of multi-function, multi-application SoC architectures, accurate simu-

lation and analysis must be done in the design cycle to accelerate innovation. In

earlier work, a lot of efforts have been put in modeling the bus latency [181], band-

width, and wire efficiency [108], based on some system simplicity and assumption of
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normal conditions. Actually, it is an unfeasible task to accurately predict latency of

a complicated system by static models. Likewise, the power consumption analysis,

such as using some high level power analysis tools [131, 180, 133] or modeling power

analysis [23, 171, 64, 84, 49, 90], suffers from more inaccuracies without gate-level

parameters and switching activities. The high abstraction models are very hard to

determine with accuracy in the early development stages.

To overcome the aforementioned issues, a novel performance evaluation method-

ology is proposed to estimate the system performance [178]. In our work, we ex-

tend the standard circuit design flow, and create multiple performance models and

mixed-signal verification intellectual properties (VIPs) in both front-end and back-

end environment.

Performance Evaluation Flow: Starting with algorithm analysis, several perfor-

mance metrics are modeled by System Verilog hardware verification language [13].

Two output files are generated during front-end simulation, one is the VCD file

with signal switching activities, and the other is the performance file with transfer

latency and valid bandwidth. During the synthesis process, a hardware cost file,

involving the maximum operating frequency (MOF), the number of IOs, and slice

registers & slice LUTs, can be obtained. Furthermore, inputting the fully placed and

routed NCD file, the physical constraints PCF file, and a specific simulation VCD

file into the XPower Analysis tool, the detailed power consumption information can

be generated in a PWR file. Finally, the energy and energy efficiency metrics are

computed by the energy estimation model coded by Perl and tcl scripts, and then

the final bus performance evaluation report is automatically derived.

Universal Verification Methodology (UVM) Based Environment: In order

to verify and evaluate the chip performance, in either register transfer level (RTL)

code or gate-level netlist, a Universal Verification Methodology (UVM) [16, 18] ver-
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Figure 1.5: Mixed-Signal OVC

ification environment is set up. Apart from the traditional verification methods,

such as timing check by assertions [76], a reusable framework to obtain functional

and code coverage [82], and constrained random data generation [85], we also uti-

lize several bus performance models (BPM) in this test bench to examine the bus

performance in real time. The models are coded by System Verilog language, and

are reusable, configurable, and seamlessly compatible with the UVM methodology.

As an example shown in Figure 1.5, the verification environment integrates several

encapsulated, ready-to-use, and configurable verification agents. Each of them, the

master or slave agent, contains three subcomponents: the sequencer, driver, and

monitor. The signal level or the physical level includes the design under test (DUT)

and each agents’ driver. The drivers are used to drive (in a master) or respond to

(in a slave) the bus-signal interface. Considering the sequencer and the monitor in

the transaction level, all the operations are design-specific and interconnected with

test vectors and signal events. The sequencer controls and arranges the flow of se-

quence items to the driver, and the monitor samples the activities and collects the

transactions seen on the signal-level interface and sends them into the analyzer.
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Mixed-Signal Open Verification Component (OVC): Simulation speed and

a lack of test approaches are the main difficulties for mixed-signal verification. In

our work, multiple equivalent high-level Radio Frequency (RF) VIPs are created

using the System Verilog language and integrated into a mixed-signal UVM envi-

ronment. Such models can be executed on a digital simulator, which is dramatically

faster than the traditional methods using an analog solver. Traditional verification

approaches on digital side, such as constrained random data generation, assertion-

based verification, coverage-driven verification, and verification methodology manual

(VMM)/UVM methodologies, can seamlessly be used in our proposed mixed-signal

environment.

1.3.1 Design Automation

Creating a highly tailored SoC is very complicated even for the most experienced

design teams, especially when the on-chip bus architecture is based on protocols

that are new or otherwise unfamiliar to the team, such as the IBUS proposed in this

dissertation. Deciphering intellectual properties (IPs) under different bus protocols,

modeling reusable VIPs to build up a test bench, and accurately evaluating the chip

performance to meet the design specifications are huge development effort requiring

deep technical knowledge. It will prolong time-to-market, adds complexity and

costs, and reduces chip reliability. More specifically, the barriers include:

• A long design cycle using the new protocol is susceptible to delays. Especially

the industrial standard IP integration, such as AMBA, Wishbone, and OCP

based IPs, can directly impact the project release.

• The lack of easy-to-use new protocol VIPs makes verification environment

setup and test vector design a tedious chore. Engineering asks the industry and
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academia for ideas as to how the cost of verification for these bus architectures

could be significantly reduced.

• The accurate architectural performance is extremely hard to predict using an

unfamiliar bus protocol. It introduces the tape-out risk.

Therefore, we points out that this will force the industry and academia to look

for more standardization and scalability across the entire platform that will be used

for whole classes of embedded chips for the IoT. To tackle the issues, we proposed a

configurable and synthesizable IBUS architecture for integrating third-party IPs, a

solution for enhancing SoC performance, shortening the design cycle, and reducing

the chip tape-out risk. Specifically, our work includes the follows.

• Derived from the IBUS structure, a flexible dual-bus architecture is presented

to improve AES-encrypted chip performance. In this architecture, we provide

some customizable silicon-proven modules - DMA, AES encryption/decryption

engine (ENC/DEC), and memory controller - well-suited to the IBUS struc-

ture, so that designers can focus on their application-specific designs.

• In order to integrate the third-party IPs from multiple chip vendors, we pro-

vide several configurable bus wrappers for the IBUS structure. Configurable

protocol transformations, sizes of asynchronous Fist-in, First-out (FIFO), and

clock domain crossing solutions are presented to facilitate adapting the IBUS

interconnection of different industrial protocols.

• The trade-offs among resource cost, speed, and power consumption of the IBUS

integration are considered and analyzed. As a case study, we demonstrate

that the auto-generation algorithm can be effectively used to create an IBUS

structure. Comparing with AXI3 implementations, the generated IBUS-based
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designs achieve higher valid bandwidth and consume less dynamic energy with

less slice usage.

1.4 The Research Problems And Our Contributions

Since IoT is a new and emerging area, there is very little research on the bus pro-

tocol for IoT embedded chips. Previous work has been performed mainly on the

SoC features of transfer speed, throughput, and power consumption. However,

since most of the smart devices are small scale and battery-powered, the trade-offs

among the silicon utilization, energy consumption, valid bandwidth, and security

algorithm complexity must be considered. Therefore, our research mainly addresses

four problems:

• Efficient IoT chip designs must balance a host of requirements that often

work against each other. Low cost is important, but often supporting all the

key features required by the application increases micro-controller IO number

and slice count - two components that work against low cost. Low power

is also important for IoT applications where battery operation is necessary.

Adding features and performance can increase the power requirement, how-

ever. Clearly finding the right balance between all these requirements can be

a problem, but that’s just the type of challenge engineers expect from cutting-

edge designs. One of the most effective ways to cut this design gordian knot

is to look for a low-cost and power-efficiency architecture that can frame the

data transfer problem differently. Using transfer types of data bus separately

and efficiently, for example, can cut the number of IO and slice required by

the micro-controller and help optimize chip size, power, and performance.
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• As the connection speed shown in Figure 1.6, in 2016, 148 things-per-second

will connect to the Internet, and by 2020 that number will reach 255 things/sec.

The rapid rise in Internet-connected things has the potential to profoundly

and positively affect our daily lives, however, it comes with a downside, as it

opens up users to security vulnerabilities that did not previously exist. As IoT

advances, the gap between small-scale chip performance and the security algo-

rithm complexity widens. The resource limitation highlights that current bus

architectures are not capable of keeping up with the computational demands of

security processing, and the power constraint emphasizes that the energy con-

sumption overhead of supporting security on power-limited embedded chips is

very high.

• As the industry reaps the benefits of Moore’s Law and technology nodes and

chip designs increase in complexity, we emphasize integration of IP cores and

building automatic design flows. Today, chip design is so complex that it is

rapidly becoming unaffordable, design automation exploration is becoming in-

tractable with the advent of new protocol and multiple IP integration, and

technology nodes are nearly impossible to develop and use due to increas-

ing variability. Meanwhile, studies have shown that verification continues to

consume up to 70% of the development cost in each advanced node. UVM

verification methodology combined with a System Verilog testbench improves

verification of complex ASIC and FPGA designs with the potential benefits

- high flexibility, randomization, re-usability, and higher levels of abstraction.

Taking advantage of these benefits requires familiarity with object oriented

programming (OOP), central to UVM and so essential to properly setting up

a verification environment. These prerequisites can be time consuming, and

even if engineers are familiar with OOP and UVM, developing from scratch

12



Figure 1.6: Connecting Speed of Things [11].

a multi-layer verification environment with lots of connections often gives en-

gineers too many chances to make mistakes. Too often, engineers spend lots

of time just on start-up, finding and fixing errors, instead of debugging the

design and performing other verification tasks. Because the UVM verification

environment is well structured and test bench building blocks are defined by

the standard, there exists the possibility of automatically generating many

elements of the verification environment.

• SoC interconnection fabrics are categorized according to trade-offs among la-

tency, throughput, speed, and silicon area, and the correctness and perfor-

mance of these fabrics in FPGA applications are assessed through experimen-

tation and simulation. Another strategy of this dissertation is to develop effi-

cient evaluation methodologies and design flows that enable the design team

to accomplish more with less resource without compromising the quality of

results, enable evaluation of design options for complex chips using reliabil-

ity metrics, analyze and mitigate variability to enhance parametric yield, and

parallelize EDA tool applications to fully leverage front-end and back-end op-

erations.

Toward these problems, we have made the following contributions in this disser-

tation:
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• First of all, we propose a low-cost and low-power IBUS architecture to improve

IoT chip performance and the capabilities to provide efficient architectural sup-

port for the AES-encrypted SoCs. In the IBUS protocol, not only do we define

a compact and high efficient interface so as to reduce both resource cost and

bus toggle rate, but we also create two novel bus transfer modes - the block

mode to access data by matrix, and the state mode to enhance data supplying

efficiency for the AES algorithm. Considering the tradeoffs among resource

cost, data throughput, and energy consumption together, we also provide al-

ternative architectural designs using different bus sizes. Based on the available

resource, structural efficiency demands, and circuit performance requirements,

engineers can choose different solutions to fulfill the constraints of different ap-

plications. Finally, we show that the block and state transfer modes can be

efficiently and effectively used in the IBUS architecture, and then evaluate the

AES-encrypted SoCs’ performance using the evaluation methodology.

• We propose a performance evaluation methodology with a verification model

factory (VMF), including several reusable IBUS-interfaced mixed-signal VIPs

and ready-to-use control tasks, as well as some performance evaluation mod-

els for system verification. Several performance metrics, including slice count

(SC), time cost (TC), wire efficiency (WE), bandwidth and valid data band-

width (BW and VDB), static and dynamic power consumption (SP and DP),

dynamic energy (DE), slice efficiency (SE), and dynamic energy efficiency

(DEE), are performed to evaluate DUTs’ performance. They are collected

and computed during the standard circuit design flow, involving RTL design,

UVM-based verification, synthesis, place & route, and power & energy anal-

ysis. The methodology solves the most critical dilemma facing chip makers

today, how to begin developing performance models for a chip and using soft-
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ware to determine how a chip performs in the real world before the chip ac-

tually exists. This easy-to-use evaluation methodology helps SoC design with

confidence and reduce risk while improving time to market.

• We propose several configurable and synthesizable bus wrappers underlying

IBUS protocol that lend flexibility to the IBUS-based IP integration. Further-

more, we show that the IBUS protocol can be efficiently used to develop SoCs

to meet the chip design requirements of high-performance and high-security,

leverage limited resource of small-scale chips and overhead costs of complex

security mechanisms, and shorten time to market due to its configurability.

Using the evaluation methodology, we also present the power-area-throughput

results under a variety of tests compared with AXI architectures. We found

that our proposed IBUS costs less in terms of hardware resource and achieves

higher throughput than the AXI-based design, and the dynamic energy con-

sumption of IBUS is reduced to 66.2% compared with the AXI cipher test.

1.5 Structure Of The Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce back-

ground to this dissertation and discuss related works that are close to our research

problems. In Chapter 3, we propose a high performance on-chip bus architecture

with consideration of reduced interface complexity, minimal power consumption,

and high efficient data transfers. In Chapter 4, we propose a performance eval-

uation methodology based on the standard circuit design flow. In Chapter 5, we

further propose an advanced IBUS protocol to leverage the overhead cost of com-

plex AES algorithm and limited resource of IoT embedded chips. In Chapter 6, we

present a configurable and synthesizable IBUS architecture for IP integration, in
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order to reduce the chip design cycle and tape-out risk. Finally, in Chapter 7, we

conclude this dissertation and discuss possible future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we introduce the fundamentals on high-performance and high-

security bus architectures for tiny size embedded chips. We then discuss the related

research that deals with integrated circuit design flow and design automation, veri-

fication methodology, and chip performance evaluation.

2.1 Related Work On High Performance On-Chip Bus Ar-

chitectures

As IoT advances, the increasing importance of low-cost and low-power on-chip archi-

tectures results in numerous designs and optimization in bus architectural topology

and protocols, in both industry and academia.

2.1.1 High Performance Bus Protocols

A complicated IoT SoC today can contain dozens of processing engines: micro-

processors, a verity of high-speed external interfaces, wireless communication mod-

ules, graphic processors, and enormous amounts of memory. These blocks are con-

nected by either a proprietary or industry-standard buses, for instance, AMBA

from ARM [1, 5], Wishbone from Silicore Corporation [6], OCP from OCP-IP

[4], CoreConnect from IBM [2], STBus from STMicroelectronics [7], and others

[102, 104, 114, 157, 168, 177, 115]. All of their data transfers require handshaking

between a master and a slave, the performance is thus somewhat limited as this re-

quirement does not allow one transfer to start unless the previous one has completed.

For the advanced bus standards, such as AXI or OCP, all the address, data, con-

trol signals are channel-based or user-defined. This scheme efficiently improves the
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bandwidth because of the paralleled channel operations. However, a large number

of wires and internal logic, such as multiplexers for different layer data conversion

and buffers for data flow control, are necessary to form several sets of bus signals.

To avoid excessive wire usage, the phase-based optimization of on-chip network

protocol has been introduced in [108, 88, 97]. Three-bit phase signals are used to

distinguish the information of the shared channels. The phase signals facilitate the

reduction of the communication time with phase interleaving and phase omission-

restoration among successive transactions. But for the requirement of phase hand-

shaking, especially for the case of intensive boundary-crossing transfers, either the

latency or the wire efficiency is still degraded. A single bus architecture, named as

SAMBA-Bus proposed in [141], enables multiple compatible bus transactions to be

performed simultaneously with only one access grant from the bus arbiter as long

as the bus destinations are uncommon. Otherwise, the bus communication conflicts

and has to wait for the arbitration winner. In addition, the scheduler design of

single winner with multiple transactions is more costly in terms of both complexity

and area.

Other choices for bus performance improvement are multi-bus [167, 59, 98, 100]

and multi-layer SoC structures [135, 107, 147]. While the bus bandwidth can be

improved when most of the communications occur in the same bus level or the

same bus layer, the latency could be even worse as the time consumption of any

bridge crossing would be added in addition to the time of each individual bus or

layer. Moreover, the bridges for bus interconnection and signal synchronization

require a number of hardware resource, such as multiplexers for different layer data

switching, arbiters for different layer command arbitration, and buffers/FIFOs for

data flow control. All of these circuits significantly increase the hardware cost and

communication latency.
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As such, all of the existing buses are limited in the ability to support small-scale

IoT chips in terms of both area and energy efficiency. As the IoT devices continue

to advance at a fast pace, the desire for low-cost and high-efficiency bus protocol

rapidly increases.

2.1.2 Low Power Technologies

The growing market of wearable and IoT devices demands embedded chip design

with ultra low power dissipation. However, as the integration, size, and complexity

of the chips continue to increase, the difficulty in providing adequate cooling might

either add significant cost or limit the functionality of the computing systems which

make use of those integrated circuits. Generally, the power dissipation in circuits

can be classified into three categories as described below.

Dynamic Power Consumption: Dynamic power consumption is mainly due to

the logic transitions causing logic gates to charge/discharge load capacitance. To

understand how architectural strategies can provide high performance for perception

applications at low power levels, it is necessary to look at the CMOS circuit dynamic

power consumption equation.

P dy = A× C × V 2 × F. (2.1)

In this equation, P dy is the dynamic power consumed, A is the activity factor,

i.e., the fraction of the circuit that is switching, C is the switched capacitance, V is

the supply voltage, and F is the clock frequency [189, 109, 183]. If a capacitance of C

is charged and discharged by a clock signal of frequency F and peak voltage V, then

the charge moved per cycle is CV and the charge moved per second is CV F . Since

the charge packet is delivered at voltage V, the energy dissipated per cycle, or the
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power, is CV 2F . The data power for a clocked flip-flop, which can toggle at most

once per cycle, will be 1
2
CV 2F . When capacitances are clock gated or when flip-

flops do not toggle every cycle, their power consumption will be lower. In Equation

2.1, a variable called the activity factor (0 ≤ A ≤ 1) is used to model the average

switching activity in the circuit. It is obvious that a high-efficiency bus protocol can

drastically reduce the dynamic power consumption by lowering the activity factor

for data transfers.

Short-Circuit Current: In a CMOS logic P-branch and N-branch are momentarily

shorted as logic gate changes state resulting in short circuit power dissipation. In

static CMOS circuits, the component of power due to short circuit current is about

the 10% of the total power consumption. In dynamic circuits, however, we do not

come across this problem, since there is no any direct DC path from supply voltage

to ground.

Leakage Current: Leakage current is the power dissipation that occurs when the

system is in standby mode or not powered. There are many sources of leakage

current in MOSFET, diode leakages around transistors and n-wells, subthreshold

leakage, gate leakage, tunnel currents etc.

Power optimization in a processor can be achieved at various abstract levels [87,

153, 188]. System, algorithm, and architecture levels have a large potential for power

saving even these techniques tend to saturate as we integrate more functionality on

an integrated circuit. So optimization at circuit and technology levels is also very

important for miniaturization of circuits. An integrated low power methodology

requires optimization at all design abstraction layers as mentioned below [10, 155].

System: At the system level, hardware reuse [25], power management [31], and

clock gating technologies [149, 184, 160] are extensively used.
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Algorithm: Low power algorithms, such as a hardware accelerator [35, 57] and

address compression and encoding [136, 21, 148] technologies, are used at algorithm

level.

Architecture: In system architecture, parallelism, pipelining, and redundancy can

reduce power significantly [116, 38, 86]. In addition, multi-voltage [22] and power

gate technologies, including the unified power format standard (UPF) which is sup-

ported by Synopsys [17, 173] and the common power format specification (CPF)

which is supported by Cadence [12], are commonly used in industry nowadays.

Circuit Logic: Transistor resizing can be used to speed up circuit and reduce

power [125, 166], and sleep transistors can be used effectively to reduce standby

power [45, 143].

Technology: Dynamic power varies as V 2, so lowing the supply voltage dramati-

cally reduces power dissipation. Dynamic/Switching power is due to charging and

discharging of load capacitors driven by the circuit. Supply voltage scaling has been

the most adopted approach to power optimization, since it normally yields consid-

erable power savings due to the quadratic dependence of switching/dynamic power

switching on supply voltage V [92, 128]. However, lowering the supply voltage affects

circuit speed which is the major short-coming of this approach. So both design and

technological solutions must be applied to compensate the decrease in circuit per-

formance introduced by reduced voltage. Also threshold reduction, multi-threshold

devices, and selective frequency reduction techniques can be used to reduce dynamic

power [28, 50].
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2.2 Related Work On Hardware Security

Internet connectivity varies among different applications, in general however, the

security needs are all common. Security in networking is based on cryptography, the

science and art of transforming messages to make them secure and immune to attack

[62]. Encryption is one of the principal means to guarantee security of information.

Encryption algorithms perform various substitutions and transformations on the

plaintext and transforms it into ciphertext. Many of them have been widely available

and used in information security. Generally, they can be classified into two groups:

symmetric-key and asymmetric-key encryption [158].

Symmetric key encryption is a form of cryptosystem in which encryption and

decryption are performed using the same key. In contrast, asymmetric encryption,

also known as public-key encryption [162, 58], is a form of cryptosystem in which

encryption and decryption are performed using different keys, one public key and

one private key. The generation, modification, and transportation of keys have been

done by the encryption algorithm, which is also named as cryptographic algorithm.

2.2.1 Cryptosystems

There are many cryptographic algorithms available in the market to encrypt data.

The strength of encryption algorithm heavily relies on the computer system used

for the generation of keys [58, 158, 54]. Some important encryption algorithms are

discussed here:

Rivest-Shamir-Adleman (RSA): RSA is designed by Ron Rivest, Adi Shamir,

and Leonard Adleman in 1978. It is one of the best known public key cryptosystems

for key exchange or digital signatures or encryption of blocks of data. RSA uses a

variable size encryption block and a variable size key. It is an asymmetric (public
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key) cryptosystem based on number theory, which is a block cipher system. It uses

two prime numbers to generate the public and private keys. These two different keys

are used for encryption and decryption purpose. Sender encrypts the message using

receiver public key and when the message gets transmit to receiver, then receiver

can decrypt it using its private key [78, 113, 24].

RSA operations can be decomposed in three broad steps: key generation, en-

cryption, and decryption. It has many flaws in its design therefore not preferred

for the hardware security use. When the small values of p & q are selected for the

designing of key, then the encryption process becomes too weak and one can be able

to decrypt the data by using random probability theory and side channel attacks.

On the other hand, if large p & q lengths are selected then it consumes more time

and the performance gets degraded in comparison with Data Encryption Standard

(DES). Further, the algorithm also requires of similar lengths for p & q, practically

this is very tough conditions to satisfy. Padding techniques are required in such

cases increases the system’s overheads by taking more processing time [56, 152, 51].

Data Encryption Standard (DES): For about two decades since 1977, the US

government used a cipher called DES to protect sensitive, unclassified information.

DES is one of the most widely accepted, publicly available cryptographic systems.

It was developed by IBM in the 1970s but was later adopted by NIST, as Federal

Information Processing Standard 46 (FIPS PUB 46). DES is a block cipher, which

is designed to encrypt and decrypt blocks of data consisting of 64 bits by using a

64-bit key [123, 65]. Although the input key for DES is 64 bits long, the actual key

used by DES is only 56 bits in length, because the least significant (right-most) bit

in each byte is a parity bit. The algorithm goes through 16 iterations that interlace

blocks of plaintext with values obtained from the key. It transforms 64-bit input

in a series of steps into a 64-bit output. The same steps, with the same key are
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used for decryption. There are many attacks and methods recorded till now those

exploit the weaknesses of DES, which made it an insecure block cipher. Despite the

growing concerns about its vulnerability, DES is still widely used by financial services

and other industries worldwide to protect sensitive on-line applications [105]. Since

DES was proven to be insecure, however, prompting the government to look for a

replacement.

Advanced Encryption Standard (AES) : This led to a standardization process

that attracted 15 competing encryption designs, which included, among others,

MARS from IBM [40], RC6 from RSA Security [142], Serpent [139], Twofish [37, 36],

and Rijndeal [55]. It was Rijndael, designed by two Belgian cryptographers, Joan

Daemen and Vincent Rijmen, that eventually became the standard and henceforth

acquired the title AES.

The standard selection process was very stringent, taking 5 years to complete.

Although the cipher’s strength against various attacks was a major consideration

in choosing the standard, other factors like speed, versatility, and computational

requirements were likewise given importance. The government wanted an encryption

standard that was not just strong, but also fast, reliable, and easily implemented in

both software and hardware, even those with limited CPU and memory.

Basically, AES is a block cipher that processes data as a 4 × 4 matrix of bytes

called a state [19, 93]. Figure 2.1(a) and 2.1(b), respectively, show the AES ci-

pher and inverse cipher procedures with pseudo code. Each 128-bit information is

operated by four primitive transformations, SubBytes (SB), ShiftRows (SR), Mix-

Columns (MC), and AddRoundKey (AR) for encryption, and InvSubBytes (ISB),

InvShiftRows (ISR), InvMixColumns (IMC), and AR for decryption. The length of

the input block, the output block, and the state is 128 bits. This is represented by

Nb = 4, which reflects the number of 32-bit words (number of columns) in the state.
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During the encryption/decryption process, the four primitive transformations are

executed iteratively in rounds, where the value represented by Nr will be 10, 12, or

14, depending on which key size is selected.

Although the other encryption algorithms were also very good, the Rijndael

cipher was ultimately selected and declared a Federal Information Processing Stan-

dards or FIPS standard by the NIST in 2001. It was approved by the Secretary of

Commerce and then recognized as a federal government standard the following year.

Some of those ciphers are also widely used today but understandably do not enjoy

the same level of acceptance as AES. The rise of AES did not end there. In 2003,

the government deemed it suitable for protecting classified information. In fact,

up to this day, the National Security Agency (NSA) is using AES to encrypt even

top secret information. That should explain why AES has gained the confidence of

various industries. If it is good enough for the NSA, then it must be good enough

for IoT industry.

2.2.2 AES Engine Optimization

The NIST selected the Rijndael algorithm for AES because it offers a combination of

security, performance, efficiency, ease of implementation, and flexibility. Specifically,

Rijndael appears to be consistently a very good performer in both hardware and

software across a wide range of computing environments regardless of its use in

feedback or non-feedback modes. Its key setup time is excellent, and its key agility

is good. The very low memory requirements of the Rijndael algorithm make it

very well suited for restricted-space environments, in which it also demonstrates

excellent performance. The Rijndael algorithm operations are among the easiest to

defend against power and timing attacks. Additionally, it appears that some defense
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(a) Pseudo Code for the AES Cipher

(b) Pseudo Code for the AES Inverse Cipher

Figure 2.1: Pseudo Code for the AES Algorithm
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can be provided against such attacks without significantly impacting the algorithm’s

performance. Finally, the algorithm’s internal round structure appears to have good

potential to benefit from instruction-level parallelism.

As the resource-limited IoT chips advance, AES has become the dominant symmetric-

key cryptosystem and the key building for the Internet-connected circuits, lead-

ing up to a significant share of resource cost. For decades, multiple implemen-

tations of Rijndael have been presented, targeting a wide range of circuit design

technologies. These implementations use specic Galois Field fixed constant multi-

pliers based on the constant matrix of the associated algorithm, thus resulting in

either logic equations or look-up tables being generated to perform the multiplica-

tion [91, 27, 164, 129]. Implementations based on logic equations are optimized for

area and require a moderate number of logic levels. Implementations based on look-

up tables are optimized for speed at the cost of additional logic resources, although

the performance of these implementation is highly dependent on the memory system

and cache organization and size. These all focus on performance improvement of

one round of the AES algorithm without pipelining and parallel structures.

Subsequently, numerous AES core optimizations are proposed and their perfor-

mance are evaluated [126, 110, 29, 190, 122, 96]. Based on the finite field arith-

metic, several high performance designs are proposed using combinational logics

[193, 47, 60]. For example, the arithmetic is employed in the computation of the

multiplicative inversion in the SB/ISB transformation, and a deep sub-pipelining

approach is enabled for the AES algorithm in [193]. Assume that each 128-bit state

can be obtained immediately in each round, the proposed encrypter in [193] can

achieve 1.52 GBps or 12.56 Gbps throughput on a Xilinx XCV1000 e-8bg560 device

with seven substages (SS) in each round unit. In [47], the construction procedure to

implement a two-stage pipelining S-Box by using combinational logics is presented.
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As compared to the typical ROM based LUT, the presented implementation is ca-

pable of higher operational frequency (72.155 MHz) and small size in terms of area

occupancy.

Furthermore, since the composite field can be constructed by using different

irreducible polynomials, [192] and [117] analyze and compare the complexity of the

SB implementation with different constructions. In [192], how the coefficients of

the field polynomials affect each block in the composite filed implementation of

the SB transformation is illustrated, and then an optimum construction for the

AES algorithm is presented. The brief [117] explores all the possible isomorphic

mapping for each of the composite field constructions, and employs a new common

subexpression elimination (CSE) algorithm to derive the most optimum isomorphic

and inverse isomorphic mapping (δ and Iδ) with affine and inverse affine (A and

IA) transformations.

Different from the research above focusing on AES cores’ implementation, the

AES performance is further considered on the circuit structural level in [41, 146,

30, 159, 77, 163]. For instance, the four primitive transformations are decomposed,

rearranged, and regrouped as new linear and non-linear operations in [41] to provide

1.28 Gbps throughput for 128-bit keys. In [146], the transformations A/IA, SR/ISR

and MC/IMC are combined into a single function unit A/SR/MC or IMC/ISR/IA,

and the substructure sharing algorithm is applied to reduce the area cost.

In our survey, however, all the previous performance evaluations are based on the

assumption that the AES states can be input to the encrypter/decrypter column-

by-column immediately, without considering any on-chip bus overhead [81, 68, 67].

In general, the AES algorithm is based on the column-major state processing, but

the conventional bus protocols are in the linear-major order and very low-efficient

to supply rectangular arrays of bytes. Therefore, the on-chip bus efficiency becomes

28



one of the bottlenecks for the AES algorithm from the system perspective: the

speed and power consumption of cipher/inverse cipher processing are influenced by

the bus size and transfer mode, the number of hardware instances such as SB/ISB

and MC/IMC modules is determined by architectural degree of parallelism, and the

delay cycles and pipelining levels are depended on the throughput requirements and

the desired clock frequency.

2.3 Related Work On Verification and Performance Evalu-

ation Methodology

How to determine the trade-off between hardware cost and performance in terms of

silicon area, bandwidth, and energy consumption is another critical issue for SoC

architects. In earlier work, a lot of efforts were put in modeling the bus performance

such as transfer latency [181], bandwidth, and wire efficiency [108]. These kinds

of models are based on system simplicity and assumption of normal conditions.

Actually, it is an unfeasible task to accurately predict the latency of a complicated

system by static analysis. For instance, the handshaking or response signal is usually

not immediate in a complicated system and the abnormal transfer statuses such

as ERROR and RETRY are normally occur in a real on-chip bus. Likewise, the

power consumption analysis, such as using some high level power analysis tools

[131, 180, 133] and modeling power analysis [90, 23, 49], suffers from much more

inaccuracy without the gate-level parameters and toggle activities of internal logic,

signals, and IOs. It is very hard to determine with accuracy in the early circuit

design stage using high abstraction models.

In this context, we create a UVM-based [16, 18] performance evaluation method-

ology to estimate the chip performance automatically and accurately. This method-
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ology extends the standard integrated circuit design flow, and backward compil-

able with traditional verification methods, including Open Verification Methodol-

ogy (OVM), VMM, and UVM verification methodologies, and constrained-random

verification, assertion-based verification, and coverage-driven verification methods,

and real-data based mixed-signal verification models.

2.3.1 Integrated Circuit Design Flow

FPGAs and ASICs provide different values to designers, and they must be carefully

evaluated before choosing any one over the other. AISCs used to be selected for low

unit cost and small form factor designs, while FPGAs used to be selected for low

speed and low volume designs. The advantages of FPGA based design include:

• The time to market of FPGA development is faster than ASIC without layout,

masks, and other manufacturing steps.

• FPGA implementation is better than ASIC implementation when building

low-volume production circuits.

• FPGA development cycle is more predictable since its design flow eliminates

potential re-spins, wafer capacities, etc, of the project.

• Since FPAG is reprogrammable and reusable, it is low-cost for very low volume

industrial devices.

Basically, IoT devices can be sub-divided into two different sectors of applica-

tion: consumer and industrial. For the consumer IoT and wearable applications, it

is essential to study the performance for the ASIC implementation. For the indus-

trial side of things, such as the Internet-connected devices applied in the intelligent

industrial system, the machine to machine (M2M) communication system, and the
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(a) ASIC Design Flow (b) FPGA Design Flow

Figure 2.2: Integrated Circuit Design Flow.

smart grids for intelligent energy supply, smart health for tele-medicine and remote

diagnosis, smart mobility and smart factory, the FPGA based design is commonly

used.

The ASIC and FPGA design flows are shown in Figure 2.2(a) and Figure 2.2(b).

It can be observed that the FPGA design flow eliminates the complex and time-

consuming floorplanning, place and route, timing analysis, and mask/re-spin stages

of the project, since the design logic is already synthesized to be placed onto an

already verified, characterized FPGA device.

In our work, a set of EDA licenses to support the FPGA design are used, such

as Mentor Graphic ModelSim, Xilinx ISE14.6, Virtex5 xc5vlx110t-2ff1136 FPGA

device, and Xilinx XPower Analyzer.

2.3.2 Verification Methodology

Design productivity growth continues to remain lower than complexity growth - but

this time around, it is verification time, not design time, that poses the challenge.
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A recent statistic shows that 60-70% of the entire product cycle for a complex logic

chip is dedicated to verification tasks. Verification of complex functions that we

can build using new design tools poses a challenge to reduce the total circuit design

time.

System Verilog [13, 8] was started to merge a number of disjoint verification

languages such as Vera and e that were built as a layer on top of Verilog and

VHDL. Each of these languages has their own proprietary methodologies (RVM

and eRM) that provide a re-useable framework to construct, configure, and execute

tests [112]. Once System Verilog became established, it needed its own methodology.

Then, Mentor Graphic created the Advanced Verification Methodology (AVM) in

2006 that was derived from concepts in SystemC [9]. Synopsys converted their Vera-

based Reuse Verification Methodology (RVM) library to System Verilog and called

it VMM [39, 83]. Then, Mentor Graphic and Cadence joined together and created

the OVM in 2008 [70], which was the merging of the existing AVM with concepts

from eRM. Finally by 2011, Mentor Graphic, Cadence, and Synopsys joined together

through Accellera and created the UVM. More specifically, UVM, OVM, and VMM

are introduced as follows.

UVM: UVM is an open source System Verilog library allowing creation of flexible,

reusable verification components and assembling powerful test environments utiliz-

ing constrained random stimulus generation and functional coverage methodologies.

It is a combined effort of designers and tool vendors, based on the successful OVM

and VMMmethodologies. Its main promise is to improve test bench reuse, make ver-

ification code more portable, and create new market for universal and high-quality

VIPs [137].

OVM: OVM is the library of objects and procedures for stimulus generation, data

collection, and control of verification process. Available in System Verilog and Sys-
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temC, OVM allows easy creation of directed or random test utilizing transaction-

level communication and functional coverage. As the first System Verilog-based

verification library available on multiple simulators, OVM contributed significantly

to the development of its successor, UVM.

VMM: VMM is the first successful and widely implemented set of practices for cre-

ation of reusable verification environments in System Verilog. Created by Synopsys,

one of the strong proponents of System Verilog, VMM harnesses language features,

such as object-oriented programming, randomization, constraints, functional cover-

age to enable both novices and experts to create powerful verification environments.

VMM contribution is an important factor in creation of UVM.

In sum, UVM, which is the latest standard ratified by Accellera, is popularly

used today in digital integrated circuit design flow. It is based on the System Verilog

standard and provides the flexibility and ways to connect the legacy VMM/OVM

components. Not only the major EDA vendors participated in the UVM group, but

several users from competing companies, such as AMD, Cisco, Free scale and Intel,

collaborated.

2.3.3 Verification Methods

In addition, there are also some verification methods widely used in industry, such

as coverage-driven verification, assertion-based verification, and constraint-random

verification.

Coverage-Driven Verification: The term “functional coverage” is used to de-

scribe a parameter that quantifies the functional space that has been covered, as

opposed to code coverage that quantifies how much of the implemented design has

been covered by a given test suites [46, 95]. Directed simulation can then be used
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to cover corner test space at the end of the verification cycle. When using coverage-

based verification, engineers typically want an estimate of the functional space cov-

ered and captured in quantifiable terms [103, 134]. These include:

• Line Coverage: the number of lines of code that were verified.

• Expression Coverage: the number of the logical expressions were tested.

• (FSM Coverage: the number of states in a FSM design were reached.

• Toggle Coverage: the number of ports and registers that were toggled both

ways during a simulation run.

• Path Coverage: the number of logical paths in the design code that were

covered.

Assertion-Based Verification: Designers use assertions as placeholders to de-

scribe assumptions and behavior associated with a design [76]. Assertions get trig-

gered during a dynamic simulation if the design meets or fails the specification or

assumption. Assertions can also be used in a formal or static functional verification

environment [34]. Assertions and properties can be made to work in the back-

ground during static functional verification at the module level and can be reused

in a dynamic simulation environment at both module and system level. They are

also useful if the module is going to be turned into IPs because the assertions will

constantly check the IPs’ properties when it is reused [161].

Constraint-Random Verification: Constraint-random verification offers a highly

effective way to deal with the challenges of SoC verification [33, 170]. These chal-

lenges are overwhelming for many reasons: complex instruction sets, multiple pipeline

stages, in-order or out-of-order execution strategies, instruction parallelism, fixed-

and floating-point scalar/vector operations, and other features that create a seemly
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never-ending list of corner cases to exercise. Because constraint-random verifica-

tion can automatically generate a large number of test cases within the parameters

specified by the verification team, it can hit corner cases that neither the design nor

verification engineers would have ever anticipated. Without constrained-random

stimulus, the bugs lurking in these corners hide until late in the development cycle,

or are not found at all until customer usage [80].

2.3.4 Mixed-Signal Verification

Today, there are various efficient, reusable, and reliable functional verification method-

ologies available for digital circuits. Verification done using these methodologies

ensures 99.99% functional correctness of digital design, but same does not hold true

when it comes to analog and mixed-signal SoCs. Due to the increasing in mixed-

signal chips, there is a potential need for methodology or flow to provide similar

confidence on functional verification and constraint-random tests as seen for digi-

tal SoCs. Some flows or methodologies being used to verify analog or mixed-signal

designs are mentioned below.

Low Level Non-Functional Behavioral Models

• Digital Verification: using current standard verification methodologies.

• Analog Verification: verification using circuit simulators [172, 154].

• Mixed-Signal Verification: connectivity testing between digital and analog de-

signs using very low level analog behavioral models [156, 32, 106].

Analog Functional Behavioral Model Developed in Verilog, VHDL, or

Verilog AMS Language

• Digital Verification: using current standard verification methodologies.
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• Analog Verification: using spice or fast spice analog circuit simulators. Analog

functional verification done using behavioral model developed in Verilog or

Verilog AMS using analog mixed-signal simulators [150, 165].

• Mixed-Signal Verification: verification using behavioral analog models [182,

42, 42].

The earlier verification methods sperate analog environment on the left and digi-

tal environment on the right, depending on which engineering group was responsible

for final assembly. But today’s mixed-signal designs have multiple feedback loops,

complex modeling requirements, and higher performance targets, meaning it is no

longer possible to de-construct designs into separate analog and digital functions.

Engineers must embrace the digital-centric metric-driven verification methodologies

into their mixed-signal verification flows.

More important, engineers also need an integrated mixed-signal verification envi-

ronment that focuses on performance and reliability [119, 26]. Verification planning

translates into coverage, assertion-based checking, and score-boarding, as well as

appropriate stimuli generation for both digital and analog components. The plan-

ning process is always important for verification, but for mixed-signal it is critical.

The sheer range of operating parameters and complex interaction of analog and

digital units requires a clear definition of relevant metrics defined and measured for

all units.

The mixed-signal verification system proposed in [185] leverages real-number

modeling so that users can perform top-level verification of their analog or mixed-

signal designs using discretely simulated real number models. Real-number based

system provides the digital equivalent models of analog blocks, enabling engineers

to verify a full-chip SoC using only a digital simulator. It eliminates relatively slow

analog simulation and convergence issues, allowing for nightly regression runs of
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the mixed-signal SoCs. It can also integrate with other advanced verification tech-

nologies, such as assertion-based verification and metric-driven verification without

having to interface with the analog engine or defining new semantics to deal with

analog values [185, 174]. Using the mixed-signal verification system, engineers can

greatly enhance the top-level verification performance of the overall verification pro-

cess.

2.4 Related Work On Computer Aided Design Automation

In order to meet the tight time-to-market constraints and to effectively handle the

design complexity, it is essential to provide a computer-aided design methodology

support for automating this task. In this dissertation, advances in the IoT-style

bus protocol is proposed in [186] and [178] for the AES-encrypted circuits, in order

to enhance the system performance with the overhead cost of security applications.

However, three new challenges are created for a new era of IBUS based design:

the third-party IP integration, a flexible UVM based verification environment, and

automatic performance evaluation.

2.4.1 IP Integration

Today, designers are increasingly incorporating third-party standards-based IP in

their designs, but are still facing several challenges, such as lost protocol expertise,

connecting the PHY and Controller, issues around clock and reset, debug and testa-

bility, verification and implementation, and integration of performance evaluation

models. With the increasing number of IP included in the design and with each

of the IP becoming more and more complex, the effort to integrate all of the IPs

is similar to the cost of IP, as shown in Figure 2.3. Especially for a new archi-
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Figure 2.3: The effort to integrate is similar to the cost of IP. [73]

tecture, creating SoCs with IPs under different specifications is a big challenge to

system performance and chip complexity, leading to long design cycle and high chip

tape-out risk, and even large chip area and power overheads. This is one reason

why standard buses are still the predominant architecture of choice in many IoT

embedded chips.

Generally, IP integration can be implemented using static bus bridges [44, 75,

118]. Since the static approaches are inherently non-scalable and limited in the

ability to provide high performance in cases where the traffic characteristics vary

dynamically, a number of automatic design approaches are further proposed to dy-

namically optimize the bus-based architectural topology [98, 52, 151]. In addition,

design methodologies and design flows for customizing these bus architectures to

adapt to traffic characteristics, are also studied [79, 48, 191]. While many of these

research aim at exploiting theories on system level, they do not adequately address

the realization in specific integrated circuit design flow.
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2.4.2 Flexible Verification Environment

Verification remains the most significant bottleneck in getting advanced SoCs to

market. The development of an independent verification plan, protocol expertise,

and efficient use of VIPs are keys to minimizing functional bugs. Creating a re-

configurable verification environment with UVM-compliant building blocks takes

less time, eases cross-site collaboration, and maximizes test bench reuse for future

projects. It includes test bench generation, constraint random test cases, VIP initial-

ization tasks, integration of protocol-specific VIPs, and integration of performance

evaluation models.

Additionally, when looking at the design and verification methodologies in place

today, verification is a prime candidate for closer inspection. Conventional ver-

ification languages, such as System Verilog and SystemC [13, 82, 9], verification

methodologies, such as OVM, VMM, and UVM, [70, 39, 83, 16, 18], and verification

methods, such as coverage-driven verification [103, 69], assertion-based verification

[76, 34], and constraint-random verification [85], can be certainly reused in the IoT

chip design. Moreover, the cost of verification has been rising faster than design and

it has been identified as one of the areas in which new solutions may be appropriate

for the types of design seen on the edge of the IoT. For example, the pre-verified

mixed-signal VIPs and software-controlled initial process can be easily plugged in

the UVM/VMM environment to help engineers reduce verification efforts [178, 185].

2.4.3 Automatic Performance Evaluation

Third, the bus architecture for the application-specific designs should closely match

the chip performance requirements. Hence, designers need a coherent and system-
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atic approach to quickly evaluate a system with selected IPs and communication

architectures.

An earlier stage performance evaluations, such as transfer latency [181] and wire

efficiency models [108, 88], and several high-level power analysis tools [133, 64, 90,

171, 84], allow engineers to design circuits more efficiently, reducing the time costs

and risk of error involved in building circuit prototypes. For these mathematical

analysis models, large system complexity is a challenge, making the enumeration of

the complete design logic difficult, sometimes an unfeasible task. Additional prob-

lems arise from the high abstraction level, making it hard to achieve high accuracy,

in early system development stages. In order to help architects to estimate the chip

performance accurately and automatically, a performance evaluation methodology

is also proposed in our work [178, 179]. By modeling and collecting several per-

formance metrics, including bus latency, bandwidth, valid bandwidth, power and

energy consumption, and slice and energy efficiency using this methodology, it en-

hances fidelity of the performance analysis and evaluation.

To our best knowledge, no previous works have addressed how to accelerate,

optimize, and runtime monitor the entire SoC design flow from front-end to back-

end. We combine and augment two previously published works [186] and [178],

putting them into context with one another and presenting much more contributions.

It focuses on co-exploration of configurable SoC design and system evaluation in real

time, as well as the speedup of design cycles by using the IBUS architecture and VIP

factory. The platform generates the bus structure with detailed algorithms, involving

wrapper insertion, bus width, burst size of a transfer, frequency, and arbitration.

Then, we concentrate on providing much higher level of VIPs, entire test bench, and

verification environment. 90% to 95% of the device is standardized so that designers

can concentrate on the value added functionality and its interactions with the other
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pieces. This combination delivers a complete IoT chip design solution, from the

RTL design to performance estimation, that enables design and verification teams

to get a handle on skyrocketing verification costs and bring compelling products to

market faster than ever.

2.5 Summary

In this chapter, we introduce the fundamentals of our research and discuss about

the related works from a variety of perspectives. We first give a brief introduction

on standard on-chip bus architectures commonly used in industry. Traditional bus

structures are not suitable for the future IoT circuits and there is a great need

to study IoT chip security and privacy. Hence, we present a novel low-cost and

low-power bus protocol, and further consider the structural optimization for the

security algorithms. Next, we discuss about the related works that have been

conducted on IoT embedded chips in standard circuit design flow, including SoC

verification, performance evaluation, and design automation from the perspective

of integrated circuit design objectives. Finally, design automation based on two

top-tier design objectives are presented, IP integration and mixed-signal modeled

verification methodology.

In this dissertation, our objective is to develop efficient and effective SoC ar-

chitecture for high performance and high security IoT embedded chips based on

industrial standard circuit design flow, such that the designs can be optimized, fully

verified, evaluated, and auto-generated. In the following four chapters, i.e. Chapter

3, 4, 5, and 6, respectively, we present our contributions. In Chapter 7, we conclude

this dissertation.
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CHAPTER 3

IBUS ARCHITECTURE

This chapter presents a high performance IoT SoC bus architecture termed IBUS.

Considering the inevitable trade-off among area, throughput, and energy efficiency,

the control bus (IC bus) is developed as a low-cost and low-power bus, and the

data bus (ID bus) is created as a high-throughput full-duplex bus with the feature

of block data transfer. In order to evaluate the bus performance, we create four

analytical models, including transfer time consumption, wire efficiency, valid data

bandwidth, and dynamic energy efficiency. Then, the AHB-, AXI- and IBUS-based

DMA are developed as a case study. It is observed that IBUS DMA costs less

hardware resource and achieves higher performance, especially in the block transfer

mode. For instance, the results from both the analytical models and the practical

tests show that the time consumption of IBUS is close to 63% of the AXI, the wire

efficiency and valid data bandwidth of IBUS are almost 2.3 and 1.6 times of the

AXI respectively, and the energy consumption is a half of AXI in the block transfer

mode.

3.1 Related Work

Today, the reduced interface complexity and low energy on-chip bus is receiving lots

of attention. In industry, the most commonly used bus protocols are the AMBA Ad-

vanced High-Performance Bus (AHB) [1] and Advanced eXensible Interface (AXI)

[5] from ARM Holdings, Wishbone from Silicore Corporation [6], OCP from OCP-IP

[4], CoreConnect from IBM [2] and STBus from STMicroelectronics [7]. All of these

buses transfer data linearly, however, in some specific applications such as image

processing, computer vision and wireless communication, data processing is usually
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based on the relationship of data neighbors, adjacency, connectivity, regions and

boundaries [71, 3], and block data load and store [15]. In these cases, we prefer data

transfers by matrix or block rather than by linear burst. Moreover, for some ad-

vanced bus structures such as multi-bus [98, 100, 135] and multi-layer architectures

[107, 147], the bandwidth can be improved when most of the communications occur

in the same bus level or the same bus layer. However, a large number of wires and

internal logic such as multiplexers for different layer data conversion, and buffers or

FIFOs for data flow control are necessary, which are more costly in terms of both

area and energy consumption.

To overcome the aforesaid limitation, a low-cost and low-energy bus is proposed

for limited resource IoT embedded chips in this chapter. It balances performance

with cost and implements the features required for low-power and high-throughput.

In addition, the bus-performance features including valid data bandwidth and dy-

namic energy efficiency proposed in this chapter, along with the conventional metrics

of transfer time consumption [181], wire efficiency [108, 88], dynamic power and en-

ergy consumption [23, 49] are performed as analytical models in this chapter. They

are used to analyze the bus performance and compare to the experimental results

after the hardware implementation. The rest of the chapter is organized as fol-

lows: the section 3.2 introduces the IBUS protocol, based on the definitions of bus

performance metrics, section 3.3 presents the analytical models used to evaluate

bus standards. In section 3.4, the register transfer level (RTL) design, simulation,

synthesis and power analysis are illustrated. Both the experimental and modeling

results are compared in section 3.5. Finally, section 3.6 concludes this chapter.
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3.2 IBUS Protocol

IBUS is composed of a control bus (IC bus) and a data bus (ID bus). IC bus

stands for Master-bus with a single masterthe microprocessor, and ID bus stands

for Slave-bus with a single slavethe memory controller.

3.2.1 IBUS Structure

This section presents an on-chip data communication standard for designing low-

power and high-speed microcontrollers. In what follows, the architectural perfor-

mance is statically analyzed.

As shown in Figure 3.1, a typical IBUS architecture consists of a high-performance

data bus (ID), able to sustain the memory bandwidth, on which the micro-processor,

application-specific devices, DMA and memory reside. ID bus provides a high-

bandwidth interface between the elements that are involved in the majority of trans-

fers. The role of the DMA in this architecture is to control which master has access

to ID bus and to operate the data transfers between masters and memory. Also

located on the architecture is a lower bandwidth control bus (IC), where all the

functional register configuration modules, such as SoC peripherals, system control

modules, and all the application-specific devices, are located.

IC bus mainly takes charge of low-speed and low-bandwidth functional register

operations with a low-cost interface and minimal power consumption. Key features

of IC bus include: a) a reduced interface complexity (69 wires for IC bus, 103 wires

for AMBA 3 APB protocol, and 139 wires for AHB), b) a single-master bus only used

as functional register configuration (multi-master for AHB and AXI), c) SINGLE

transfer mode with at least one-cycle command and one-cycle data, and un-pipelined

protocol (BURST transfer mode and pipelined protocol for AHB and AXI), d) a
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Figure 3.1: IBUS Architecture.

Table 3.1: 32-bit IC Bus Signal
Name Source Description

ic en Micro-processor
When high it indicates that the micro-
processor sends a IC bus command.

ic wr Micro-processor
When high it indicates a write transfer and
when low a read transfer.

ic addr wdata[31:0] Micro-processor
It indicates address at the command stage,
or write data used to transfer data from
masters to slaves at the write data stage.

ic rdata[31:0] IC bus slaves
It is used to transfer data from slaves to
masters during read operations.

ic vld IC bus slaves
When high it indicates that a data transfer
has finished. It may be driven low
to extend a transfer.

half-duplex bus with low band-width and low power consumption (a half-duplex

bus for AHB, and a full-duplex bus for AXI). All the IC bus signals prefixed with

“ic ” are described in Table 3.1. Notice that the “ic addr wdata” signal is created

as a shared bus with write address, read address, and write data information. It

increases wire usage efficiency and simplifies the hardware interconnection.

ID bus is mainly responsible for high-throughput data transfers. It provides a

novel block transfer mode, and backward supports the existing linear mode as well.

As an example, a full description of each of the 32-bit data bus signals prefixed with

45



Table 3.2: 32-bit ID Bus Signal
Name Source Description

id req x ID Masters
When high it indicates that the master requests
ID bus occupation.

id gnt x DMA
When high it indicates that the request has been
granted by DMA.

id addr[31:0] ID Masters The 32-bit address of DBUS.

id wr ID Masters
When high it indicates a write transfer and when
low a read transfer.

id len[11:0] ID Masters
The id len[11:10] signal determines the transfer
mode, and the id len[9:0] gives the transfer size.

id wdata[31:0] ID Masters
It is used to transfer data from masters to DMA
during write operations.

id wdata vld[3:0] ID Masters
When high each bit indicates the related valid byte
of the write data.

id rdata[31:0] DMA
It is used to transfer data from DMA to masters
during read operations.

id resp[1:0] DMA
When high the id resp[1]/id resp[0] signal
indicates that a write/read data transaction has
finished. It may be driven low to extend a transfer.

“id ” can be found in Table 3.2. Every ID bus master has a pair of “id req x” and

“id gnt x” interfaces to the DMA arbiter to ensure that only one master has access

to the bus at any one time. The DMA arbiter performs this function by observ-

ing a number of different requests to use the bus and deciding which is currently

the highest priority master requesting the bus. The write data channel includes

“id wdata” and “id wdata vld” signals. Each bit of the “id wdata vld signal indi-

cates that the related-byte of the write data is signaling valid. The bit width of the

“id wdata vld” signal is 1, 2, 4, 8, 16, respectively, for the byte, half-word, word,

double-word, quad-word write data channel. The “id resp[1:0]” signal indicates that

the slave is ready to accept the command and associated data, “id resp[1]” for write

and “id resp[0]” for read.

As well as the transfer type each transfer will have a number of command signals

that provide additional information about the transfer. The “id addr” signal gives
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the address of the first data in a transfer, and the “id wr” signal indicates the

transfer direction, logic one for write and logic zero for read. Two transfer modes,

linear and block, are supported by the data bus in our work, which are differentiated

by the two most significant bits of the data size signal “id len”. The transfer mode is

indicated as the linear mode when the “id len[11:10]” signal is binary logic “2’b00”,

and the block mode when logic “2’b01”. In the linear mode, the signal “id len[9:0]”

gives the exact number of transactions in the row-major order. Notice that the

number of transactions in a linear transfer is not the number of data bytes. The

total amount of data bytes in a linear transfer is calculated by multiplying the

number of transactions by the bus width (in bytes). Let DS denote the bus size

parameter. The DS values of 0, 1, 2, 3, and 4 represent the bus width as byte, half

word, word, double word, and quad word, respectively. Then, the total number of

data bytes in a linear transfer is

NDB L = id len[9 : 0] ≪ DS. (3.1)

Here, the shift operators “≪” and “≫” perform left and right shifts of their left

operand by the number of bit positions given by the right operand, respectively.

For a block transfer, the “id len[5:0]” signal represents the block height and the

“id len[9:6]” signal represents the block width in the row-major order. Hence, the

total number of data bytes in a block mode is

NDB B = (id len[9 : 6] ≪ DS)× id len[5 : 0]. (3.2)

3.2.2 IBUS Transfer Modes

As a control bus for functional register configuration, IC bus defines the SINGLE

transfer mode with at least one-cycle command and one-cycle data. It is optimized
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Figure 3.2: IC Bus Protocol.

for minimal power consumption and reduced interface complexity. As shown in

Figure 3.2, “ic addr wdata” is created as a shared bus with write address, read ad-

dress, write data information. It increases wire usage efficiency and simplifies the

hardware interconnection. Second, IC bus does not require arbitration due to the

single-master structure, so the command stage takes only one master cycle. Third,

the valid signal (“ic vld”) used to acknowledge the request is necessary to synchro-

nize signals crossing between master and slave clock domain and avoid command

FIFO overflows. Finally, a response delay timer is defined in the IC bus protocol

to detect command errors. If the current response is a timeout, the command is

indicated as “ERROR” and must be “RETRIED” or “DISCARDED” by the master.

Figure 3.3 shows an example of the timing diagram of ID bus. A pair of hand-

shake signals, “id req” and “id gnt”, ensure that there is only one master occupying

the write or read channel at the same time. The other ID bus signals are categorized

into five packets: command, write data, write data mask, read data, and response.

The command packet includes transfer direction, size, and initial address informa-

tion. The write data mask packet indicates the valid byte of the current word-unit

write data, and the respond packet indicates that the current write data is ready or

the read data is valid.
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Figure 3.3: ID Bus Protocol.

Notice that ID bus provides the command preprocessing scheme in order to avoid

time consumption of multiple command stages. As an example shown in Figure 3.3,

the second read data command (CMD1) is granted and preprocessed before all the

write data finish. It shares the same cycles with the first and second write data

(WD0 and WD1). In addition, ID bus is created as a full-duplex bus according to

the time-division multiplexing (TDM) method. As shown in Figure 3.3, the third

and last write data (WD2 and WD4) overlap with all the read data (RD0, RD1

and RD2) cycles. Moreover, in cycle 5, the signal of write data valid indicated by

“id rsp pkt[1]” is de-assert, so the slave cannot receive the third write data (WD2)

immediately and the master should hold the write data in the next clock cycle. In

cycle 7, the read valid signal indicated by “id rsp pkt[0]” is de-assert, so the read

data on ID bus is “INVALID” or “DO NOT CARE”, the master needs to wait

another cycle for a valid read data.

3.2.3 Linear and Block Transfer Modes

Apart from traditional linear data transfer, ID bus supports data transfer by block,

which is indicated by the most significant bit of data size signal “id len[10:0]”. If

“id len[10]” is logic 1, the current transfer is a block transfer, “id len[9:6]” denotes
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Figure 3.4: ID bus Block Transfer.

the width of the block and “id len[5:0]” denotes the height of the block. Otherwise,

it is a linear transfer and all the other 10-bit signals denote the total transfer size.

As an example of the ID bus block transfer shown in Figure 3.4, SADDR, MWD,

and DS parameters are defined in the ID bus protocol. SADDR represents the initial

address of this block, MWD denotes the address gap between the data of the vertical

neighbors, and DS indicates the ID bus transfer size. The DS value of 0, 1, 2 and

3 represent data transfer as byte, half word, word, and double-word, respectively.

Therefore, the initial line start address “line1 addr” is:

line1 addr = (SADDR ≪ DS) ≫ DS. (3.3)

Likewise, the start address of the Nth line “lineN addr” is:

lineN addr = [(SADDR + n×MWD) ≪ DS] ≫ DS. (3.4)

For conventional linear buses, additional commands are required for each non-

linear boundary operation of memory. However, ID bus defines all the block boundary-

crossing addresses and transfer size with the initial command, thus only one com-

mand stage is required for each ID bus block transfer.
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3.3 Analytical Models

Below are the bus performance metrics time consumption, wire efficiency, valid data

bandwidth, and EE as formulated in this chapter.

3.3.1 Transfer Latency

Transfer time consumption is defined as the total data transfer cycles multiplied by

the clock period or the reciprocal of clock frequency denoted by f hereafter. In order

to focus on the bus structure, assume that the response to any bus transfer is always

available immediately. In addition, request, grant, and address transactions can be

overlapped between two back-to-back transfers. Let N and HS denote the number

of data and burst size respectively, and P denote the probability of the pipelined

transfers. The AHB linear transfer latency denoted by TCHL is

TCHL = {[3× ceil(
N

HS
) +N ]− 3P × ceil(

N

HS
)} ×

1

f
. (3.5)

In this equation, the “ceil(x)” function means that rounds fraction up. More-

over, the transfers in the same line of a block can be considered as linear transfers.

However, in the case of memory boundary-crossing, the address phases as well as

bus arbitration are necessary. Let the functions N(ln) and P(ln) denote the data

number and the pipelined transfer probability of each line respectively, and HT

denote the height of the block. Thus, the communication time of the AHB block

transfer denoted by TCHB is

TCHB = 〈

HT∑
ln=1

{3× ceil[
N(ln)

HS
] +N(ln)− 3P (ln)× ceil[

N(ln)

HS
]}〉 ×

1

f
. (3.6)

AXI, which is the advanced bus protocol of AHB, has two independent channels

of data, handshake, and address, one for read and one for write. Based on this full-

duplex bus structure, simultaneous data transferring on both channels is possible.
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Therefore, the AXI linear transfer latency denoted by TCXL is

TCXL = 〈max(Pr, Pw)× {[3× ceil(
N

XS
) +N ]− 3P × ceil(

N

XS
)}〉 ×

1

f
. (3.7)

Where Pr and Pw, respectively, denote the data read and data write probabilities.

Likewise, the total latency of AXI block transfers denoted by TCXB is

TCXB = 〈max(Pr, Pw)×
XT∑
ln=1

{3× ceil[
N(ln)

XS
]+N(ln)−3P (ln)× ceil[

N(ln)

XS
]}〉×

1

f
.

(3.8)

Since the ID bus command stage integrates arbitration and the address phase,

and the data stage integrates data transfers and slave-drive responses, ID bus con-

sumes only two-cycle protocol overhead with an immediate grant signal. Let IS

denote the data size of the current transfer. Due to provision of the block transfer

mode, the total ID bus transfer latency TCI is the same for both the block and

linear mode, that is

TCI = 〈max(Pr, Pw)× {[2× ceil(
N

IS
) +N ]− 2P × ceil(

N

IS
)}〉 ×

1

f
. (3.9)

3.3.2 Wire Efficiency

As a bus-efficiency metric, wire efficiency is defined as the average number of data

bytes per clock cycle divided by the number of bus wires [16]. Let W denote the

basic wire number. The wire efficiency is formulated as:

WE =
[ N
(TC×f)

]

W
(3.10)

3.3.3 Valid Data Bandwidth

Assume the frequencies and bus width (DW) of AHB, AXI, and ID bus are the

same, thus the regular bandwidth of ID bus (BWI) and AXI (BWX) are the double
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of the AHB bandwidth (BWH). All of them are formulated as:

BWH = f ×DW (3.11)

BWI = BWX = f × 2×DW (3.12)

Different from the conventional bus throughput, valid data bandwidth is defined

as the valid data without protocol overhead that can be transferred in one cycle.

Therefore, all of them are modified as:

V DBH = BWH ×
N

TCH × f
(3.13)

V DBX = BWX ×
N

TCX × 2× f
(3.14)

V DBI = BWI ×
N

TCI × 2× f
(3.15)

3.3.4 Dynamic Energy and Dynamic Energy Efficiency

Basically, energy is the integral of power. Let Pdy(t) denote the dynamic power and

T denote the total transfer time, thus dynamic energy consumption is formulated

as:

DE =

∫ T

t=0

Pdy × dt. (3.16)

In this equation, if Pdy(t) is constant or average power, the dynamic energy

consumption can be simplified as the product of average power and transfer time.

Apart from the traditional power and energy estimation, in our work we create a

novel parameter, dynamic energy efficiency, to evaluate the correlation between the

valid throughput and power consumption, which is formulated as:

DEE =
V DB

Pavgdy

(3.17)
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Here, Pavgdy is the average dynamic power. dynamic energy efficiency provides

a performance metric in terms of valid data number can be transferred per second

per watt, or valid data number can be transferred per joule.

3.4 Hardware Implementation

This section presents the hardware implementation targeted to accurately estimate

the bus performance and verify the validity of the analytical models.

3.4.1 RTL Design and Verification

As shown in Figure 3.5, the AHB-, AXI-, and IBUS-based DMA are designed at the

RTL level. As the only slave of ID bus, the ID bus DMA supports both the linear

and block transfers, and provides the command preprocessing scheme. There are

two separate queues of the ID bus DMA, one write queue and one read queue, and

the depth is 4 of each. Thus up to 8 ID bus commands can be preprocessed and

pushed into the command queues after winning the arbitration. The commands can

be popped as long as the queues are not empty and the Memory Controller interface

is idle.
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In order to verify all the bus-based DMA design which can be both RTL-level and

gate-level netlist, a UVM [16, 18] environment is set up. As an example of IBUS-

based SoC shown in Figure 3.6, several encapsulated, ready-to-use and configurable

verification agents are integrated in the test bench. All the six peripherals including

NON Flash, UART, I2C, SPI, GPIO, and Timer controllers are IC bus’s slaves.

They are configured by the microprocessor through IC bus directly. On the other

side, all the four application-specific models including Wi-Fi Mac, Bluetooth 4.0

Controller, USB 2.0 Host Controller, and Security module are the slaves of IC bus

and the masters of ID bus. They are controlled by the microprocessor through IC

bus and access the only slave memory through ID bus. To examine and compare bus

performance, we pick two typical test cases as the experimental vectors: one is two

128-word linear write and read operations and the other is two 16× 32-pixel block

write and read operations. All the data are from a 1024×1024 -pixel picture. In each

case, two ID bus master agents request data bus at the same time, and the initial

addresses are 0x0000 which is from the top left of the picture and 0x83f0 which is

from the bottom right of the picture, respectively. All the simulation information,

involving multiple switching activities of signals, logic, and IOs, is captured and

saved in VCD files.

To simplify the waveform, only the latencies of the CPU, Wi-Fi, and USB Host

Controller operations are shown in Figure 3.7. For IBUS-based SoC signals, notice

that the arbitration and commands are preprocessed, the accesses of IC and ID

buses are paralleled, and the read and write operations of IBUS are overlapped. All

the transfers are finished at 3702ns, which is denoted as the T1 cursor in this figure.

For AHB-based SoC signals, the CPU requests are granted firstly due to the highest

priority. After register access finishes, the DMA data transfers begin. The write

and read data operations are serial on AHB bus, the bus access order is from the
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Figure 3.6: A Typical IBUS-Based SoC.

Wi-Fi MAC data write to the lower priority data access, the USB Host Controller

data read. All the data transfers are completed at 6934 ns, which are indicated as

the T2 cursor.
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Table 3.3: Resource Comparison
Resource Cost AHB AXI IBUS
IOs 331 511 302
Slice Registers 10365 11768 10521
Slice LUTs 25272 17494 17300
MOF 344.705 246.875 300.501

3.4.2 Back-End Power Analysis

Back-end power analysis is a standard step providing average power consumption

for the reference implementation. First, a fully placed and routed NCD file and a

physical constraint PCF file are generated by Xilinx ISE 14.6 in our work. Figure 3.8

shows the synthesis schematics, and Figure 3.9 shows the slice count of AHB, AXI,

and IBUS-based designs with the target device Virtex5 xc5vlx110t-2ff1136 FPGA.

More specifically, Table 3.3 summarized the synthesized results including the

maximum clock frequency, IO number, and resource utilization. It is obvious that

IBUS-based design costs less IOs, register count, and LUT count than AXI. Notice

that the register utilization of IBUS DMA is more than that of AHB DMA, but the

LUT count of IBUS DMA is far less than AHB DMA. In addition, the maximum

clock frequency of IBUS-based design is 300.501MHz, which is between the maxi-

mum clock frequencies of AHB- and AXI-based design. To focus on the bus protocol

efficiency, we set the bus frequency to be 100MHz for all the three bus-based design.

Then, by importing the NCD and PCF files, along with the VCD files from the

simulation into the XPower Analyzer tool, the detailed average power report (PWR

file) is obtained. Figure 3.10 shows the experimental power reports, and Table 3.4

summarizes the power consumption based on different design and test vectors.

Since the static power is mostly determined at the circuit level, it is almost a

constant for different test cases for a given NCD file. Thus our work focuses on

analyzing DP. As shown in the third column of Table 3.4, more DP is consumed in
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(a) AHB-Based Design (b) AXI-Based Design

(c) IBUS-Based Design

Figure 3.8: Synthesis Schematics.
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(a) AHB-Based Design

(b) AXI-Based Design

(c) IBUS-Based Design

Figure 3.9: Resource Costs.

Table 3.4: Power Comparison
Test Cases SP (mW) DP (mW) TP (mW)
HL 1191 221 1411
XL 1195 459 1654
IL 1194 382 1575
HB 1191 249 1440
XB 1195 499 1695
IB 1194 405 1600
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(a) Linear Test of AHB-Based Design

(b) Block Test of AHB-Based Design

(c) Linear Test of AXI-Based Design

(d) Block Test of AXI-Based Design

(e) Linear Test of IBUS-Based Design

(f) Block Test of IBUS-Based Design

Figure 3.10: Power Consumption.
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Table 3.5: Experimental Performance Metrics
Test Cases TC (ns) WE VDB (GBps) DE (uJ) DEE (GBps/J)
HL 6105 0.0040 2.68 1.35 12.14
XL 2845 0.0045 5.76 1.31 12.55
IL 2695 0.0077 6.08 1.03 15.91
HB 8985 0.0032 1.82 2.24 7.32
XB 4245 0.0033 3.86 2.12 7.73
IB 2695 0.0077 6.08 1.09 15.01

the block case than in the linear case for the same NCD due to much more toggle

activities of IOs, internal logic, and signals. In each case, IBUS consumes less DP

than AXI. However, because of the density and high throughput transfer features,

the DP of IBUS is much more than that of AHB.

3.5 Experimental and Modeling Results

We measure time consumption using the UVM test bench introduced in subsection

3.4.1, and estimate the wire efficiency, valid data bandwidth, dynamic energy con-

sumption, and dynamic energy efficiency in this section. Table 3.5 summarizes the

results of all these metrics.

The difference between these bus protocols is made clear through the analysis

of the metric ratios of IBUS to AXI and IBUS to AHB shown in Figure 3.11. All

the time consumption ratios are lower than 1. Especially in the block mode, the

time consumption of IBUS is reduced to about 30% of AHB and 63.5% of AXI.

Considering the wire efficiency next, both IBUS to AXI and IBUS to AHB ratios

are more than 1.5 in linear cases and more than 2 in block cases, which is an evidence

of the high-efficiency interconnection of IBUS. Although the BW of IBUS and AXI

bus are the same, the IBUS to AXI ratio of valid data bandwidth is more than 1

in the linear case and more than 1.5 in the block case. Finally, it is observed that
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Figure 3.11: Performance Ratio of IBUS/AHB and IBUS/AXI.

Table 3.6: Model Performance Metrics
Test Cases TC (ns) WE VDB (GBps) DE (uJ) DEE (GBps/J)
HL 6080 0.0041 2.69 1.34 12.10
XL 2880 0.0041 5.69 1.32 12.39
IL 2600 0.0082 6.30 0.99 16.50
HB 8960 0.0032 1.83 2.23 7.34
XB 3840 0.0032 4.27 1.92 8.55
IB 2600 0.0082 6.30 1.05 15.56

the dynamic energy consumption of IBUS is only a half of AHB or AXI, and the

dynamic energy efficiency is close to the double of AHB or AXI in the block mode.

In other words, IBUS can transfer twice as much data as AHB and AXI with the

same time and power consumption in the block transfers.

For the validity of the performance models, we investigate and compare all the

metrics of the three different bus protocols. Table 3.6 shows all the data resulted

from the analytical models.
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Figure 3.12: Performance Model Error.

Figure 3.12 illustrates the average percent errors of each sample. In the worst

case, the estimation error compared with the experimental result is about 13%.

Furthermore, the average estimation error is around about 4%. Through the exper-

iments, we verify with sufficient accuracy that all the proposed models can be used

effectively to evaluate the bus performance.

3.6 Summary

In this chapter, we propose a high performance bus with reduced interface complex-

ity, minimal power consumption, and high bandwidth. Moreover, we evaluate its

performance with four estimation models, such as time consumption, wire efficiency,

valid data bandwidth, and dynamic energy efficiency, during the hardware imple-

mentation flow automatically and accurately. Comparing AHB, AXI, and IBUS

DMA implementations as a case study, both the static analysis and the real hard-
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ware results demonstrate that IBUS achieves higher performance especially in the

block transfer mode: the wire efficiency of IBUS is 2.3 times of AXI and 2.4 times of

AHB, and the dynamic energy efficiency is close to the double of AXI or AHB. The

single-processor and multi-client bus structure of IBUS reduces resource utilization

and energy consumption, and limits the complexity of circuits. Therefore, the IBUS

protocol is very desirable for small scale embedded systems with requirements of a

low-cost interface and high energy efficiency.
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CHAPTER 4

PERFORMANCE EVALUATION METHODOLOGY

This chapter proposes an innovative on-chip bus transfer mode, the AES state trans-

fer (AS), and a performance evaluation methodology to estimate the transfer per-

formance. By modeling and collecting several performance metrics, including bus

latency, bandwidth, valid bandwidth, power, and energy consumption, using the

methodology, it enhances fidelity of the performance analysis and evaluation. As a

case study, we formally complete the hardware implementation flow on AHB, AXI4,

and AS bus (ASBUS) DMA, and demonstrate high estimation accuracy by compar-

ing all the experimental results. Both static analysis and hardware implementation

results show that the data transfer latency is close to 29% of AHB and 58% of AXI4

by using the AS transfer. Moreover, it is observed that this high-efficiency transfer

mode of ASBUS helps to enhance the valid data bandwidth to around 3.4 times

that of AHB and 1.7 times that of AXI4, and the energy consumption of ASBUS is

only a half of AHB and AXI4. Furthermore, the proposed evaluation methodology

is effectively used with sufficient accuracy (the average estimation error: 3.3%) in

the design flow.

4.1 Related Work

Today, much attention has been placed on the IoT technologies. IoT refers not only

to personal computers and smart phones connected through the internet, but also

to the wireless interconnections of all the billions of things through the Internet

or local area network. The main features and requirements of these things are

small-scale, power-efficient, high speed, and security. The traditional bus-based

SoC architectures [1, 5, 6, 4, 2, 7], such as the AMBA AHB and AXI4 buses from
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ARM Holdings, Wishbone from Silicore Corporation, or OCP from OCP-IP, are

not suitable for these kind of devices, because they use much more IOs and signals,

turning out to be complicated structures and much more power consumption. In

addition, all of these buses transfer data linearly, however, in the fields such as image

processing, wireless communication, and cryptology, data processing is usually based

on the relationship of block neighbors and boundaries [71, 3, 15, 93]. For example,

the dominant symmetric-key cryptosystem, AES [19], which is issued by the NIAS in

2001 and widely used in various protocols, is a cipher/inverse cipher algorithm based

on the 4× 4 matrix of bytes named AES state. A state is operated by 10, 12, or 14

rounds of transformations with key length equal to 128, 192, or 256 bits, respectively.

Each round except the final round contains four transformations: SB or S-Box, SR,

MC, and AK for the encryption, and ISB, ISR, IMC, and AK for the decryption.

Since the state is shifted in each round, we prefer data transfers by interleaving

matrix to linear transmission, which is very low-efficiency using conventional buses,

such as AHB and AXI4. To overcome these problems, in this chapter, we propose a

novel bus transfer mode, the AES state transfer (AS). Furthermore, using the high-

efficiency and compact IBUS platform [186], a user-defined bus protocol termed as

ASBUS providing the AS transfer mode is proposed in this chapter.

In order to evaluate the AS transfer performance, the widely used industrial bus

protocols AHB and AXI4, and the proposed ASBUS are analyzed and compared

using static models and implemented as AHB, AXI4, and ASBUS DMA. In earlier

work, the AHB bus latency was formulated as the number of clock cycles consumed

in transferring data, including request, address, data, and response phases [181].

Together with the wire efficiency proposed in [108], these two parameters are used

to estimate AHB and SNP bus performance [108]. Moreover, since power consump-

tion is quickly becoming a first-class concern of circuit design, much effort is put
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into achieving power dissipation based on either analytical or empirical technologies,

such as using some high-level power analysis tools [131, 180, 133], or modeling power

analysis [23, 171, 84]. For these mathematical analysis models, large system com-

plexity is a challenge, making the enumeration of the complete design logic difficult,

sometimes an unfeasible task. Additional problems arise from the high abstrac-

tion level, making it hard to achieve high accuracy, in early system development

stages. Although most existing algorithms are shown to be quite effective under

their own experimental scenarios, the performance results are inaccurate without

real back-end netlist information. In addition, there is limited work on analyzing

the correlations among all these bus parameters, and very few studies on the entire

bus structure. To address the above issues, this chapter proposes a bus performance

evaluation methodology, and presents comparison between results from AHB, AXI4

[1, 5], and ASBUS DMA implementations. In our work, not only traditional bus

performance parameters, such as transfer latency, bandwidth, and power, but also

valid data bandwidth and dynamic energy consumption are defined and applied to

the hardware implementation flow.

In addition, a typical IoT SoC today is inherently analog in dealing with Radio

Frequency (RF) signals with the ability to transfer data wirelessly. To set up a

verification environment of such a complex mixed-signal system is a big challenge

for verification engineers. It not only needs to simulate in a reasonable amount

of time, but also maintain an acceptable level of accuracy. To date, the industry

has offered several co-simulation tools, such as SPICE and AMS [101, 94]. Since

simulations run at the transistor level, these tools are often very time-consuming

compared with digital RTL simulation. Aiming at alleviating low-speed problems,

two analog and mixed-signal languages, Verilog-AMS and VHDL-AMS, are pro-

posed. They are partial solutions to the problem of simulation speed, but very weak
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on verification methods, involving coverage driven verification, constraint random

test, assertion based verification, and UVM/VMM verification methodologies, in

order to reach acceptable standards. Currently, some EDA companies, such as Ca-

dence and Synopsys, provide several analog IPs which are designed by wreal and

real data. However, such mixed-signal IPs impose additional amount of work and

constraints on how these IPs should be seamlessly integrated and verified at SoC

level [176, 76, 69, 69].

As mentioned above, traditional mixed-signal verification technologies are done

at the lower level of abstraction. This ensures accuracy and functional correctness,

with the idea of higher level language to describe the functional model just emerging.

At the SoC level, a test plan is focused on connectivity and functional integration,

where simulation speed is really critical. Thus, one of the contributions we have been

trying to make is to achieve an optimum trade-off between performance and accuracy

at the system level verification, that is, model analog activities to become more like

digital, and reuse digital verification environment, technologies and methodologies.

Using floating-point real data to describe analog activities, this research brings a

high-level abstraction of the analog model by System Verilog verification language

(IEEE 1800) [130, 13]. As an extension of Verilog, System Verilog is easier to

adopt a modular approach for integrating analog models into an existing pure digital

environment. Moreover, being an integrated part of the simulation engine, it also

eliminates the need for external verification tools and interfaces, and thus ensures

optimal performance. We therefore demonstrate the integration of a mixed-signal

SoC, involving both digital and analog components, reasonable and verifiable.

Key contributions of this chapter include:

• Propose and implement a low energy and high throughput AS transfer mode

on ASBUS.
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• To estimate the AS transfer performance, we propose a high accurate evalua-

tion methodology derived from the standard FPGA design flow.

• Formulate a set of performance parameters, involving transfer time consump-

tion, valid bandwidth, and dynamic energy consumption, which can be seam-

lessly compatible with the UVM environment [13, 16, 18].

• Model-based design of analog activities by using System Verilog verification

language.

• Employ digital verification methods and methodologies in mixed-signal envi-

ronment, such as coverage driven verification, constraint random test, assertion

based verification, and UVM/VMM verification methodologies.

The rest of this chapter is organized as follows: section 4.2 gives a brief intro-

duction on the AS transfer mode and the ASBUS protocol. Section 4.3 defines the

time consumption, valid data bandwidth, and dynamic energy models, then ana-

lyzes and compares the performance among AHB, AXI4, and ASBUS statically.

The performance evaluation methodology based on the hardware implementation

flow is presented in section 4.4. Finally, section 4.5 describes and analyzes all the

experimental results from AHB, AXI4, and ASBUS DMA designs, and section 4.6

draws the conclusion of this research.

4.2 State Transfer Introduction

In this section, we introduce the features of the AS transfer. Based on this novel

transfer mode, then the ASBUS protocol is created and illustrated.

AES is a widely used specification for the cipher security of electronic data es-

tablished by the U.S. NIAS in 2001 [19, 93]. For both encryption and decryption
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processing, the AES algorithm operates on a 128-bit or 4 × 4-byte block, which is

called a state. The state is shifted in each round: The first row is not shifted; the

second, third, and fourth rows are left shifted one, two, and three bytes for the SR

transformation, and right shifted one, two, and three bytes for the ISR transforma-

tion, respectively. Since the cyclic rotation does not affect the regrouping result,

ASBUS defines the interleaving AS transfer to speed up the AES state transfer and

encryption/decryption process.

By redefining the transfer size “len” signal, ASBUS supports both linear and AS

transfer modes. When the most significant bit of “len[10]” signal is logic zero, the

current transfer is in the conventional linear mode, otherwise it is in the AS mode.

In the linear mode, all the bits from nine to zero of “len[9:0]” signal indicate the

transfer size. As an example shown in Figure 4.1(a), the linear transfer mode is

indicated by the logic zero “len[10]” signal, and the transfer size is 4-word, which

is indicated by the “len[9:0]” signal. Thus, the memory access is from address

hexadecimal “0x00” to “0x0f” for the byte-unit memory. Figure 4.1(b) shows the

timing diagram of a linear data transfer. As a word-size bus, the data shown on

ASBUS are in the row-major order from memory address hexadecimal “0x00” to

“0x0c”.

In the AS mode, bits from nine to six of the “len[9:6]” signal represent the block

width, and bits from five to zero of the “len[5:0]” signal represent the block height.

As an example shown in Figure 4.2(a), the memory access is a AS transfer, which

is indicated by the most significant bit of the “len[10]” signal as logic one, and the

transfer size is one interleaving 1 × 4-word matrix or one interleaving AES state,

which is indicated by the “len[9:6]” and “len[5:0]” signals. Thus, the accessing ad-

dresses are hexadecimal “0x00”, “0x01”, “0x02”, and “0x03” for the 1kB memory

and word-size ASBUS. The timing diagram of AS write and read operations are
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(a) Memory Access

(b) Timing Diagram

Figure 4.1: An Example of the Linear Transfer

shown in Figure 4.2(b) and Figure 4.2(c), respectively. The write operation requires

AES decryption processing before the plaintext can be written into memory, while

the read operation requires AES encryption processing before the ciphertext can be

transferred on ASBUS. It is observed that both encryption and decryption opera-

tions are non-linear. The write data on ASBUS is in the column-major and byte

de-interleaving order, while the read data on ASBUS is in the column-major and

byte-interleaving order.

In Figure 4.2(b), notice that the first word-size write data is combined from the

byte-unit data addressing from hexadecimal “0x00”, “0x403”, “0x802”, and “0xc01”.

Similarly, the second, third and fourth write data on ASBUS are addressed from

hexadecimal “0x01”, “0x400”, “0x803”, and “0xc02”, “0x02”, “0x401”, “0x800”,

and “0xc03”, and “0x03”, “0x402”, “0x801”, and “0xc00”, respectively. In this

way, the ciphertext states are reordered and row-shifted before loaded into the AES

decrypter. Thus, the time consumption of the inverse cipher transformations is

reduced. As the encryption process shown in Figure 4.2(c), the word-size read data

should be in the column-major and byte-interleaving order before loaded into the

AES encrypter, which are addressed from hexadecimal “0x00”, “0x401”, “0x802”,
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(a) Memory Access

(b) Timing Diagram of Write

(c) Timing Diagram of Read

Figure 4.2: An Example of the AS Transfer

74



and “0xc03”, “0x01”, “0x402”, “0x803”, and “0xc00”, “0x02”, “0x403”, “0x800”,

and “0xc01”, and “0x03”, “0x400”, “0x801”, and “0xc02” for the first, second, third,

and fourth read data, respectively. The latency of cipher transformations is reduced

using this interleaving column-major transfer mode.

4.3 Static Performance Analysis

In order to evaluate the bus performance, time consumption, valid data bandwidth,

and dynamic energy are defined in this section. Then ASBUS is compared with

AHB and AXI4 using the three metrics to estimate the transfer performance.

4.3.1 Transfer Latency

CY denotes the total number of clock cycles of a specific data transfer. In order

to focus on the bus structure, assume that response data to any bus transfer is

always available immediately. For the AHB standard [1], all slave “ready” signals

are asserted and “hresp” signals are OKEY during the data transactions, and all

master “htrans” signals are not BUSY. In general, the SINGLE transfer type is

used for the functional register configuration, and the INCR and WRAP transfer

types are used for memory data access. Let HL denote each transfer size. Thus for

INCR4 or WRAP4, HL is 4, and for INCR16 or WRAP16, HL is 16. Let N denote

the number of data, the AHB burst transfer latency CYH is

CYH = 3× ceil(
N

HL
) +N. (4.1)

In this equation, the “ceil(x)” function means that rounds a number to the next

larger integer. For example, assume that every burst length HL is 4-beat, and the

total burst transfer data is 7-beat. After rounded-up, these 7-beat data requires 6
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cycles for command transmission, and 7 cycles for all the data transfers. Usually,

request, grant and address transactions can be overlapped between two back-to-back

transfers. Let P denotes the back-to-back transfer probability. The total transfer

latency is modified to be

CYH = [3× ceil(
N

HL
) +N ]− 3P × ceil(

N

HL
). (4.2)

Then, the AXI4 data latency is considered. As a full-duplex bus, the number

of AXI4 transfer cycles mainly depends on the larger number of read or write op-

erational cycles. Let Pw and Pr, respectively, denote the data write and data read

probabilities, the total transfer latency CYX of burst transfers is

CYX = max(Pr, Pw)× {[3× ceil(
N

XL
) +N ]− 3P × ceil(

N

XL
)}. (4.3)

Both AHB and AXI4 transfer data linearly. To access data crossing block bound-

aries, they need to send new requests to initiate the start addresses and transfer sizes.

Hence, the latency is duplicated when crossing each state-boundary. Since ASBUS

supports the AS transfer mode, the transfer latency is the same for both linear and

AS modes, that is

CYA = max(Pr, Pw)× {[2× ceil(
N

BS
) +N ]− 2P × ceil(

N

BS
)}. (4.4)

Here, BS represents the block size of the AS transfer. So far, we formulize the

transfer latency by clock cycles. Time consumption is defined as the number of data

cycles multiplied by the clock period or the reciprocal of clock frequency denoted

by f hereafter, it is thus formulized as: TC=CY
f
.

4.3.2 Static Performance Analysis

To evaluate the performance of the AS transfer, this section statically compares the

ASBUS with AHB and AXI4 by the formulas mentioned above. As a result, Figure
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Figure 4.3: CY Comparison.

4.3 shows the linear and block CY of AHB, AXI4, and ASBUS, respectively. In each

figure, one horizontal axis represents the transfer pipeline probability ranging from

0 to 1, and another horizontal axis represents the total number of data transfers

ranging from 4 words to 25 words as a case study. The vertical axis indicates the

CY metric. It can be observed that CY is significantly reduced as the pipeline

probability increases in all the figures. In addition, even though CY increases as the

data number increases, the data transfers are more efficient on a larger data number

than on a smaller data number. Moreover, comparing ASBUS with AHB and AXI4,

a further reduction of CY is achieved with the high-efficiency bus transfer features.

For instance, using the same pipeline ratio (0.7) and data number (25 words) in all

the cases, in the linear transfer mode the CY of ASBUS is reduced to about 35.3%

of AHB, and 70.7% of AXI4, and in the block transfer mode the CY of ASBUS is

reduced to about 29.7% of AHB, and 59.5% of AXI4.
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Figure 4.4 shows the comparison of CY and valid data bandwidth among AHB,

AXI4, and ASBUS. To study the impacts of the pipeline probability on system

performance, the total data transfer number is fixed at 256 bytes as an example.

The horizontal axis represents the pipeline probability ranging from 0 to 1, and the

vertical axis indicates the CY in Figure 4.4 (a). It is obvious that ASBUS costs less

cycles than AHB and AXI4, especially for the lower pipeline probabilities. As the

probability increases, the CY of AXI4 becomes nearly as good as that of ASBUS,

but still consumes more time than ASBUS.

As a high-efficiency bus, the ASBUS achieves the highest valid data bandwidth

than AHB and AXI4, which is illustrated in Figure 4.4 (b). The horizontal axis

represents the pipeline probability ranging from 0 to 1, and the vertical axis repre-

sents the valid data bandwidth unit in Gbps. First, all the valid data bandwidth

of the three buses increase as the pipeline probability increases. Second, comparing

the three buses, ASBUS achieves the highest valid data bandwidth at any pipeline

probability. As the probability increases, the valid data bandwidth of AXI4 becomes

close to that of ASBUS, but still less than that of ASBUS. As an example, when

the pipeline ratio is 0.7, the valid data bandwidth of ASBUS is 3.4 and 1.7 times

that of AHB and AXI4, respectively; when the pipeline ratio is 1, the valid data

bandwidth of ASBUS is 2.5 and 1.25 times that of AHB and AXI4, respectively.

4.4 Performance Evaluation Methodology

In order to accurately estimate not only the front-end simulation results, such as time

latency and signal switching rates, but also the back-end gate-level performance,

including the hardware resource cost, the power, and energy consumption, we create
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Figure 4.4: Performance Evaluation (AHB()̂, AXI4(O), ASBUS (*))

an UVM-compatible evaluation methodology based on the standard FPGA design

flow.

4.4.1 Methodology Overview

The methodology is shown in Figure 4.5, each ellipse represents an implementation

step; each rectangle represents an estimation model; and each rectangle with a

wave-like base represents an output file. The flow involving 6 steps is illustrated

below:

• Create all the application models at the algorithm stage and determine the

hardware architecture considering the trade-offs among hardware costs, through-

put, and power consumption.
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• Design in RTL and perform simulation using direct test vectors. Moreover,

the functional coverage models are created following the design specifications

in this step.

• Build up a UVM environment to fully verify the DUT, which can be RTL or

gate-level netlist. This step applies a time consumption & valid data band-

width model to generate two output files for each test case, one is the simu-

lation VCD file with the exact switching activity information, and the other

is bus performance results, such as time consumption and valid data band-

width. The time consumption & valid data bandwidth model is coded by

System Verilog Language [13], thus it can be seamlessly integrated into the

UVM test bench, and compatible with the traditional verification methods,

such as assertion-based verification [76, 34], coverage-driven verification [82],

and the constrained random test [85].

• Synthesize and obtain a fully placed and routed NCD file and a physical con-

straint PCF file by Xilinx ISE.

• Computes power consumption using the back-end FPGA power analysis flow.

Inputting the fully placed and routed NCD file, the physical constraint PCF

file, and VCD files into the XPower Analyzer tool, a PWR file with detailed

power results is generated.

• Match and extract the dynamic power consumption from the PWR file and

latency information from the time consumption & valid data bandwidth file

by an energy model coded by Perl script. Then, compute the final dynamic

energy consumption, and generate the final bus performance evaluation (BPE)

report.
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Figure 4.5: Hardware Implementation Flow

4.4.2 Verification Environment

In our work, we set up the verification environment using the UVM methodology

[16, 18], employing traditional verification methods, such as assertion verification

[76], [82] and the constrained random test [85]. Figure 4.6 shows the UVM-based

top module that includes the test class containing the test bench, and the DUT

connecting with memory. Many test classes may instantiate the test bench and

verification components, and configure them as needed. The test bench is composed

of reusable verification components which are applied to the DUT to verify the

implementation of the protocol or design architecture. Each verification component

is an encapsulated, ready-to-use, configurable verification system for an abstract

container called an agent, a scoreboard, an assertion checker, a coverage model, or

a performance monitor. All the agents follow a consistent architecture and consist
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of a complete set of elements for stimulating, checking, and collecting coverage

information for a specific protocol or design.

In our test bench there are 6 bus peripheral agents, including Flash controller,

I2C controller, UART, SPI controller, Watchdog, and Timer located on the control

bus, and 6 application agents, such as the USB2.0 Host Controller and Mixed-

Signal Wireless Fidelity (Wi-Fi), located on the data bus (ASBUS). As the UVM

methodology, each of the agents, master or slave, contains three subcomponents:

the sequencer, driver, and monitor. The driver is an active entity that emulates

logic that drives the DUT. It repeatedly receives a data item and drives it to the

DUT by sampling and driving DUT signals. The sequencer is an advanced stimulus

generator that controls the items that are provided to the driver for execution. The

monitor is a passive entity that samples DUT signals but does not drive them. It

collects coverage information and perform checking. Moreover, the interface checker

inserted between the 12 agents and DUT is combined with several assertions to check

the bus protocol timing in real time. After each test complete, the DUT outputs are

compared with the golden model results in the scoreboard. As an important part

of the overall test effort, the regression tests are used to reduce the risk of bugs in

each release. All the functional cover-points are collected by the coverage model.

Apart from the conventional verification approaches, some performance models

and VIPs are created and resided into the test bench in our work. Coded by System

Verilog language [13], they are reusable, configurable, and seamlessly compatible

with the UVM environment. For instance, the Wi-Fi agent contains digital parts of

Media Access Controller (MAC) and Baseband Processor (BBP), and some analog

VIPs, such as Analog-to-Digital Converter (AD), Digital-to-Analog Converter (DA),

Low Noise Amplifier (LNA), Variable Gain Amplifier (VGA), and Power amplifier

(PA), as shown in Figure 4.7. Using floating-point real data to emulate these analog

82



Figure 4.6: Verification Environment

models is easier for adopting a modular approach to integrate analog models into an

existing pure digital environment. More specifically, LNA is at the beginning of the

receiver, which minimizes the noise contribution in the following VGA. The LNA

gain ranges from -3dB to 10dB or 35dB of this system, which is set through the I2C-

BUS interface. VGA provides precise input attenuation and interpolation, a linear-

in-dB gain-only deviating ±0.5dB. For the transmitter, PA is another output gain,

which is configurable through I2C-BUS. All of these analog models have different

approaches to algorithm optimization, in which abstract equation models represent

the circuits. It takes analog activities to become more like digital, and reuses the

digital verification environment, technologies, and methodologies [187].

Furthermore, notice that the performance model, time consumption & valid

data bandwidth, used for collecting and computing time consumption and valid

data bandwidth in real time is resided in the test bench. An application program-

ming interface (API) should be configured according to bus standards before it is

integrated into the environment. Using these evaluation models, the engineers are
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Figure 4.7: Wi-Fi Model

able to record runtime estimate of the performance of their design based on specific

test cases.

4.4.3 Back-End Power and Energy Analysis

In this section, we introduce the estimation process of hardware resource costs, power

and energy consumption by extending the standard back-end design flow. First, we

synthesize the AHB, AXI4, and ASBUS DMA separately to get fully placed and

routed files and physical constraint files, which are necessary for the methodology

implementation flow. In our work, we use Xilinx ISE14.6 as the synthesis tool, and

Virtex5 xc5vlx110t-2ff1136 FPGA as the target device.

The detailed resource costs are shown in Table 4.1. In the second column, it

is obvious that ASBUS DMA costs less IOs than AXI4 does, under the context of

full-duplex bus-based designs. As a half-duplex bus, AHB uses the least IOs but

sacrifices the bandwidth by a half. In addition, ASBUS DMA consumes less slice

registers and slice LUTs than AXI4 DMA does due to the high-efficiency structure,

which is shown in the third and fourth columns, respectively. Comparing to AHB

DMA, even though ASBUS DMA achieves much higher speed and bandwidth, the

resource cost is close to that of the AHB-based design. In the fifth and sixth column,

it is shown that ASBUS DMA achieves the minimum critical path and the maximum

operating frequency (MOF) due to the compact structural design.
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Table 4.1: Resource Cost
DUTs IOs Slice Registers Slice LUTs Critical Path (ns) MOF (MHz)
HDMA 441 2096 5379 3.845 260.105
XDMA 647 3884 7605 4.392 227.702
ASDMA 460 2456 5761 3.630 275.509

Second, by importing the NCD and PCF files, as well as the specific VCD file

with all the transition information into the Xilinx XPower Analyzer, the detailed

average power report is obtained and shown in Table 4.2. Basically, the total power

consumption shown in the seventh column contains static power and dynamic power,

which are shown in the second and sixth columns, respectively. As expected, the

static power consumption keeps a near constant to the same design, our work thus

only focuses on the dynamic power analysis. For the FPGA-based design, the dy-

namic power consumption is composed of clock, logic & signals, and IO power. As

shown in the third column, the AXI4 DMA consumes the highest clock power due

to much more slice register and slice LUT utilization for both the linear and block

tests. In theory, the logic & signal power consumption depends on the logic activity

and the signal toggle rate. Therefore, the block tests with frequent command stages

consume more logic & signal power than the linear tests do, which is shown in the

fourth column. Among the three DMAs, ASBUS DMA consumes less logic & signal

power than AXI4 does, due to the compact structure and specific state-based de-

sign. As a half-duplex low speed bus, AHB achieves the least logic & signals power

consumption with very low switching activities. As shown in the fifth column, the

IO power consumption shows that it drastically increases as the number of IO in-

creases from AHB to AXI4 and AS transfers, and also increases as the toggle rate

increases from linear to block tests. Finally, the dynamic power, which is the sum of

clock, logic & signals, and IOs power consumption is shown in the sixth column. It

can be observed that ASBUS consumes less dynamic power than AXI4 does for the

85



Table 4.2: Power Report

Tests
Power Consumption (mW)
SP Clock Logic & Signals IOs DP TP

AHB L 1190.53 142.64 11.48 126.69 288.81 1471.34
AXI4 L 1195.12 192.12 39.38 227.41 458.90 1654.02
AS L 1193.63 158.47 22.90 200.16 381.54 1575.16
AHB B 1191.08 142.64 11.91 154.74 309.29 1500.37
AXI4 B 1195.90 192.55 55.57 250.88 498.99 1694.89
AS B 1194.81 158.47 23.29 223.70 405.46 1599.55

full-duplex buses. Comparing to the half-duplex AHB bus, ASBUS sacrifices more

dynamic power to achieve the bandwidth and transfer speed.

For energy limited devices, the energy consumption is one of the key performance

metrics. Although the power consumption of ASBUS is more than that of AHB,

a much less energy usage of ASBUS is possible because of the high-speed transfer

feature. In our work, the dynamic energy consumption model coded by Perl script

is executed to automatically extract the dynamic power information from the PWR

file, and the time consumption information from the time consumption & valid data

bandwidth evaluation file individually. Then, the dynamic energy can be calculated

and written into the BPE file at the end.

4.5 A Case Study: Applying The Methodology To Evaluate

AHB, AXI4 and ASBUS performance

In this section, AHB, AXI4, and ASBUS DMA are implemented as a case study.

Based on the UVM environment and evaluation methodology, two typical test cases

are used to obtain the final results.
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4.5.1 ASBUS DMA Structure

Figure 4.8 illustrates the design structure of ASBUS DMA combined with DDR2

Memory. In our work, the DDR2 Memory, including DDR2 Controller and DDR2

PHY, is a VIP instanced in the top module layer of the verification environment

shown in Figure 4.6. Generally, the main functions of ASBUS DMA are arbitrating

requests from ASBUS masters, scheduling responses, converting commands and data

between the on-chip bus side and DDR2 Controller side. Notice that two individual

command queues are used in the command scheduler module (CMD Scheduler),

write queue and read queue, and the depth is four of each. Thus, up to four com-

mands of each queue can be preprocessed ahead of data transfers. According to the

configured priority and the arbitration scheme [169], the commands of higher prior-

ity are pushed into the command queues, then all of them can be popped and driven

on ASBUS orderly. Using this channel-independent structure, the write and read

operations can be full-duplex. Moreover, the main contribution of ASBUS DMA is

the high-performance AS transfers. It provides a novel AES state transfer mode to

improve the AES cipher/inverse cipher process.

4.5.2 Mixed-Signal Verification System

Leveraging pre-existing digital verification technologies and verification environment

on mixed-signal SoCs is another research motivation. It will effectively mitigate the

cost of mixed-signal SoC verification procedure. The optimized verification metrics

and methodologies, including coverage driven verification, constraint random test,

assertion based verification, and UVM/VMM verification methodologies, are briefly

introduced as follows.
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Figure 4.8: ID DMA Structure

UVM/VMM Verification Methodologies: We set up the verification environ-

ment using the object-oriented programming (OOP) concept and multi-level hierar-

chical scheduling by System Verilog language, with reference to the UVM verification

methodology.For the signal-level layer, we add the analog models described in Fig-

ure 4.7 to digital RTL modules, which is DUT in this test bench. All the analog

models are dynamically controlled from digital side, so this test bench keeps the

running speed as a pure digital simulation environment. This layer interacts with

the mixed-signal modules by manipulating signals through interfaces with integer

or real data type.

Constraint Random Verification: Constrained random testing is more effective

than directed testing approach. This co-simulation test bench uses constraint-driven

test on top of an object-oriented data abstraction that models the data both on

integral and real types to be randomized as objects that contain random variables

and user-defined constraints. It is also an easier approach to find hard-to-reach

corner cases in analog modules.
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Figure 4.9: Cover Group

Coverage Driven Verification: For system level verification, coverage is used

as a metric for evaluating the progress of a verification project, in order to control

the number of regression times. Particularly, code coverage is used to tie the ver-

ification environment to the design intended or functionality. Functional coverage

is a user-defined metric concerning test plans. It is used to describe corner cases

and functional points. This test bench includes both code coverage and functional

coverage.

Cover point expressions can be described by real or integral data with System

Verilog. The example shown in Figure 4.9 illustrates two descriptions of integral

valued cover points. The first is transmission data length of 802.11n data frame,

which ranges from 0 Bytes to 65535 Bytes; the second is transmission rate, which

ranges from MCS0 to MCS7 for 802.11n specification. A covergroup can contain

one or more coverage points. The cover point expression takes places when the

covergroup is sampled.
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In the preceding example, the cross coverage group specifies cross coverage be-

tween two coverage points, transmission data length and data rate. Each coverage

point includes a set of bins associated with sampled values or value transitions.

Assertion Based Verification: To validate the behavior and timing of a design,

this test bench inserts some assertions that state the verification function to be

performed.

4.5.3 Test Cases and Simulation

In order to focus on the bus efficiency estimation, the clock frequency is set to 100

MHz and the bus size is set to word unit for all the AHB, AXI, and ASBUS. In our

empirical study, we highlight two typical test cases to investigate the bus speed and

power characteristics. The first case is a linear test, which is configured to write and

read 512-pixel data of a 1024 × 1024-pixel picture between external memory and

the on-chip DDR2 VIP. The initial addresses are hexadecimal “0x00” and “0x83f0”

for the USB Host agent and the Wi-Fi agent, respectively. The other test is an

interleaving block test, which is illustrated in Figure 4.10 that 32 AES state or 512-

pixel data from the top left and the bottom right of the same 1024 × 1024-pixel

picture are moved between external memory and the internal DDR2 VIP.

Figure 4.11 and Figure 4.12, respectively, show the linear and block tests’ simu-

lations of AHB, AXI4, and ASBUS . In our work, we use Mentor Graphic ModelSim

as the simulator [53]. For the AHB block test shown in Figure 4.12(a), around 9 ms

is required to transfer the 32-state data, because additional software configuration

and bus commands are necessary for each non-linear boundary operation. Due to

the full-duplex feature, AXI4 DMA reduces the time consumption to be a half of

the AHB transfer, which is close to 4.5 ms shown in Figure 4.12(b). Both AHB
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Figure 4.10: Interleaving Block Test Case

and AXI4 processing are in the row-major linear order, thus additional boundary-

crossing operations are required for the block tests, which involve much more time

consumption and power usage.

The ASBUS block test is shown in Figure 4.12(c). First, the ASBUS signal

“i11 dma len” is driven to be hexadecimal 11’h520. Thus, it is indicated as a AS

transfer because the most significant bit of “len[10]” is logic one, and the block size is

32-state or 4×32-word as the signal bits from nine to six is hexadecimal 4’h4 and the

bits from five to zero is hexadecimal 6’h20. Second, due to the specific interleaving

state transfer feature, the time consumption of the AS test is around 2.6 ms, which

is only 29% and 58% of the latency of AHB and AXI4 tests, respectively. Third, it

is obvious that the signal toggle rate of ASBUS is less than that of AHB and AXI4,

as shown in Figure 4.12(c), Figure 4.12(a) and Figure 4.12(b), respectively. At the

end of simulation, all the signal toggle information is saved to the VCD file.

In addition, the wireless data intended to produce a regular analog waveform

is shown in 4.13. Figure 4.13(a) illustrates the transmission frame including initial

legacy short and long training field (STF and LTF), and HT signal field (SIG) by

real data. Figure 4.13(b) shows the reception waveform, which is adjusted after

LNA and VGA gain, thus the magnitude decreases after a few seconds.
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(a) AHB DMA

(b) AXI4 DMA

(c) ID DMA

Figure 4.11: Timing Diagrams of the Linear Tests
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(a) AHB DMA

(b) AXI4 DMA

(c) ID DMA

Figure 4.12: Timing Diagrams of the Block Tests
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(a) Transmission

(b) Reception

Figure 4.13: 802.11a RF Waveform

Figure 4.14: I2C-BUS Controller Code Coverage

Coverage analysis provides metrics to evaluate verification rate of progress. It

is also possible, by means of code coverage analysis, to find missing test cases and

possible bugs. Specifically, 100% functional coverage must be attained because the

test bench writer usually sets a one-to-one relationship between the cover point and

functional point of DUT. However, it is normally impossible to reach 100% for code

coverage because of missing test cases or coding style that makes coverage cases

logically uncoverable. As an example, Figure 4.14 shows a coverage report of one of

the modules of SoC, the I2C bus controller.
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Table 4.3: Experimental Results
Test Cases TC (us) VDB (GBps) DE (uJ)
HL 6.08 2.69 1.76
XL 3.04 5.39 1.40
ASL 2.60 6.30 0.99
HB 8.96 1.83 2.77
XB 4.48 3.66 2.24
ASB 2.60 6.30 1.05

4.5.4 Experimental Results

Following the evaluation methodology, the time consumption and valid data band-

width metrics can be obtained using bus performance model based test bench during

the front-end design flow. As an example, Figure 4.15(a) and Figure 4.15(b), re-

spectively, show the performance reports of ASBUS and AHB, and ASBUS and

AXI. In conclusion, we summarize all the final performance metrics including time

consumption, valid data bandwidth, and dynamic energy in Table 4.3.

The difference among these tests is made clear through the analysis of time

consumption, valid data bandwidth, dynamic power and dynamic energy features

shown in Figure 4.16. To be a high speed bus, ASBUS time consumption is less

than AHB and AXI4 time consumption as illustrated in Figure 4.16(a): ASBUS

consumes 43% and 86% time that of AHB and AXI4 in the linear tests, and 29%

and 58% time that of AHB and AXI4 in the block tests. Although the traditional

bandwidth of ASBUS is the same as AXI4, the valid data transferring per cycle of

ASBUS is far more than AXI4, which is an evidence of the high efficiency of ASBUS.

As shown in Figure 4.16(b), in the block tests, the valid data bandwidth of ASBUS

is 3.4 and 1.7 times that of AHB and AXI4, respectively. Figure 4.16(c) shows that

the dynamic power of ASBUS is less than that of AXI4 but more than that of AHB.

However, the dynamic energy of ASBUS is less than that of both AHB and AXI4
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(a) AS Bus and AHB Comparison

(b) AS Bus and AXI4 Comparison

Figure 4.15: Bus Performance Evaluation Reports
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Figure 4.16: Performance Comparison

in the linear tests as shown in Figure 4.16(d). Furthermore, ASBUS reduces the

dynamic energy to less than a half of that of AHB and AXI4 in the block tests.

Another contribution of this chapter is the evaluation methodology derived from

the standard circuit design flow. Inserting performance estimation models in the

UVM environment and the back-end FPGA design flow, the time consumption,

valid data bandwidth, and dynamic energy information can be computed automat-

ically. In addition, before the hardware implementation, the static models can be

used to predict time consumption and valid data bandwidth. dynamic energy can

be calculated using the static time consumption and the back-end result dynamic

power. In order to verify the validation of the static models, we compare all the
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Table 4.4: Modeling Results
Test Cases TC (us) VDB (GBps) DE (uJ)
HL 6.11 2.68 1.77
XL 2.85 5.76 1.31
ASL 2.70 6.08 1.03
HB 8.99 1.82 2.78
XB 4.25 3.86 2.12
ASB 2.70 6.08 1.09

metrics resulted from the implementation flow and analytical models. The static

modeling results are summarized in Table 4.4.

Furthermore, the difference as an error percentage of the practical value is shown

in Figure 4.17. The worst case of the comparison is 6.9% at the AXI4 valid data

bandwidth modeling shown in Figure 4.17(b). The reason is that as a full-duplex

bus model, the AXI4 valid data bandwidth is based on the assumption of fully over-

lapping write and read operations, but in practice, each read operation is behind

write to monitor the correctness of the memory accesses. Therefore, the experimen-

tal valid data bandwidth is less than modeling results. Furthermore, the average

estimation error is around 3.3%. Through the experiments, we verify that all the

proposed models can be effectively applied for evaluating the bus performance.

4.6 Summary

First of all, this chapter proposes a specific interleaving AES state transfer mode,

AS transfer. In order to help architects to estimate the transfer performance ac-

curately and automatically, a performance methodology is also proposed. Then,

AHB-, AXI4-, and ASBUS-based designs are implemented as a case study. Com-

paring with the traditional AHB and AXI4, ASBUS achieves the highest speed and

bandwidth, and the energy consumption of ASBUS-based design is less than a half
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Figure 4.17: Percentage Error between Experimental Results and Modeling Results
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of AHB and AXI4. Moreover, qualitative and quantitative statistical comparisons

between the hardware implementation and modeling results show that very high

accuracy is achieved by the proposed models and the evaluation methodology.

In addition, this chapter has presented a verification process of a HDTV mixed-

signal SoC at the system level. Much has been done in the digital design space,

digital simulator and verification methods, to address this verification complexity

and minimize time consumption during simulation. Key advantages for this imple-

mentation include: (i) real data in a digital-metric simulation tool and test bench,

(ii) verification methodologies applicable to mixed-signal SoC, (iii) reusable real sig-

nal models or VIPs, (iv) a faster approach that can speed up the regression testing

period, (v) constrained random input data, (vi) assertion-based verification, (vii)

code coverage and functional coverage verification. The results show that it is one

of the best choices for complex mixed-signal SoC level verification, because not only

does it have faster simulation speed but also is easier to migrate to the advanced

digital verification technologies. The drawbacks of such models tend to be less ac-

curate and it is very difficult to write equivalent models for many classes of circuits.

Applications of this mixed-signal verification solution are better used for functional

simulation.

In brief, this chapter links analog and digital circuits in a common verification

environment to help the verification engineer to apply more verification methods

then in traditional approaches. The future research will focus on improving the

accuracy of analog models, thereby increasing the flexibility and reusability of the

verification.
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CHAPTER 5

AN ADVANCED AES-ENCRYPTED IBUS ARCHITECTURE

Security is becoming a de-facto requirement of system-on-chips (SoC), leading up to

a significant share of circuit design cost [74, 63, 140]. To improve chip performance

and the capabilities to provide efficient architectural support for the complex AES

algorithm, an advanced IBUS architecture for AES-encrypted circuits is proposed

in this chapter. Then, different FPGA implementations, 32-, 64-, and 128-bit IBUS

and AXI DMAs, combined with full pipeline and maximum overlapping AES core

and memory controller (IDAM and XDAM), are optimized and evaluated to identify

the high-speed and low-power architectures for the low-cost and low-power chips.

The results show that the presented IBUS structure outperforms the AXI design.

As an example, the 32-bit IDAM costs less in terms of hardware resources and

achieves higher throughput (1.30×) than the 32-bit XDAM, and the dynamic power

consumed by the IBUS cipher test is reduced to 71.27% compared with the AXI

cipher test.

5.1 Related Work

The rapid rise in Internet-connected devices imposes increasingly higher require-

ments on high-performance and high-security SoCs, in terms of low-cost, high-speed,

energy-efficiency, and data security. It creates new problems and challenges between

the complexity of security algorithms and the limited resource and power of embed-

ded chips. In order to protect data communication in wireless networks, several

cryptology algorithms have been widely used in hardware today. The AES, issued

by the US NIST in 2011, is the dominant symmetric-key cryptosystem [19]. For

decades, numerous hardware implementations were proposed and their performance

101



were evaluated using ASIC [72] and FPGA [175, 132]. However, all the previous

research attempts to optimize AES-encrypted chips frequently fall back on refining

the AES cores rather than on AES system as a whole; indeed, refining part of the

system is useful, yet the focus, such as transfer efficiency and energy consumption,

is still on bus architectures.

Mathematically, AES operates on a 4 × 4 column-major order matrix of bytes,

termed the state. Each state is performed by 10, 12, or 14 rounds of transforma-

tions with key lengths equal to 128, 192, or 256 bits, respectively. In each round,

except for the final round, four transformations, including SubBytes (SB), ShiftRows

(SR), MixColumns (MC), and AddRoundKey (AR) are performed for encryption,

while InvSubBytes (ISB), InvShiftRows (ISR), InvMixColumns (IMC), and AR are

performed for decryption.

Among the transformations in AES encryption/decryption, the SB/ISB trans-

formation is a non-linear operation requiring the highest area and consuming much

power of the circuit. Some of the earlier SB/ISB implementations are based on look-

up table, such as those described in [61, 124, 99]. The unbreakable LUT accessing

limits the high-efficiency applications, such as parallel computation and pipeline op-

erations. Thus, an alternative composite field method for the S-Box computation

[144] is suggested by V. Rijmen, who is one of the AES inventors. Based on this finite

field arithmetic, many high-performance implementations are proposed to replace

the LUT-based S-Box transformations by combinational logics [193, 47, 127, 91, 27].

Moreover, [192] and [117] analyze and compare the complexity of the SB imple-

mentation using different irreducible polynomials. The AES performance is also con-

sidered on the core structural level in [41], [146, 30, 159, 77, 163]. For instance, the

four primitive transformations are decomposed, rearranged, and regrouped as new

linear and non-linear operations in [41] to provide 1.28 Gbps (0.16 GBps) through-
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put for 128-bit keys. In [146], the transformations A/IA, SR/ISR, and MC/IMC

are combined into a single function unit A/SR/MC or IMC/ISR/IA, and the sub-

structure sharing algorithm is applied to reduce the area cost.

However, all the previous AES research was based on the assumption that all

the AES states can be input to the encrypter (ENC)/decrypter (DEC) column-by-

column immediately. Actually, it is unfeasible to transfer data without any bus

protocol overhead, particularly to process data by shifted/inverse-shifted block in

the column-major order. Traditional bus architectures, such as the AMBA AHB

[1] and AXI [5] from ARM Holdings, Wishbone from Silicore Corporation [6], OCP

from OCP-IP [4], CoreConnect from IBM [2], and STBus from STMicroelectronics

[7], process data in the row-major order and are very low-efficiency to supply the

rectangular array of bytes. The IBUS proposed in [186] can transfer data by block.

However, the operating order of IBUS is in the row-major order as well. From

the system point of view, the bus architecture plays a pivotal role in advancing

the AES-encrypted circuit performance: the resource costs are influenced by the

architectural degree of parallelism and the number of pipeline stages, the speed is

determined by the maximum operating frequency (MOF) of the whole system and

the bus efficiency, and the energy consumption is dependent on the gate count and

logic, signal & IO toggle rates (LSIO).

To tackle these issues, we further propose an advanced IBUS architecture for

the AES-encrypted embedded systems to enhance the SoC performance with the

overhead cost of security applications. To the best of our knowledge, this is the

first performance analysis for AES circuits on the bus architectural point of view.

Furthermore, different solutions of the state transfers are presented, which are used

to consider the tradeoffs among area, throughput, and power consumption together

in the architectural design.
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The organization of this chapter is as follows: section 5.2 briefly introduces the

AES system structure, section 5.3 presents the IBUS architecture and analyzes its

performance statically. In section 5.4, the RTL design, simulation, synthesis, and

power analysis are illustrated. The experimental results are shown in section 5.5.

Finally, section 5.6 concludes this chapter.

5.2 AES-Encrypted Circuit

In this section, we briefly illustrate the AES system structure, and then explain the

detailed logic implementations of the ENC and DEC engines based on the composite

field arithmetic.

5.2.1 Mathematical Preliminaries

The AES standard specifies the Rijndael algorithm, a symmetric block cipher that

can process 128-bit states, using cipher keys with lengths of 128, 192, and 256 bits.

The key length is represented by Nb=4, 6, or 8, which denotes the number of 32-

bit data in the cipher key. For the AES algorithm, the number of rounds to be

performed depends on the key size. It is represented by Nr, where Nr=10 when

Nb=4, Nr=12 when Nb=6, and Nr=14 when Nb=8. In our study, only the 10-round

AES algorithm with 4-word key is implemented as a case study.

For both cipher and inverse-cipher processes, each AES round, except for the final

round, consists of four different byte-oriented transformations: 1) non-linear byte

substitution using a S-box (SB/ISB), 2) shifting rows of the state array (SR/ISR),

3) mixing the data within each column of the state array (MC/IMC), and 4) adding

a round key to the state (AK), while the final round does not have the MC/IMC

transformation. Among the four transformations, SB/ISB is the bottleneck of the
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speed and power consumption of the AES core. The most common strategy to

implement the S-box is employing the LUT-based design. It results in very high area

overhead and a non-parallel structure due to the fixed operational delay of LUTs.

Therefore, the composite field arithmetic over GF(28), which employs combinational

logic only, is used to exploit the advantage of internal pipeline in our work. In

theory, the composite field of GF(28) can be built iteratively from GF(2) using the

irreducible polynomials [138]:

GF (2) → GF (22) : x2 + x+ 1 (5.1)

GF (22) → GF ((22)2) : x2 + x+ φ (5.2)

GF ((22)2) → GF (((22)2)2) : x2 + x+ λ (5.3)

First, x2+x+1 is the only irreducible polynomial of degree 2 over GF(2). Second,

there are two values of φ that make x2+x+φ irreducible over GF(22), and 8 possible

values of λ that make x2+x+λ irreducible over GF((22)2) constructed by using

each of φ. All together, there are sixteen ways to construct the composite field

GF(((22)2)2)) using irreducible polynomials in the equations. As a case study, we

use φ={10}2, λ={1100}2 in our work.

5.2.2 AES Circuit Structure

Figure 5.1 shows a 32-bit AES system structure including ENC and DEC engines.

For the non-cipher mode, the AES ENC engine is bypassed on the read data path,

and the AES DEC engine is bypassed on the write data path. Otherwise, the write

data are decrypted before being stored into the memory, and the read data are

encrypted before being transferred on the data bus. Both ENC and DEC engines

include 2 sub-stages (SS), SS1 and SS2, of the 10-round function. The SB/ISB
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Figure 5.1: AES Circuit Structure.

transformation is decomposed as a modular inversion over GF(24) located in SS1

and four linear functions (A, IA, δ, and Iδ). In order to shorten the SB/ISB critical

path, IA is combined with δ (IA × Iδ) in SS1, and Iδ is merged with A (Iδ × A)

in SS2. In addition, the SR/ISR, MC/IMC, and AK transformations are integrated

in SS2 to obtain approximately equal delay to SS1. The key expansion unit can

be instantiated as either a hardware or a software generator. Concentrating on the

transfer efficiency of the system, the round keys are configured by software through

control bus in our work.
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In what follows, we briefly explain the gate-level implementations of all the AES

operators. Assume that all the functions are black boxes with logic input and output.

Let “a” denote the input and “b” denote the output in a one-in, one-out assignment

hereafter. The bit-width of “a” and “b” are 8-, 4-, and 2-bit, respectively, when the

operator is in GF(28), GF(24), and GF(22) fields. Hence, the logic designs of δ and

Iδ are written below:

b ={a7 ⊕ a5, a7 ⊕ a6 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1, a7 ⊕ a5 ⊕ a3 ⊕ a2,

a7 ⊕ a5 ⊕ a3 ⊕ a2 ⊕ a1, a7 ⊕ a6 ⊕ a2 ⊕ a1, a7 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1,

a6 ⊕ a4 ⊕ a1, a6 ⊕ a1 ⊕ a0}

(5.4)

b ={a7 ⊕ a6 ⊕ a5 ⊕ a1, a6 ⊕ a2, a6 ⊕ a5 ⊕ a1, a6 ⊕ a5 ⊕ a4 ⊕ a2 ⊕ a1,

a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1, a7 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1, a5 ⊕ a4,

a6 ⊕ a5 ⊕ a4 ⊕ a2 ⊕ a0}

(5.5)

Derived from Verilog Hardware Description Language (HDL) [20], the concatena-

tion operator “{,}”combines the bits of 2 or more data objects. In equation 5.4 and

equation 5.5, δ and Iδ are implemented by “XOR” gates denoted as “⊕” hereafter.

Likewise, the logic designs of A and IA can be represented as

b ={a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a3,∼ a6 ⊕ a5 ⊕ a4 ⊕ a3 ⊕ a2,∼ a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1,

a4 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0, a7 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0, a7 ⊕ a6 ⊕ a2 ⊕ a1 ⊕ a0,

∼ a7 ⊕ a6 ⊕ a5 ⊕ a1 ⊕ a0,∼ a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a0}

(5.6)

b ={a6 ⊕ a4 ⊕ a1, a5 ⊕ a3 ⊕ a0, a7 ⊕ a4 ⊕ a2, a6 ⊕ a3 ⊕ a1, a5 ⊕ a2 ⊕ a0,

∼ a7 ⊕ a4 ⊕ a1, a6 ⊕ a3 ⊕ a0,∼ a7 ⊕ a5 ⊕ a2}

(5.7)

, respectively. In these 2 equations, the “∼” operator indicates a bit-wise logic

inversion of each input bit [20]. The multiplicative inversion module can be shared
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in a combined structure. Theoretically, any arbitrary polynomial can be represented

as px+q where p is the upper half term and q is the lower half term. Denoting the

irreducible polynomial as x2+Ax+B, the multiplicative inversion for an arbitrary

polynomial px+q is given by

(px+ q)−1 = p(p2B + pqA+ q2)−1x+ (q + pA)(p2B + pqA+ q2)−1 (5.8)

Therefore, the inversion calculation in GF(28) is now translated to calculate the

inversion in GF(24) with performing some multiplications, squaring, and additions

in GF(24). As shown in Figure 5.1, the multiplication with constant λ and squaring

in GF(24) can be combined together to reduce the combinational logic cost and

shorten the critical path, which is modified as below:

b3 =a2 ⊕ a1 ⊕ a0

b2 =a3 ⊕ a0

b1 =a3

b0 =a3 ⊕ a2

(5.9)

Using the combining logic in equation 5.9, the implementation of multiplication

with constant λ and squaring in GF(24) can be optimized as 4 “XOR” gates with 2

“XOR” gates in the critical path. It reduces one “XOR” gate delay in the critical

path compared to [193].

Moreover, the multiplication in GF(24) field can be further decomposed into

multiplication in GF(22), and then to GF(2). For a two-in, one-out assignment, let

“a” and “b” denote 2 inputs, and “c” denote the output hereafter. The bit-width

of “a”, “b”, and “c” are 4-bit and 2-bit if the operator is in GF(24) and GF(22),

respectively. Assume c=a× b, where a=aHx+aL and b=bHx+bL. Here, aH and bH

are the upper half term, and aL and bL are the lower half term. Then, the product
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of a and b is

c = (bHaH + bHaL + bLaH)x+ bHaHθ + bLaL (5.10)

This equation is in the form of GF(22). In order to decompose the GF(22)

multiplication to GF(2), the logic for computing GF(2) multiplication is rewritten

as

c1 =b1a1 ⊕ b0a1 ⊕ b1a0

c0 =b1a1 ⊕ b0a0

(5.11)

and the logic for computing GF(2) multiplication with constant ϕ is

b1 =a1 ⊕ a0

b0 =a1

(5.12)

Using equation 5.11 and equation 5.12, the multiplication in GF(24) can be

implemented in hardware as multiplication involving only “XOR” and “AND” gates.

In theory, the inversion in GF(24) can be implemented by repeating squaring and

multiplication, decomposing inversion by applying formulas similar to equation 5.8

iteratively, and computing each inverse bit individually [138]. Using the direct

implementation of the inverse bit, the GF(24) inversion is shown as below:

b−1
3 =a3 ⊕ a3a2a1 ⊕ a3a0 ⊕ a2

b−1
2 =a3a2a1 ⊕ a3a2a0 ⊕ a3a0 ⊕ a2 ⊕ a2a1

b−1
1 =a3 ⊕ a3a2a1 ⊕ a3a1a0 ⊕ a2 ⊕ a2a0 ⊕ a1

b−1
0 =a3a2a1 ⊕ a3a2a0 ⊕ a3a1 ⊕ a3a1a0 ⊕ a3a0 ⊕ a2 ⊕ a2a1, a2a1a0 ⊕ a1 ⊕ a0

(5.13)

So far, the SB/ISB logic implementation split into several operators in the com-

posite field is completed. For the SR/ISR transformation, the bytes in the last three

rows of the state are cyclically-shifted/cyclically-inverse-shifted over different num-

bers of bytes. The first row is not shifted. The second, third, and fourth rows are

left shifted one, two, and three bytes for the SR transformation, and right shifted
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one, two, and three bytes for the ISR transformation, respectively. Since the cyclic

rotation does not affect the regrouping result, the order of Iδ×A/Iδ and SR/ISR is

further exchanged, as shown in Figure 5.1. In this way, the four byte-size outputs of

SS1 can be reordered as the shifted/inverse-shifted rules and merged with Iδ×A/Iδ

operators, then combined with the word-size input of the MC/IMC transformation

in SS2. In our study, the XTime method composed of a fundamental multiplication

block called XTime that multiplies a byte with constant values {02} and {04} is

used. Let s denote the initial bytes of a state, the logic designs of {02}s and {04}s

are

b ={a6, a5, a4, a3 ⊕ a7, a2 ⊕ a7, a1, a0 ⊕ a7, a7}

b ={a5, a4, a3 ⊕ a7, a2 ⊕ a6 ⊕ a7, a1 ⊕ a6, a0 ⊕ a7, a6 ⊕ a7, a6}

(5.14)

, respectively. Let the prefix “s ” denote the MC output signal and “is ” denote

the IMC output signal. The logic implementations of MC and IMC are rewritten

as:

s s0 ={02}(s0 ⊕ s1)⊕ s2 ⊕ s3 ⊕ s1

s s1 ={02}(s1 ⊕ s2)⊕ s3 ⊕ s0 ⊕ s2

s s2 ={02}(s2 ⊕ s3)⊕ s0 ⊕ s1 ⊕ s3

s s3 ={02}(s3 ⊕ s0)⊕ s1 ⊕ s2 ⊕ s0

(5.15)

is s0 =s s0 ⊕ ({02}({04}(s0 ⊕ s2) + {04}(s1 ⊕ s3)) + {04}(s0 ⊕ s2))

is s1 =s s1 ⊕ ({02}({04}(s0 ⊕ s2) + {04}(s1 ⊕ s3)) + {04}(s1 ⊕ s3))

is s2 =s s2 ⊕ ({02}({04}(s0 ⊕ s2) + {04}(s1 ⊕ s3)) + {04}(s0 ⊕ s2))

is s3 =s s3 ⊕ ({02}({04}(s0 ⊕ s2) + {04}(s1 ⊕ s3)) + {04}(s1 ⊕ s3))

(5.16)

In equation 5.15 and 5.16, s0, s1, s2, and s3 represent the first, second, third, and

fourth bytes in a column of a state, respectively. In the final AK transformation, a

round key is added to the state by a simple bitwise XOR operation. For the ENV

110



Table 5.1: AES ENC/DEC Gate Count and Critical Path
Modules Total Gates Critical Path
δ 12XOR 4XOR
x2 × λ 4XOR 2XOR
Multiplication in GF(24) 21XOR+9AND 4XOR+1AND
x−1 14XOR+9AND 3XOR+2AND
δ−1 × A 19XOR 4XOR
A−1 × δ 19XOR 3XOR
δ−1 17XOR 3XOR
MC 108XOR 3XOR
IMC 193XOR 7XOR

engine, the 10-round keys from RK(0) to RK(a) are forward input, otherwise, the

direction is reversed from RK(a) to RK(0) for the DEC engine.

5.2.3 AES Circuit Performance Analysis

As can be observed from the equations introduced in subsection 5.2.2, the gate

costs and critical path for each operator are summarized in Table 5.1. The internal

pipeline structure can achieve the maximum speed if each round unit can be divided

into SSs with equal delay. Considering the whole system performance, we divide

the cipher/inverse-cipher core into two SSs with approximately equal critical path

latencies. For the ENC engine, the critical path of SS1 has 15 XOR gates and 1

MUX, and the critical path of SS2 has 8 XOR gates and 1 MUX. For the DEC

engine, the critical path of SS1 has 16 XOR gates and 1 MUX, and the critical path

of SS2 has 11 XOR gates and 1 MUX. Moreover, notice that four 8-bit interface

units (U1, U2, U3, and U4) are instanced in SS1 to interconnect with 32-bit SS2.

In SS2, the 8-bit operator, Iδ×A, is duplicated four times to match 32-bit SR/ISR

and MC/IMC transformations.
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5.3 AES-Encrypted IBUS Protocol

Derived from IBUS protocol, this section presents an advanced on-chip data com-

munication standard for designing low-power and high-speed AES-encrypted micro-

controllers. In what follows, the architectural performance is statically analyzed.

5.3.1 State Transfer Mode

To illustrate the transfer types provided by IBUS, a two-state memory access ex-

ample is shown in Figure 5.2. In Figure 5.2(a), eight consecutive linear transfers are

required to access two 4×4-byte matrices. Each transfer includes one command stage

(C) and one data stage (D). In addition, the block transfer is supported by IBUS to

improve the performance of matrix-based applications in some specific fields, such

as image processing, computer vision, and wireless communication [71, 3, 15]. The

block transfer defines the rectangle size and makes every memory boundary-crossing

command computable by hardware, so that the time consumption of software con-

figuration and bus commands is reduced. Since the consecutive data of the rows of

the array are contiguous in memory, the block transfer is essentially a row-major

order transfer as well. Figure 5.2(b) shows a memory access example of two 4× 4-

byte matrices using the block mode. Two block transfers are required to load or

store two matrices, and each of the transfers involves one command stage and four

data stages.

A novel transfer mode, the AES state transfer, is the main contribution to the

AES-encrypted IBUS architecture in this chapter. It advantageously optimizes data

supply efficiency involving encryption/decryption processing. This transfer mode

may reduce the processing load of data scheduling and buffering and power con-

sumption in system environments making use of AES cryptographic processing. In
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implementations with the AES state transfer mode, the “AES state” is adopted as

the basic unit of data transfer on the DBUS. The AES state transfer is processed

on the DBUS in the column-major order, rather than the row-major order of linear

and block modes. In a “read” operation, the plaintext state is cyclically-shifted

into the ENC engine, and on a “write” operation the ciphertext state is cyclically-

inverse-shifted into the DEC engine. Figure 5.2(c) shows the memory layout, where

only one command (C0) is required to transfer two AES states (S0 and S1). Each

state is processed in column major order (i.e., column-by-column) and cyclically-

shifted/cyclically-inverse-shifted.

For example, assume the byte sequence in an AES state is from hexadecimal

“0” to “3”, “4” to “7”, “8” to “b”, “c” to “f” for the first, second, third, and

fourth columns, respectively, as shown in memory sequence. The first write data

sequence shown on the 64-bit DBUS is “0”, “5”, “a”, “f”, “4”, “9”, “e”, “3”, and

the second write data sequence is “8”, “d”, “2”, “7”, “c”, “1”, “6”, “b”, which are

cyclically inverse shifted before entering the DEC engine. Likewise, the first read

data sequence is “8”, “5”, “2”, “f”, “c”, “9”, “6”, “3”, and the second read data

sequence is 8, 5, 2, f, c, 9, 6, 3, which are cyclically shifted before enter the ENC

engine.

Figure 5.3 shows a timing diagram example of a 64-bit linear transfer. As a

traditional data transfer mode, additional commands are required for each non-linear

boundary-crossing operation of memory. Thus, 8 transfers, including command

(C0 to C7) and data stages (D0 to D7), are necessary to access two 4 × 4-byte

matrices. Moreover, IBUS provides the command preprocessing scheme and full-

duplex bus operations. As shown in the figure, the command stages are consecutive

and parallel with the data phases. The detailed information of the linear write

and read processing are shown in Figure 5.3(b) and Figure 5.3(c), respectively. To
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(a) Linear

(b) Block

(c) State

Figure 5.2: Mem Access
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illustrate the data sequence driven on IBUS, let “→” operator indicate the associated

memory address of the data in byte hereafter. Since the bus width is 64-bit in this

case, only the write data bits from 63 to 32 are valid for the first to the fourth

transfers (C0-D0 to C3-D3), and only the write data bits from 31 to 0 are valid

for the fifth to the seventh transfers (C4-D4 to C7-D7), which are indicated by the

“wdata vld” signal as “8’hf0” and “8’h0f”, respectively.

Apart from the conventional linear transfer, IBUS supports data transfer by

block as well. The block mode defines all the block boundary-crossing addresses

and the transfer size with the initial command. Thus, only two command stages

(C0 and C1) are required to access two 4 × 4-byte matrices. As a timing diagram

example of the 64-bit block transfer shown in Figure 5.4(a), it can be observed that

the command stage of the second transfer (C1) is overlapped with the first and the

second data stages (D0 and D1). Additionally, the detailed commands and data of

the block write and read processing are shown in Figure 5.4(b) and Figure 5.4(c).

The 4 × 4-byte block size is represented by the signals “len[9:6]” and “len[5:0]” as

the column number (hexadecimal 4’h1) and the row number (hexadecimal “6’h4”).

Similar to the linear write transfer example, 5.4(b) shows that only the write data

bits from 63 to 32 are valid for the first ma-trix transfer (C0-D0 to D3), and only the

write data bit from 31 to 0 are valid for the second matrix transfer (C1-D4 to D7),

which are indicated by the “wdata vld” signal as “8’hf0” and “8’h0f”, respectively.

Finally, we consider the high-efficiency state transfer mode for the AES-encrypted

systems. As a timing diagram example shown in Figure 5.5(a), only one command

stage (C0) is required for the two-state (S0 and S1) transfer. Notice that the en-

cryption/decryption processing starts at the T4 cycle immediately, since the first

double word driven at the T3 cycle are cyclically-shifted/cyclically-inverse-shifted

already using the specific state transfer type. More specifically, each AES state pro-
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(a) Timing Diagram

(b) Write Operation

(c) Read Operation

Figure 5.3: IBUS Linear Transfer Processing.
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(a) Timing Diagram

(b) Write Operation

(c) Read Operation

Figure 5.4: IBUS Block Transfer Processing.
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cessing includes ten rounds, and each round of the encryption/decryption involves

two sub-stages: SS1(n) and SS2(n), where “n” denotes the round number ranging

from hexadecimal “1” to “a”. For the write data process, the ciphertext states re-

quire ten-round decryption (SS1(1) & SS2(1) to SS1(a) & SS2(a)) before they can

be written into memory. Likewise, for the read data process, the plaintext states

require ten-round encryption (SS1(1) & SS2(1) to SS1(a) & SS2(a)) before they

can be transferred on bus. Let S0(mn) and S1(mn) denote the first and the second

states in the mth SS of the nth round, respectively. So “m” ranges from hexadecimal

“1” to “2”, which represents the first and the second SS, and “n” ranges from hex-

adecimal“1” to “a”, which represents the first to the tenth round. Notice that the

state processing within ten rounds of the same AES state are internal pipeline (from

S0(m1) to S0(ma), or from S1(m1) to S1(ma)) and parallel (S0(1n) and S0(2n), or

S1(1n) and S1(2n)), and the state processing among different AES states are ex-

ternal pipeline (from S0(mn) to S1(mn)). Therefore, for the 64-bit bus, the shifted

plaintext states read from memory are continuous and the ciphertexts shown on the

bus can be consecutive after 30-cycle encryption, and the inverse-shifted ciphertext

states shown on bus are consecutive and the plaintexts written into memory can be

continuous after 30-cycle decryption.

Figure 5.5(b) and Figure 5.5(c) show the detailed commands and data of the

state transfer write and read operations. First, all the write data driven on IBUS

are valid due to the specific state-unit operation of the state mode, which is indicated

by the “wdata vld” signal as hexadecimal “8’hff”. Second, the read/write data is

cyclically-shifted/cyclically-inverse-shifted before enter the ENC/DEC engine. As

an example shown in Figure 5.5(c), the byte-unit memory addresses of the first

word data, which are driven on the upper half term of the first double-word, are
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(a) Timing Diagram

(b) Write Operation

(c) Read Operation

Figure 5.5: IBUS State Transfer Processing.
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hexadecimal 0x00, 0x11, 0x22, and 0x33. They are cyclically-shifted as the first

column of the state input to the encrypter.

5.3.2 Transfer Latency Models

To estimate the IBUS transfer efficiency, we formulate and compare performance

metrics of both AXI and IBUS in this subsection.

Let PXL and PIL, respectively, denote the probability of the back-to-back trans-

fers of AXI and the probability of the back-to-back transfers of IBUS in a linear

transfer. Since the command and data phases can be overlapped between two con-

secutive transfers, the AXI linear (XL) transfer latency, denoted by CYXL, can be

formulated as

CYXL = 4× ceil(
NL

XS
) +NL − 2× ceil(

NL

XS
)× PXL. (5.17)

where PXS ranges from 0 to [ceil(NL/XS)-1]/ceil(NL/XS). In this equation, the

ceil() function represents that rounds fraction up. XS indicates the maximum AXI

burst size, specified by ARLEN for read and AWLEN for write. It is 16 for AXI3

and 256 for AXI4 compatibility. In this equation, each AXI transfer requires four

command cycles, two request, one address, and one response, when the response to

any bus transfer is always available immediately, and all the command transactions

are back-to-back.

In contrast, IBUS integrates the arbitration and address phases together, and

also combines the data and slave-driven response phases. Therefore, it uses only

two cycles with an immediate grant. The total latency of IBUS transfers, denoted

by CYIL, thus is

CYIL = 2× ceil(
NL

IS
) +NL − 2× ceil(

NL

IS
)× PIL. (5.18)
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where IS represents the maximum IBUS transfer size, which is 1024 beats for

the 10-bit IBUS length signal. In this equation, PIL ranges from 0 to [ceil(NL/IS)-

1]/ceil(NL/IS).

AXI protocol does not define how to access data by block. Hence, designers must

consider the specific operations for the matrix-based applications and algorithms.

Using the AXI linear transfer type, the total cycles of a block processing can be

calculated as

CYXB = 4×NH × ceil(
NW

XS
) +NH ×NW − 2×NH × ceil(

NW

XS
)× PXB. (5.19)

Here, PXB represents the probability of the back-to-back AXI block transfers,

which ranges from 0 to [NH*ceil(NW/XS)-1]/[NH*ceil(NW/XS)].

Due to the built-in boundary crossing scheme of the block transfer, each matrix

operation consumes only one command stage for IBUS. The total cycle cost of an

IBUS block transfer can be formulated as

CYIB = 2× ceil(
NH

DH
)× ceil(

NW

DW
)+NH ×NW − 2× ceil(

NH

DH
)× ceil(

NW

DW
)×PIB.

(5.20)

where DH and DW are the maximum block height and the maximum block width

that can be processed by the IBUS block transfer. As an example, DH is 32 for a

5-bit block height signal, and DW is 16 for a 4-bit block width signal. PIB denotes

the probability of the back-to-back IBUS block transfers, which ranges from 0 to

[ceil(NH/DH)*ceil(NW/DW)-1]/[ceil(NH/DH)*ceil(NW/DW)].

Finally, the AES cipher latency on AXI and IBUS is considered. To evaluate

the AES state transfer performance, we implement the AES engines using the com-

posite filed arithmetic, based on the 10-round algorithm with 4-word key, and the

GF(((22)2)2) construction with φ={10}2 and λ={1100}2.
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Considering the whole system performance, we split each AES round into two

subsections: subsection1 (SS1) merging the non-linear functions δ/IA ×δ with the

modular inversion operator, and subsection2 (SS2) integrating SR/ISR, Iδ × A/Iδ,

MC/IMC, and AK transformations. Assume that the encryption/decryption pro-

cessing is full pipeline, each cipher round thus uses 5 clock cycles for the 32-bit bus,

in which 4 cycles are consumed by SS1 and 4 cycles are consumed by SS2 with 3

cycles overlapped. Moreover, assume that all the transfers are back-to-back, and the

command stages, data stages, and AES cipher operations are completely overlapped.

Therefore, the number of cycles spent by AXI bus to transfer NE AES states (AS)

can be calculated as

CYAS = 4× 4NE + 4NE − 2× 4NE × PAS. (5.21)

where the back-to-back probability of AXI state transfers, denoted as PAS,

ranges from 0 to (4NE-1)/4NE. Furthermore, for the AES cipher/inverse-cipher

processing, the state transfer consumes not only the command and data cycles on

bus, but also the AES encryption/decryption latency. Assume that the encryp-

tion/decryption processing is full pipeline, each cipher/inverse-cipher round uses 5

clock cycles for the 32-bit bus, in which 4 cycles are consumed by SS1 and 4 cycles

are consumed by SS2 with 3 cycles overlapped. Likewise, 3 cycles are needed for

the 64-bit bus and 2 cycles are needed for the 128-bit bus to complete each AES

state round. Furthermore, assume that all the transfers are back-to-back, and the

command stages, data stages, and AES cipher/inverse-cipher operations are com-

pletely overlapped. The total number of cycles spent by the 32-, 64-, and 128-bit

AXI encryption/decryption (XE) procedures are

CYXE32 = 2 + 6×NE + 50×NE − (12×NE + 38×NE)× PXE. (5.22)

CYXE64 = 2 + 4×NE + 30×NE − (6×NE + 24×NE)× PXE. (5.23)
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Table 5.2: Modeling Performance Comparison
Tests CY

XL (4− 2P )ceil(NL

XS
) +NL

IL (2− 2P )ceil(NL

IS
) +NL

XB (4− 2P )×NH × ceil(NW

XS
) +NH ×NW

IB (2− 2P )× ceil(NH

DH
)× ceil(NW

DW
) +NH ×NW

XE32 2 + 2NE(28− 25P )
XE64 2 + 2NE(17− 15P )
XE128 2 +NE(23− 20P )
IE32 2 + 2NE(27− 25P )
IE64 2 + 2NE(16− 15P )
IE128 2 +NE(21− 20P )

CYXE128 = 2 + 3×NE + 20×NE − (3×NE + 17×NE)× PXE. (5.24)

Notice that the back-to-back probability of AXI cipher test ranges from 0 to

(NE-1)/NE .

For the specific state transfer mode of IBUS, only one command is required for a

write or read operation with less than or equal to 1024 states, due to the 10-bit width

definition of the “id len[9:0]” signal. The number of processing cycles depends on

the IBUS size. For instance, 4N, 2N, and N cycles are needed to transfer N states for

the 32-, 64-, and 128-bit IBUS, respectively. Therefore, the total cycles consumed

by IBUS encryption/decryption (IE) tests are

CYIE32 = 2 + 4×NE + 50×NE − (4×NE + 46×NE)× PIE. (5.25)

CYIE64 = 2 + 2×NE + 30×NE − (2×NE + 28×NE)× PIE. (5.26)

CYIE128 = 2 +NE + 20×NE − (NE + 19×NE)× PIE. (5.27)

for the 32-, 64-, and 128-bit IBUS, respectively. In equation 5.25, equation 5.26,

and equation 5.27, 50, 30, and 20 cycles are used to encrypt/decrypt one AES state.

Table 5.2 simplifies and summarizes all the above analysis.
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5.3.3 Static Performance Analysis

The difference between AXI and IBUS with different bus sizes is made clear through

the analysis of cycle cost in Figure 5.6. Assume that the total state number (N)

is 10, which is the smallest state number for a ten-round pipeline and parallel pro-

cessing of encryption & decryption. The horizontal axis represents the back-to-back

probability (P) ranging from 0 to 0.95 in this case.

As the latency of linear test cases, involving XL and IL shown in Figure 5.6(a),

the clock cycles consumed by the IL transfers are 88.51%, 86.61%, and 83.06% for

all the 32-, 64-, and 128-bit bus sizes, compared with the XL tests when P reaches

the maximum (0.95). Likewise, the clock cycles consumed by the IB transfers are

82.75%, 82.85%, and 70.77%, respectively, compared with the XB tests, for all the

three bus sizes’ tests, as shown in Figure 5.6(b). The comparison between AXI and

IBUS cipher tests are further shown in Figure 5.6(c). For the same bus size, the

IE test consumes less cycles than the XE transfer. As an example, when P is the

maximum 0.95, the clock cycles consumed by IBUS transfers are 76.74%, 64.29%,

and 51.22% compared with AXI transfers for 32-, 64-, and 128- buses, respectively.

In what follows, the resource costs are considered statically. To realize the

ENC/DEC engine, we need to pay for large overhead logics and optimize the number

of parallel resource costs. Figure 5.7 shows the pipeline structures and the resource

costs depending on different bus-based implementations. Let S and M denote the

logic utilization of SS1 and SS2, respectively. When the bus size is 32-bit shown in

Figure 5.7(a), four parallel S (4S) connected with one M (1M) instances are necessary

to internally pipeline and parallel all the ten-round cipher/inverse-cipher processing

per state. In order to externally pipeline all the ten rounds among different states,

the hardware resource must be duplicated ten times as the overhead for high-speed

transfers.
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(a) Linear

(b) Block

(c) State

Figure 5.6: Static Performance Analysis.
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Furthermore, the resources are doubled to externally parallel the write and read

channels of the full-duplex bus. As the 64-bit bus-based implementation shown in

Figure 5.7(b), the cipher/inverse-cipher processing can be sped up, but the S and

M instances are doubled. It requires 8 S (8S) and 2 M (2M) instances for the

encryption/decryption process of each round to make all the data transfer internal

pipeline and parallel. Similarly, sixteen S (16S) and four M (4M) of each round

are necessary to the 128-bit bus-based implementation shown in Figure 5.7(c). To

externally pipeline different states and parallel the write & read channels, both 64-

and 128-bit bus-based designs require ten-time duplication, and then double the S

and M instances.

As an alternative technology to the ASIE design, FPGA implements the basic

combinational logic by the 2k-bit static random-access memory (SRAM), which rep-

resents a K-input and one-output LUT. Different from the logic gate computation,

it is capable of realizing any Boolean function of up to K variables by loading the

SRAM cell with the truth table of that function. Therefore, although the 128-bit

bus design costs more S and M instances, it reduces the FPGA slice usage due to

the short path of each cipher/inverse-cipher round.

5.4 Hardware Implementation

This section presents all the 32-, 64-, and 128-bit implementations using AXI and

IBUS architectures, targeted to accurately evaluate the architectural performance.

We use Verilog HDL [20] to complete the RTL design, and set up a UVM [16, 18]

environment to verify all the DUT. Finally, the FPGA back-end flow is performed

to estimate the area cost and power consumption.
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(a) 32-bit bus

(b) 64-bit bus (c) 128-bit bus

Figure 5.7: Pipeline Structures of AES Cores.

5.4.1 RTL Design and Verification

In our study, we implemented all the 32-, 64-, and 128-bit AXI and IBUS DMA,

combined with AES core and memory controller (XDAM and IDAM), in order

to compare the power-area-throughput performance among different tests. As an

example, the IDAM structure with ENC and DEC engines is shown in Figure 5.8.

The memory controller is is used to provide the control interface for external memory,

and address mapping from hexadecimal 0x00 to 0xff.

Generally, IBUS is a dual-bus structure, including a compact control bus (IC)

and a high performance data bus (ID). As one of the IC bus’s slaves, the IDAM is

configured by the IC bus’s single master, the micro-processor. Its functional registers

include control, status, and round key registers. In addition, as the single slave of ID

bus, the IDAM can be accessed by all the masters located on ID bus. All the requests

are granted sequentially, according to each master’s priority configured through IC

bus. The IDAM arbiter performs this function by observing a number of different,

and deciding which is currently the highest priority master. In the scheduler, all the
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bus requests can be preprocessed using the command queues. Since the queue level

is four for both write and read, the maximum command number can be pushed

into the buffer is eight, four read and four write. After the memory interface is

released, the commands can be popped out, and then translated to be memory side

commands by the memory command controller and the address mapping modules.

The data path modules, write data path and read data path, are used to multiplex

cipher and non-cipher data processing between ID bus masters and memory. More

specifically, the AES ENC/DEC engine is bypassed for the conventional linear and

block transfers. For the cipher tests, such as XE and IE, the write data path

decrypts the ciphertexts then writes the plaintexts into memory, or the read data

path encrypts the plaintexts from memory then transfer the ciphertexts to the bus.
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Figure 5.9: UVM Environment.

To verify DUT and evaluate transfer performance, we build up a UVM-based

verification environment shown in Figure 5.9. It integrates four encapsulated ready-

to-use and configurable verification agents: the only master of IC bus denoted as

IC bus OVC (micro-processor), the only slave of ID bus denoted as the ID bus

OVC (Memory Controller), and two ID bus masters indicated as Peripheral OVC

#1 (USB2.0 Host Controller) and Peripheral OVC #2 (Wi-Fi Mac) in the figure.

Each of them contains three components: the sequencer, driver, and monitor. The

driver is an active entity that emulates logic that drives the DUT. It repeatedly re-

ceives a data item and drives it to the DUT by sampling and driving DUT signals.

The sequencer is an advanced stimulus generator that controls the items that are

provided to the driver for execution. The monitor is a passive entity that samples

DUT signals but does not drive them. It collects coverage information and per-

forms checking. The sequence generator is a control center to sync up all the OVC

sequencers.
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The typical test cases used in our study are that 40 words, 10× 4 words, and 10

AES states are written into memory then read out, respectively, using linear, block,

and state transfer modes. For the non-cipher tests, including linear and block cases,

the ENC/DEC engine is bypassed by IDAM and XDAM. Otherwise, the AES core

is used to encrypt or decrypt data for the cipher tests. As an example, the USB2.0

agent initiates a 10-state write command to the data bus. The initial address is

hexadecimal 0x00 and the data are encrypted initial states. Then, IDAM/XDAM

responds to the request, decrypts the ciphertexts, and then writes the plaintexts

into memory. After the first state is written into the memory, the Wi-Fi Mac

agent requests a 10-state read operation to the same memory address immediately.

Paralleling with the write operations, IDAM/XDAM responds the request, reads

data out and encrypts the plaintexts to be ciphertexts, and then sends them on the

data bus. During the data transfers, the control bus is responsible for initiating

the AES round keys, controlling the DAM execution, handling the interrupts, and

monitoring the bus status.

5.4.2 Area and Power Analysis

All the 32-, 64-, and 128-bit XDAM and IDAM are synthesized and placed & routed

using Xilinx ISE 14.7 with the target device Virtex6xc6vlx550t-2ff1760 [14]. Then,

several fully placed & routed NCD files and physical constraint PCF files are gener-

ated. Table 5.3 shows the synthesis results including IO number, resource utilization,

and MOF. As shown in the second column, it can be observed that IDAM uses less

IO ports than XDAM for the same bus size. For the different bus sizes, it is obvious

that the 128-bit bus costs much more IOs than 32- and 64-bit buses. In the third

column, the total number of occupied slices of IDAM designs are less than the AXI
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Table 5.3: Resource Comparison
Resource Costs IOs Slices MOF (MHz)
32-bit XDAM 533 26106 133.010
32-bit IDAM 324 24822 183.636
64-bit XDAM 661 22603 131.528
64-bit IDAM 460 21319 176.154
128-bit XDAM 917 18344 130.152
128-bit IDAM 732 17060 184.176

based implementations for all the 32-, 64-, and 128-bit bus structures. Moreover,

the compact IBUS structure achieves higher operational clock frequency than AXI

based designs for all the three bus sizes, which is shown in the fourth column.

Furthermore, inputting all the NCD and PCF files, as well as the simulation

VCD files into the XPower Analyzer tool, the power statistics of AXI- and IBUS-

based designs are obtained in Table 5.4. Since static power consumption is mostly

determined at the circuit level, the static power of the same design is almost a

constant for different test cases, as shown in the second column. Our work, thus,

concentrates on analyzing dynamic power shown in the third column.

First of all, it can be observed that the DBUS tests consume less dynamic power

compared with AXI tests, because of the less toggle rate of logic, signal, and IO

(LSIO). In addition, the wider bus consumes more DP in all the block and cipher

tests. In the linear mode, however, the 32-bit bus consumes more dynamic power

than the 64-bit bus, because the LSIO switching rate is very low in this test and

the clock power becomes the dominant factor of the dynamic power consumption.

5.5 Experimental Results

In this section, we summarize the experimental results involving cycle cost, valid

bandwidth, dynamic energy, slice efficiency, and dynamic energy efficiency in Table
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Table 5.4: Power Consumption

Test Cases
SP
(mW)

DP
(mW)

TP
(mW)

32-bit XL 3799 612 4411
64-bit XL 3796 577 4373
128-bit XL 3797 623 4420
32-bit IL 3796 574 4370
64-bit IL 3794 540 4335
128-bit IL 3796 584 4381
32-bit XB 3801 752 4553
64-bit XB 3812 971 4783
128-bit XB 3826 1263 5089
32-bit IB 3798 695 4493
64-bit IB 3802 927 4729
128-bit IB 3828 1226 5054
32-bit XE 3805 771 4576
64-bit XE 3818 1063 4881
128-bit XE 3852 1747 5599
32-bit IE 3802 716 4518
64-bit IE 3816 995 4810
128-bit IE 3847 1650 5497
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Table 5.5: Experimental Results Comparison
Tests CY VDB (GBps) DE (uJ) SE (KBps/Slice) DEE (GBps/J)
XL32 92.00 0.70 0.56 26.65 1.14
XL64 48.00 1.33 0.28 58.99 2.31
XL128 26.00 2.46 0.16 134.19 3.95
IL32 82.00 0.78 0.47 31.44 1.36
IL64 42.00 1.52 0.23 71.48 2.82
IL128 22.00 2.91 0.13 170.52 4.98
XB32 98.00 0.65 0.74 25.02 0.87
XB64 50.00 1.28 0.49 56.63 1.32
XB128 30.00 2.13 0.38 116.30 1.69
IB32 82.00 0.78 0.57 31.44 1.12
IB64 42.00 1.52 0.39 71.48 1.64
IB128 22.00 2.91 0.27 170.52 2.37
XE32 172.00 0.37 1.33 14.25 0.48
XE64 112.00 0.57 1.19 25.28 0.54
XE128 82.00 0.78 1.43 42.55 0.45
IE32 132.00 0.48 0.95 19.53 0.68
IE64 72.00 0.89 0.72 41.69 0.89
IE128 42.00 1.52 0.69 89.32 0.92

5.5. In the practical tests, read commands follow write commands to verify the

memory accessing correctness. Thus, the read and write transfers are not completely

overlapped.

It is clear to illustrate the performance comparison between IDAM and XDAM

in Figure 5.10. In Figure 5.10(a) and Figure 5.10(b), the performance ratios for

non-cipher tests, including linear and block cases, are shown. Since all the time

consumption ratios are less than 1, IBUS consumes less time than the AXI for all

the three bus sizes’ implementations. Particularly for the block tests, the latency

of IBUS are 83.67%, 84.00%, and 73.33%, respectively, compared with AXI for all

the 32-, 64-, and 128-bit buses. Additionally, the dynamic energy, which is the

integral of dynamic power, or the product of average dynamic power and transfer

time, is considered in our study. Although the dynamic power consumed by IDAM

and XDAM are close to each other, the dynamic energy consumption of IL tests are
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83.60%, 81.89%, and 79.32%, respectively, compared with the XL tests, and the dy-

namic energy consumption of IB tests are 77.33%, 80.19%, and 71.19%, respectively,

compared with the XB tests, for all the 32-, 64-, and 128-bit bus implementations.

Furthermore, based on the fair assumption of the same operational clock frequencies

for IBUS and AXI, the conventional bandwidth between full-duplex IBUS and AXI

are the same. However, the valid data bandwidth of IBUS surpasses AXI due to the

high efficient structure. For example, the valid data bandwidth of IL test is 1.18

times of XL test, and the valid data bandwidth of IB test can reach 1.36 times of

XB test, when the bus size is 128 bit.

In order to evaluate the area-efficiency, slice efficiency is also computed in terms

of valid data number that can be transferred per second per slice. It can be observed

that the slice efficiency of IL tests are around 1.27 times of XL tests, and the slice

efficiency of IB test is 1.47 times compared with XB test when the bus size is

128 bits. Then, dynamic energy efficiency is further defined in terms of valid data

number that can be transferred per second per watt, or valid data number that can

be transferred per joule. The dynamic energy efficiency of IL tests are around 1.26

times compared with XL tests for all the three bus-size designs, and the dynamic

energy efficiency of IB test can reach 1.40 times of XB test when the bus size is 128

bits. In other words, IBUS can transfer 1.40 times as much data as AXI with the

same time and power consumption in this case.

In this chapter, we focus on comparing the cipher test performance shown in

Figure 5.10(c). Using the high-efficiency state transfer mode for the AES-encrypted

circuits, the IE tests achieve higher performance than the AXI tests. First, the time

spent by IE tests are 76.74%, 64.29%, and 51.22%, respectively, compared with XE

tests for 32-, 64-, and 128-bit buses. Second, the dynamic energy consumed by the

IE tests are 71.27%, 60.17%, and 48.38% compared with the XE tests for the 32-,
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64-, and 128-bit buses, respectively, though the dynamic power of IE tests and XE

tests are very close to each other. Third, the conventional bandwidth and valid data

bandwidth of the IE transfers can reach 2.95 GBps and 1.52 GBps, respectively, on

the 128-bit IBUS. The IDAM/XDAM valid data bandwidth ratios are 1.30, 1.56,

and 1.95, respectively, when the bus size is 32, 64, and 128 bits. Finally, we consider

the slice efficiency and dynamic energy efficiency of all the AXI and IBUS tests. The

128-bit IE test can transfer 89.32 Kbytes per second per slice cost. As the highest

slice efficiency of all the cipher tests, it is 2.10 times compared with the 128-bit

XE test. Additionally, the dynamic energy efficiency of the IE tests are 1.40, 1.66,

and 2.07 times compared with the XE tests for the 32-, 64-, and 128-bit buses,

respectively. That means, IBUS can transfer 2.07 times as much data as AXI with

the same time and power consumption when bus sizes are 128 bits.

In conclusion, the system performance of IBUS surpasses that of AXI due to

the specific block and state transfer modes. Moreover, the 128-bit implementations

cost more IOs and dynamic power, but achieves a higher slice and dynamic energy

efficiency than 32- and 64-bit buses, for all the linear, block, and cipher transfer

tests. Considering the design requirements and resource limitation, designers can

choose different bus sizes based implementations.

5.6 Summary

In this chapter, we further propose an advanced IBUS architecture for the AES-

encrypted embedded systems. To date, it is the first performance analysis on the

bus architectural level for the AES-encrypted chips. As the results, the IBUS based

designs cost less in terms of hardware resource than the AXI based implementations,

and the IBUS cipher tests achieve higher valid bandwidth and consume less dynamic

136



(a) Linear

(b) Block

(c) Cipher

Figure 5.10: Performance Comparison.
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power than AXI. Based on the IBUS architecture, we also evaluate the performance

on different bus size implementations. To sum up, the 128-bit design achieves higher

valid bandwidth, but consumes more dynamic power than the 32- and 64-bit designs.

In contrast, the 32-bit DAM consumes the least power, but sacrifices bandwidth and

area. Based on the resource and performance requirements, a user can choose the

proposed IBUS implementations to fulfill the tradeoffs of different applications.

With the emerging area of IoT, leveraging limited resource cost for embedded

chips and overhead cost for security mechanisms at the SoC level are challenging

issues. We believe that our work provides a solution that uses a high-efficiency

bus architecture for the AES-encrypted circuits to meet high-security and high-

performance chip requirements.
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CHAPTER 6

A CONFIGURABLE AND SYNTHESIZABLE IBUS

ARCHITECTURE FOR INTEGRATING INDUSTRIAL STANDARD

IPS

This chapter proposes a configurable and synthesizable IBUS architecture for inte-

grating IP blocks from multiple vendors. More precisely, we combine three novel

bus transfer modes: linear, block, and AES state, into IBUS protocol to improve

bus performance and structural support for the AES algorithm. We also present an

auto-generated method, capable of creating IBUS structure to seamlessly integrate

third-party IPs. The results show large reduction in IBUS architecture area and en-

ergy consumption (66.19% in cipher tests), compared with AXI3-based integration.

Moreover, IBUS-based designs achieve higher valid throughput (up to 1.48×) than

AXI3 implementations.

6.1 Related Work

With industry expectations of billions of new smart connected things today, com-

monly referred to as the IoT, we see a growing demand for highly cost-effective,

power-efficient, and secure circuits. However, the existing on-chip bus architectures,

such as AHB [1] and AXI [5] from ARM Holdings, Wishbone from Silicore Corpora-

tion [6], and OCP from OCP-IP [4], are much more costly in terms of both area and

energy consumption, due to a large number of IO and signal definitions. In addition,

all the aforementioned buses transfer data in the linear-major order, which is very

low efficient to process the matrix-based arithmetic, such as the industrial widely

used AES algorithm [19]. Under this context, the brief [186] has proposed a low-cost

and low-power bus architecture, IBUS, for the small-scale and energy-limited chips.
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Furthermore, a specific AES state-based (AS) transfer mode, based on the ID bus

protocol, has been presented in [178]. The motivation for using the AS transfer is

that it balances the embedded chip’s performance with the overhead costs of the

AES algorithm, and provides a very cost-effective on-chip bus structure.

However, new protocols, such as [186] and [178], also create new issues to in-

tegrate the industrial standard IPs from multiple vendors. The growing number

and complexity of IP blocks and subsystems in today’s SoC designs challenge even

the most experienced design teams, especially when the on-chip bus architecture

is based on the protocol that is new. This is one reason why standard buses are

still the predominant structure of choice in many embedded chips, even though they

are not suitable for the specific IoT embedded chips. To overcome the IP integra-

tion problem, earlier work mainly focused on static bridge designs [44, 75]. Since

the static approaches are inherently non-scalable and limited in the ability to pro-

vide high performance in cases where the traffic characteristics vary dynamically, a

number of automatic designs were proposed to dynamically optimize the bus-based

architectural topology [98, 52, 151]. Moreover, several design methodologies and

design flow for customizing these architectures to adapt to traffic characteristics

have further been studied [79, 48, 191]. However, many of these research aim at ex-

ploiting theories on the system-modeling level, making the implementations of the

design flow difficult, sometimes unfeasible tasks. Additional problems arise from

the high abstract models, making it hard to achieve high accuracy of the system

performance, especially in the early development stages.

In this chapter, we further propose a configurable and synthesizable IBUS ar-

chitecture for integrating industrial standard IPs. To the best of our knowledge,

this is the first analysis and implementation of architecture generation for high-
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performance and high-security IoT embedded chips, by using the real integrated

circuit design flow. The specific contributions of our works are as follows.

• We propose a high efficient IoT on-chip bus protocol that combines the tradi-

tional linear transfer mode, and the novel block and AES state transfer types

[186, 178], in order to improve IoT embedded chip performance and security.

• Based on IBUS protocol, we also propose a configurable and synthesizable

on-chip bus structure for integrating industrial standard IPs. The trade-offs

among resource cost, speed, and power consumption of the IP integration are

considered and analyzed in the architectural generation algorithm.

• In order to meet the chip requirements, the system performance is estimated

in this chapter as well. Four DUTs, together with user-configured and auto-

generated bus wrappers, are implemented and evaluated as case studies: the

AXI3 DMA with AES engine and memory controller (XDAM), IBUS DMA

with AES engine and memory controller (IDAM), XDMA connected with

bridges (XDAM-B), and IDAM connected with wrappers (IDAM-W).

The remainder of this chapter is organized as follows: Section 6.2 introduces

the IBUS architecture and bus protocol, and section 6.3 presents the solution of

IP integration using the IBUS architecture. In section 6.4, the case studies are

illustrated, and then the experimental results are analyzed and compared. Finally,

section 6.6 concludes this paper.

6.2 IBUS Architecture

In this section, we introduce the IBUS structure, and then briefly explain the bus

protocol.
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Figure 6.1: IBUS Integration Structure.

6.2.1 IBUS Structure

Figure 6.1 shows the IBUS structure composed of the control bus (IC) and data bus

(ID). The IC bus mainly takes charge of low-speed and low-bandwidth functional

register configuration with a reduced interface and minimal power consumption,

and ID bus is mainly responsible for high-bandwidth data transfers with full-duplex

interface and high efficient transfer types.

The wide adoption of the AMBA specification throughout the semiconductor

industry has driven a comprehensive market in AMBA-based IP products. To inte-

grate these IPs, overhead costs should be added to convert bus protocols and deal

with clock domain crossing issues. As an example shown in Figure 6.1, the IC2H

wrapper is insert between the IC bus masters and AHB-controlled slave interfaces.

In addition, the X2ID wrapper is resided between AXI-based master interfaces and

ID bus slaves.
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6.2.2 IBUS Protocol

To optimize the on-chip communication for AES-encrypted circuits, we combine

the linear, block, and AES state transfer modes into the IBUS protocol. The bus

attributes, including request arbitration, slave response, and transfer types, are

briefly introduced as follows.

Arbitration: Bus arbitration is necessary for the multi-master buses, such as AXI

and ID bus. It ensures that only one master has access to the bus at any one time.

If the ID bus grant acknowledges the request immediately, a total transfer of an

ID command takes at least two cycles for synchronous clock domains. As a single-

master bus, IC bus does not require the arbitration scheme, thus only one master

cycle is consumed by each IC command.

Slave Response: The handshaking between IC command and data valid synchro-

nizes all the signals crossing between master and slave domains, and avoids command

queue overflows. Each IC bus slave must send a response within a timeout window.

Otherwise, the handshaking is a timeout, and the command is indicated as ERROR,

and should be RETRY or DESCARD. For ID bus, a two-bit response signal indi-

cates that the slave is ready to accept the command and associated data, the higher

bit for write and the lower bit for read.

Transfer Type: The IC bus, on which a large number of peripherals are located,

is defined as a low-speed and low-power bus. Hence, it only supports the SINGLE

transfer mode and unpipelined protocol.

In contrast, three transfer types: linear, block, and AES state, are combined into

the ID bus. In the linear type, the signal transfer length, denote as NL, gives the

exact number of beats in the row-major order. Notice that the number of beats in

a transfer is not the number of data bytes. The total amount of data transmitted

or received in a linear transfer, denoted as TB L, can be calculated by multiplying
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the number of beats by the amount of data in each beat.

TB L = NL ≪ buswidth. (6.1)

where the bus width values of 0, 1, 2, 3, and 4, respectively, represent bus size

as byte, half word, word, double-word, and quad word. The shift operator “≪”

performs left shift of NH ×NW by bus width.

Moreover, NH represents the matrix height and NW represents the matrix width

(unit in burst beat) in the block mode. Hence, the total block transfer bytes,denoted

as TB B, can be calculated as:

TB B = (NW ≪ buswidth)×NH . (6.2)

In the AES state mode, NC represents the number of AES states in the non-

linear major order. More specifically, the write data is in the column-major and

byte-deinterleaving order, while the read data is in the column-major and byte-

interleaving order. The transfer bytes of state mode, denoted as TB S, can be

calculated as

TB S = (NC ≪ 4). (6.3)

6.3 IBUS SoC Integration

In our study, the IBUS structure can be automatically generated following the user-

configured parameters, including bus width and operational frequency, the interface

size of integrated IPs, the typical data processing length of the applications, and

so forth. The generated logic is optimized considering tradeoffs among area, speed,

and power consumption. As a case study, we present an IBUS structure generation

with two specific wrappers, IC2H and X2ID, in this section.
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6.3.1 AXI and IBUS Static Analysis

Before discussing the logic generation algorithm, we first discuss the transfer speed

of the AXI and ID buses. The valid data frequency (VDF) is defined as the valid

data without protocol overhead that can be transferred in one second (unit in MHz).

It can be formulated as

V DF = OF × (
N

CY
). (6.4)

where OF represents the operating frequency, and N is the valid data transferred

in CY cycles. The data crossing between AXI and ID bus can achieve the highest

efficiency if the VDFs of two bus sides are balanced. In other words, the AXI

OF divided by the ID OF, denoted as XOF/IDOF, should be equal to the bus

latency ratio of (CYIL/CYXL), (CYIB/CYXB), and (CYIE/CYAS), respectively, for

the linear, block, and cipher modes, to balance the data operations between AXI

and ID buses. The bus latency ratio in the linear mode can be represented as

CYIL

CYXL

=
(2− 2PIL)× ceil(NL

IL
) +NL

(4− 2PXL)× ceil(NL

XL
) +NL

(6.5)

This ratio indicates the difference of valid data rates between AXI and ID bus.

For example, ID bus and AXI consume 82 and 92 cycles, respectively, to process

80-word data when both PIL and PXL reach the maximum probabilities. Similarly,

the ratio of CYIB/CYXB in the block mode can be written as

CYIL

CYXL

=
(2− 2PIB)× ceil(NH

DH
)× ceil(NW

DW
) +NH ×NW

(4− 2PXB)×NH × ceil(NW

XL
) +NH ×NW

(6.6)

When processing a 20×16 pixel grayscale picture, ID bus and AXI, respectively,

use 82 and 122 cycles with the maximum back-to-back probabilities. In the cipher

mode, the ratio of CYIE/CYAS can be formulated as

CYIE

CYAS

=
2 + 2NC × (27− 25PIE)

4NC × (5− 2PAS)
(6.7)
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To encrypt/decrypt 20 AES states, 132 cycles are required for ID bus using the

specific state transfer mode, and 172 cycles are needed on the AXI bus side.

6.3.2 Integration Configuration

The main operations of SoC integration are: 1) bus protocol conversion, and 2)

signals crossing between different time domains. In this work, we name the con-

version module requiring both the first and the second operations as bus wrapper.

In contrast, the conversion module requiring only the second operation is named as

bus bridge.

In order to avoid the input jitter sampling and ensure that the receiving interface

does not enter a metastable stage, two methods are used in the structure generation

algorithm: clock-domain handshaking and asynchronous data FIFOs addition. In

general, asynchronous FIFO is essentially a memory queue requiring the highest

area and consuming much power, but it is high efficient to preprocess data trans-

fers and release bus accesses immediately. The other method, asynchronous signal

handshaking, is cost-effective but high-latency on data bus.

We consider the IC2H wrapper first. Since IC bus is created as a low-cost and

low-speed control bus, the handshaking approach is well suited for the IC2H wrapper

to synchronize signals between IC and AHB clock domains. As an example shown

in Figure 6.2, a pair of handshaking signals, the IC command enable signal (C CE)

and IC data valid signal (C VLD W/C VLD R), is used to synchronize the signals

crossing between IC and AHB bus domains. Additionally, the C CE signal should

be delayed by two AHB cycles before it can be used by the AHB IP. Likewise, the

C VLD W/C VLD R signal is active after two IC cycles delay of the AHB data

ready (H READY).
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(a) Write Operation

(b) Read Operation

Figure 6.2: IC2H Wrapper Structure.
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In what follows, we focus on analyzing the X2ID wrapper configuration shown

in Algorithm 1. Two asynchronous FIFOs, one for read and one for write, are

used to improve the transfer efficiency of the full-duplex ID bus. The FIFO size

is mainly considered as the most critical factor responsible for bottleneck in the

wrapper design of the high speed data transfer.

Here, we explain the conversion between AXI3 and ID bus protocols as a case

study. The FIFO sizes are determined by several factors: the bus sizes, the maximum

data length of specific IP applications, and the coefficients of write and read FIFOs

denoted as WR C and RD C, respectively. Hence, the minimum write data FIFO

size, denoted as X2ID WF SIZE, can be calculated as

X2ID WF SIZE = WR C ×N × (
XS

IDS
). (6.8)

where WR C is greater than or equal to 2. Although one N × XS/IDS of

memory is sufficient, allotting twice this amount allows simultaneous operations.

That is, when the AXI is writing one packet, the ID bus can read the previous

packet. If the XOF/IDOF ratio is less than or equal to R, or the AXI latency is

high, allot more space of memory to hold multiple write data packets to improve

the transfer efficiency. Considering the tradeoff between speed and area cost, the

maximum X2ID WF SIZE is 6 × N × (XS/IDS). Similarly, the minimum read

FIFO size, denoted as X2ID RF SIZE, is calculated as

X2ID RF SIZE = RD C ×N × (
XS

IDS
). (6.9)

where RD C is greater than or equal to 2. Allotting twice of the maximum

amount improves the read efficiency. When the AXI is reading one packet, the ID

bus can write the next packet. If the AXI clock is fast, more memory size is allotted

to hold more read packets.

148



Figure 6.3: X2ID Write/Decryption Timing Diagrams.

As an example, the timing diagram of an IP write operation or AES decryption

is shown in Figure 6.3. Except for the arbitration process, AXI3 IP costs 120 AXI3

cycles to push 10 ciphertext states into the write data FIFO. Each AXI3 transfer

involves three phases: address (A), data (D), and response (R). On the ID bus side,

the ciphertext states should be popped out and decrypted, and then the plaintext

states are written into memory. The data transferred on ID bus are consecutive,

and also paralleled with the AES decryption process. Apart from the arbitration

and command stage (C), it consumes 90 ID bus cycles for the cipher test, including

40 cycles for data transfer on bus (D) and 86 cycles for AES decryption (E) with 36

cycles overlapped.

6.4 Case Studies and Experimental Results

In our work, the IBUS structure, together with bus wrappers, can be auto-generated

according to users’ configuration. This solution enables industrial standard IPs to

be seamlessly integrated into IBUS architecture. In order to evaluate the IBUS

system performance, we also build up a UVM environment, interconnecting with

several VIPs and design modules. Finally, the FPGA back-end flow is performed to

estimate area costs and power consumption.

149



6.4.1 SoC Environment

Figure 6.4 shows the UVM test bench, involving several bus performance models and

mixed-signal open verification components (OVCs), and also merging the traditional

verification methods, such as ABV, CDV, and the CRV.

Three AHB- and AXI-based VIPs, the USB2.0 Host controller, graphic module,

and Wi-Fi Mac, are integrated into the IBUS structure to estimate three transfer

modes. Assume that the operating frequencies of the VIPs and IBUS SoC are

asynchronous. IC2H and X2ID wrappers are thus required for IP integration.

In this figure, the generated modules are highlighted using gray background, and

the verification components are represented by dark background. To evaluate the IP

integration performance, AXI based DUTs, XDAM and XDAM-B, and IBUS based

DUTs, IDAM and IDAM-W, are implemented as case studies, where DAM is the

top module of DMA interconnected with AES engines and memory controller, and

the suffixes “-B” and “-W”, respectively, indicate the bridges used in AXI DUTs and

wrappers used in IBUS DUTs. All the DUTs are represented by white background

in this figure.

6.4.2 IBUS Structure Configuration

Following the users configuration, the IBUS structure with several wrappers can be

generated. As an example shown in the second column of Table 6.1, a high-speed

USB2.0 Host Controller, supporting 90MHz AXI interface and a typical control

packet size (64 Words), is analyzed. Using the algorithm illustrated in Algorithm

1, the write and read asynchronous FIFOs are configured as 256 and 128 words,

respectively, to achieve high performance for the IBUS SoC.
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Figure 6.4: SoC Environment.

Table 6.1: Wrapper Configuration.
Configuration USB 2.0 IP Graphic IP WiFi IP

Features
XOF (MHz) 90 180 240
IDOF(MHz) 180 180 180
Packet Size 64 Words 16× 16 pixels 10 States

WFIFO (Word) 4× 64=256 2× 64=128 2× 40=80
RFIFO (Word) 2× 64=128 4× 64=256 6× 40=240

Likewise, the graphic IP typically processing a 16×16 pixels is considered in the

third column. Its operational frequency is 180MHz, the write and read FIFO sizes

thus are calculated as 128 and 256 words, respectively.

In the fourth column, a WiFi MAC providing AES encryption/decryption and

supporting 240MHz bus frequency is integrated into the IBUS SoC. Assume that

the maximum pipeline number is 10 for our AES core, the configured FIFO sizes

are thus 80 and 240 words, respectively, for write and read operations.

As an example, a typical write test in our study is shown in Figure 6.5, that

is, all the three AXI3 VIPs write 80 words to the memory. The system command

is split into two bus requests by software, one 64-word and one 16-word control
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Figure 6.5: Test Vectors.

packets for USB 2.0 Host, one 16 × 16 pixel matrix and one 4 × 16 pixel matrix

for the graphic VIP, and two 10-state transfers for WiFi Mac. Assume that all the

transfers are fully back-to-back, and all the grant and data valid signals are asserted

immediately. Since the maximum load per AXI3 transfer can reach 16 beats, the

total cycles needed by AXI3 IP are 92, 122, and 172, respectively, for the linear,

block, and cipher tests. On the other side, the IBUS costs 82, 82, and 132 cycles,

respectively, for the three test modes, and the XDAM consumes 92, 122, and 122

cycles.

6.5 IBUS Performance Analysis

6.5.1 Implementation Flow

In Table ??, several performance parameters are summarized. First, the latency

cycles, and the time consumption formulized as the product of latency cycles and

the maximum operational frequency, and the valid data bandwidth defined as the

valid data can be transferred per second, are measured in the front-end simulation

and shown in the fifth to seventh columns. In addition, the simulation VCD files

with the exact switching activities of IOs, signals, and logic are also collected.
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Then, we obtain the fully placed and routed NCD files and physical constraint

PCF files by synthesizing all the RTL designs, using Xilinx ISE 14.7 with Virtex6xc6vlx550t-

2ff1760 as the target device. The second and third columns show the synthesis

results, including occupied slices and MOF.

In what follows, inputting all the NCD and PCF files, as well as the VCD files into

XPower Analyzer, the dynamic power statistics are obtained in the eighth column.

Since static power is mostly determined at the circuit level and almost a constant

even using different tests, our work thus concentrates on analyzing dynamic power.

In the ninth column, dynamic energy is further calculated as the integral of dynamic

power, or the product of dynamic power and time consumption when dynamic power

is obtained as the average dynamic power.

Finally, slice efficiency is computed in terms of valid data number that can be

transferred per second per slice, which is shown in the tenth column. In the eleventh

column, dynamic energy efficiency is defined as the valid data number that can be

transferred per second per watt, or valid data number that can be transferred per

joule.
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Algorithm 1 X2ID Wrapper Configuration.

1: Let R = bus latency ratio of ID bus divided by AXI
2: Let N = the maximum data transfer length of specific IP applications
3: Let LN EN/BL EN/CP EN = linear/block/AES cipher mode enable
4: Let WR C/RD C = coefficient of write/read data FIFO size
5: Let XS/IDS = AXI bus size/ID bus size
6: if CP EN then
7: R = 2+2NC×(27−25PIE)

4NC×(5−2PAS)
; N = 4×NC ;

8: end if
9: if BL EN then

10: R =
(2−2PIB)×ceil(

NH

DH
)×ceil(

NW

DW
)+NH×NW

(4−2PXB)×NH×ceil(
NW

XL
)+NH×NW

; N = NH ×NW ;

11: end if
12: if LN EN then

13: R =
(2−2PIL)×ceil(

NL

IL
)+NL

(4−2PXL)×ceil(
NL

XL
)+NL

; N = NL

14: end if
15: if XOF/IDOF <= 1/2R then
16: WD C = 6; RD C = 2;
17: end if
18: if 1/2R < XOF/IDOF <= R then
19: WD C = 4; RD C = 2;
20: end if
21: if R < XOF/IDOF <= 2R then
22: WD C = 2; RD C = 4;
23: end if
24: if XOF/IDOF > 2R then
25: WD C = 2; RD C = 6;
26: end if
27: X2ID WF SIZE = WR C ×N × XS

IDS
;

28: X2ID RF SIZE = RD C ×N × XS
IDS

;
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6.5.2 Performance Analysis

In the second column of Table ??, it can be observed that the IBUS architecture

reduces the slice cost due to the compact bus architecture, compared with AXI3

based designs. However, since much more slices are costed for wrapper generation

when integrating the third-party IPs, the slice count of IDAM-W is as many as that

of XDAM-B. In addition, IBUS based implementations shorten the critical path,

turning out to achieve higher MOF than the AXI based designs.

Furthermore, it is clear to analyze the other performance metrics between IBUS

and AXI architectures shown in Figure 6.6(a) and Figure 6.6(b). In Figure 6.6(a), it

can be observed that IBUS outperforms AXI3, especially for the cipher tests. The

time consumption and dynamic power, respectively, consumed by the IBUS cipher

test are reduced to 55.43% and 92.87%, compared with the AXI3 vectors, due to the

specific AES state transfer mode. In sum, the slice efficiency and dynamic energy

efficiency of IBUS are 1.90 times and 1.94 times of those of AXI3.

In this chapter, we focus on the performance comparison of IP integration shown

in Figure 6.6(b). First, IDAM-W consumes less time than XDAM-B for all the lin-

ear, block, and AES state tests, due to the high-efficient bus structure. The valid

data bandwidth achieved by the IBUS implementation are around 1.17, 1.43, and

1.48 times, respectively, compared with the AXI3 design. Moreover, although the

dynamic power consumption are close to each other, the dynamic energy consump-

tion of IDAM-W is reduced to 80.94%, 66.85%, and 66.19%, respectively, compared

with XDAM-B for the three tests. In conclusion, the valid data number can be

transferred per second per slice cost of IBUS based integration is 1.47 times com-

pare with AXI3 based implementation in the cipher mode. Furthermore, the valid

data number can be processed per second per watt consumption of IDAM-W is close

to 1.51 times compared with XDAM-B.
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It is obvious that much more overhead costs are needed for integrating industrial

standard IPs, not only for the third-party IPs integration, but also for the same bus

protocol IPs with different operating frequency. In Figure 6.6(c), the additional

area cost, latency, and dynamic power consumption of IBUS and AXI3 SoC inte-

gration are analyzed. First, more area is added to the SoC structure as wrapper or

bridge design logic. Second, the latency and dynamic power consumed by additional

bridge designs are less than those consumed by wrappers, due to the compatibil-

ity of standard AXI3 IPs. For instance, the time consumption and dynamic power

consumed by XDAM-B is 1.38 and 1.04 times, respectively, of those of the XDAM

in the cipher mode. On the contrary, much more time consumption and dynamic

power are required for AXI3 IPs integration with IBUS structure. In the cipher test,

the time consumption and dynamic power costs of IDAM-W is 1.69 and 1.09 times,

respectively, compared with IDAM.

6.6 Summary

In this chapter, we propose a configurable and synthesizable IBUS architecture

for industrial standard IP integration, tailored for tiny scale, low power, and high

performance AES-encrypted IoT embedded chips. Unlike the previous research, the

proposed approach aims at automatically creating the system structures, based on

the real circuit design flow and performance evaluation methodology.

We also apply the auto-generation algorithm to create an IBUS structure as a

case study. Comparing with AXI3 based designs, it achieves higher valid bandwidth

and consumes less dynamic energy with less slice usage. In the future, we plan

to optimize the wrapper factory to satisfy more industrial buses for guaranteeing

quality and quantity of services to IBUS-based integration.
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(a) IDAM/XDAM

(b) IDAM-W/XDAM-B

(c) XDAM-F/XDAM and IDAM-W/IDAM

Figure 6.6: Performance Comparison.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions presented in this dissertation.

We then discuss the possible directions for our future research work.

7.1 Summary

IoT is expected to grow to include more than 50 billion devices by 2020. In the

growing chip market, the things or devices have unique requirements with profound

effects on the way SoCs for IoT ecosystems are developed. The unique requirements

are:

• System cost: For mass adoption, devices must be cost-effective to deploy and

require low-cost integrated circuits.

• Ultra low power consumption: Both dynamic and leakage power consumption

should be reduced. Devices tend to be either battery powered, utilizing energy

harvesting, or the power consumption budget is small, because connecting to

the Internet is not the main function of the device.

• Security: The potential for someone gaining control of anything connected to

the Internet, particularly when it comes to the areas like healthcare or critical

national infrastructure, is a major concern.

• User configurability/personalization: Integrated circuits often require person-

alization to perform their function, including a broad set of IPs, micropro-

cessor, wireless communication, graphic processing unit, memory controllers,

external interfaces, and several SoC peripherals.

Each requirement helps guide design decisions related to cryptosystems, power

and energy efficiency, verification methodology, mixed-signal design, and design au-
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tomation. In this dissertation, we present our research work that has been done on

each requirement and describe their impact on the designers’ choices.

First of all, we proposed a low-cost and low-power bus architecture, termed IBUS,

for high-performance and high-efficiency IoT embedded chips. The compact bus

protocol provides an excellent balance of cost and energy-efficiency. It is optimized

with two novel and high-efficient transfer modes, block and AES state modes, and

also backwards supports the conventional linear transfer mode. Experimental results

show that IBUS costs the least IOs and gate count than AMBA AHB and AXI.

Remarkably in the block transfer mode, IBUS latency is close to 30% of AHB and

63% of AXI, and the dynamic energy consumption of IBUS based designs is close

to a half compared with AHB and AXI based implementations.

In order to evaluate the architecture performance automatically and accurately,

an evaluation methodology was further presented. Not only the traditional perfor-

mance metrics, such as slice count, the maximum operational frequency, transfer

latency, power consumption, and bandwidth, but also several new performance pa-

rameters, including valid bandwidth, dynamic energy consumption, wire efficiency,

slice efficiency, and dynamic energy efficiency, can be measured efficiently. Multiple

case studies demonstrate that the evaluation methodology can be effectively used

to estimate chip performance.

Since security and privacy become one of the top tier concerns of IoT embedded

chips, we further presented an advanced IBUS structure to improve the system per-

formance and provide an architectural support for the block-based AES algorithm.

Furthermore, the 32-, 64-, and 128-bit bus-based designs are implemented to com-

pare and analyze the system performance using linear, block, and state tests. Based

on the available resource, structural efficiency demands, and circuit performance

requirements, one can choose the proposed implementations based on different bus
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sizes to fulfill the constraints of different applications. FPGA comparison results

show that IBUS based design costs less in terms of hardware resource and achieves

up to ×1.3 times throughput of the AXI based implementation, and the dynamic

power consumption of IBUS test is 71.3% compared with the AXI test.

The increasing scale and complexity of SoCs demand flexible bus structures

and verification methodologies. We thus proposed a highly configurable and syn-

thesizable on-chip architecture for IoT SoCs that can seamlessly interconnect with

industrial standard IPs, delivering a broad-range of applications, including micro-

processors, on-chip memory, security, wireless communication, and so on. To meet

the tight time-to-market constraints and to effectively handle the design complex-

ity, not only the cost-effective, low-energy, and AES-embedded bus structure can

be designed automatically, but also a mixed-signal verification environment, with

several VIPs and performance models, can be auto generated.

7.2 Future Work

Aiming at IoT circuits, the IBUS architecture is optimized as a reduced interface

complexity, minimal power consumption, and high security bus structure. Three

novel transfer modes, linear, block, and AES state modes, are presented in the

IBUS protocol, and a configurable IP integration structure is further proposed.

Essentially, our proposed IBUS structure is a single processor/master and multiple

clients on-chip bus.

In the future, we can extend our research on a variety of chip design topics,

such as multi-core bus architecture, IP/VIP integration, design automation, and

verification methodology, that are top concerns particularly for new bus protocols.
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Multi-Core Architectures has been the new generation for processors of today.

With Moore’s law constantly growing and the frequency reaching a maximum for

single CPU chip designs, manufacturers have transformed their designs to multi-

cores, where each core is much smaller and has less functionality then a CPU. These

cores work together in order to process a job in an efecient manner. The use of

multiple cores allows for the frequency of the processor to be reduced, thus reducing

the temperature of the system. With multi-cores, instructions are allowed to run on

individual cores simultaneously, which increases the amount of parallelism.

In addition, with the increasing SoC hardware and software complexity, devel-

opers need more from their IP/VIP providers to help meet their project schedules.

Traditional IP/VIP blocks alone are no longer adequate to address the growing SoC

design and integration challenges. Today, IP/VIP vendors should do more prepara-

tion of the designs to make it ready to use than in the past, including a much more

complete view of what the SoC needs for the IP/VIP, such as a configurable reference

design, auto generated behaviour models, and flexible verification environment.

Multi-Core Bus Architecture: As a single-processor and multi-client bus struc-

ture, IBUS reduces resource utilization and energy consumption, and limits the

complexity of circuits. The IBUS protocol is thus very desirable for small scale em-

bedded chips with requirements of a low-cost interface and high energy efficiency.

If single processor can supply sufcient computational power, then the ease with

which they can be programmed pulls system designers toward uniprocessor IoT

SoCs. However, thanks to Moore’s Law advances, we believe that new applica-

tions that will require the development of new multi-core IoT SoCs will emerge.

FPGA based complex algorithms, such as high-definition video processing and pat-

tern recognition for drones and unmanned aerial systems, are examples of an emerg-
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ing field that can use essentially unlimited amounts of computational power but must

also meet real-time, low-power, and low-cost requirements.

In addition, applications like multimedia and high-speed data communication not

only require high levels of performance, but also require implementations to meet

strict quantitative goals. The term “high-performance computing” is traditionally

used to describe applications such as scientic computing that requires large volumes

of computation but do not set out strict goals about how long those computations

should take. Embedded computing, in contrast, implies realtime performance. In

real-time systems, if the computation is not done by a certain deadline, the system

fails. If the computation is done early, the system may not benet.

Actually, multi-core system has been widely used in networking, communica-

tions, signal processing, and multimedia among other applications today. The de-

sign methods and tools that have been developed for multi-core SoCs will continue

to be useful for these next-generation systems.

Therefore, our proposed IBUS will be extended to a multi-core architecture in

the future. As an example shown in 7.1, three cores, one main processor and two co-

processors, are integrated in an extended IBUS architecture. All of them can access

the IC bus through IC master interfaces. The IC arbiter ensures that only one

processor has access to the IC bus at any one time. Additionally, all the processors

can also send requests to ID bus through the ID master interfaces.

Computer Aided Design Automation: In our work, a new IBUS structure was

proposed, in order to reduce the interconnect wires and logic gates, so as to resolve

routing congestion and timing closure issues at the back-end place-and-route stage

for low-cost IoT chips, resulting in shorter development cycle time, faster operational

frequencies, smaller chip area, and less power consumption.
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Figure 7.1: IBUS Multi-Core Structure.

In the future, a variety of the third party IP blocks, such as processors, DMA,

memory controller, and other peripherals, will be selected from libraries, and can

be interconnected using right kinds of protocol matching wrappers. As an example

shown in Figure 7.3, an IBUS based SoC utilizes an automated wrapper-based bus

structure generation process and tool set, in order to expand the potential of the

multi-core IBUS structure introduced in Figure 7.1. More specifically, Figure 7.2(a),

Figure 7.2(b), and Figure 7.2(c) show the structures of IC2H, H2ID, and X2ID

wrappers, respectively.

In addition, designers require solutions that ease IP configuration and integra-

tion into the overall SoC as well as accelerate their software development effort.

Therefore, the aim of design automation is that deliver a solid package with com-

prehensive solutions, including RTL code, verification environment, environment

control scripts, place and route guidelines, and supportive documentations, to lower

the development cost, reduce integration risk, and meet their market schedules. As

an example shown in Figure 7.4, not only the bus structure with bus wrappers and
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(a) IC2H Wrapper

(b) H2ID Wrapper

(c) X2ID Wrapper

Figure 7.2: Wrapper Structures.
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Figure 7.3: Wrapper-Based IBUS Structure.

synthesizable IPs, but also control tasks, VIP and BPM based test bench can be

configured and auto generated from libraries.

So far, our discussions are based on the physical embedded chips. In the future

work, we can also consider IoT as an ecosystem, where it is not only a physical

circuit to transfer data, but also a platform connected with several areas, such as

biomedical engineering, cyber security, and even big data, cloud computing, and

machine learning.

Biomedical Engineering: Things, in the IoT sense, can refer to a wide variety of

biomedical devices, such as heart rate monitors, collectors for vital signs and health

information, smart contact lens, and ingestible smart pills. These tiny biochips

will have particular implications in the area of biomedical engineering, due to the

increasing availability and use of health and fitness sensors, ultra-low power mi-

crocontrollers, and application-specific systems. Our proposed IBUS architecture is
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Figure 7.4: Design Automation System.
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well-suited for the tiny biochips, with requirements of low-cost structure and high

energy efficiency.

As an example, Figure 7.5 shows an application-specific IBUS based design struc-

ture, which is used to produce the AES-encrypted exercise data, such as maximum

aerobic function (MAF) exercise levels and calorie consumption, to extend the work-

out based applications [120, 121]. Figure 7.6 shows the system environment, involv-

ing not only the DUT with white-background, but also the bus performance models,

mixed-signal open verification components, and the traditional verification groups,

such as assertion-based verification, coverage-driven verification, and the constrained

random tests.
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Figure 7.6: A UVM Based Verification Environment.

Cyber Security And Privacy: There is no doubt that security and privacy is

one of the most critical issues for the IoT ecosystem, particularly when it comes to

the areas like healthcare or critical national infrastructure. However, the limited

resource on an tiny IoT chip highlights that current bus architectures are not capa-

ble of keeping up with the computational demands of security processing, and the

power constraint emphasizes that the energy consumption overhead of supporting

security on power-limited embedded systems is very high. Under this context, our

proposed IBUS protocol can be expanded to optimize the security algorithms to

leverage limited resources for IoT embedded chips and overhead costs for security

mechanisms.

Big Data and Cloud Computing: IoT and big data are clearly intimately con-

nected: billions of Internet-connected things will generate massive amount of data.

Since the costs of on-chip implementations are much lower than that of the high-

level operations, hardware-based data optimizations will dramatically improve the

quality and reduce the quantity of raw data from IoT devices, reduce the system

overhead, and improve the ecosystem performance.
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Machine Learning of IoT Devices: There is a great vision that all “things” can

be easily controlled and monitored, can be identified automatically by other things,

can communicate with each other, and can even make decisions by themselves.

The general premise is the machine learning algorithms: review and analyze the

data have been collected to find patterns that can be learned from, so that better

decisions can be made by smart devices.

In sum, our research can be connected to a broad area that is of practical signifi-

cance and has immediate relevance and impact in industry. We are looking forward

to continuing and making an impact in the emerging IoT area.
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