
A High Performance Core for OSI Management Agents:
Implementation, Simulation and Performance Evaluation

ABSTRACT

This article presents a proposal of a multithreaded core for an OSI/ISO management agents including its modeling,
simulation and performance evaluation. The proposed model i s compared against another one (unthreaded core)
which is the c ommonly adopted model by the most of the network management systems. All t he modeling and
simulation process were done at the agent core level. Therefore the performance evaluation do no t consider any
effect of the communication layers, dealing with the performance of the activities related to the core of the agents’
applications.

Keywords

OSI Network Management, Telecommunication Management Network, Agent Core Simulation, Multithreading,
Active Objects, Performance Evaluation.

1 - Introduction

The goals of network management are immutable,
however, the process by which these goals are reached have
changed in a manner that makes use of the c urrent
technological advances. As new technologies and services are
being introduced, network management systems must keep up
with new innovations, executing monitoring in real time and
offering support for the e xecution of automatic c orrective
actions, based o n the e vents and o n the c urrent state of the
network [2].

Currently, due to advances in operating systems,
program languages and environments that support t he
development of applications, the implementation of
multithreaded applications have become frequent in various
fields (SGDBs, GUIs, Web Servers, etc.).

This article presents a multithreaded core for the
implementation of OSI management agents, which are part of
a larger project that seeks the definition and implementation of
a network management platform.

With the goal of offering a basic core to the agent
processes in the platform, the proposed model will allow
managed ob jects to b e implemented as active objects, given
their multithreaded characteristics. This core offers the agent
processes capabilities that provide better performance a nd
security when in the support of the execution of its managed
objects, and in the performance of intra-agent activities
(Management Information Tree (MIT) maintenance,
dissemination of notifications, etc.).

2 - Agent Applications

The standardization documents in the field o f
network management do not define the internal organization
of the management processes, which is handled locally in each
implementation. Conceptually, management application
processes are those a pplications that utilize the services
provided by the service element of the Systems Management
Application Element. (SMAE). This concept, defined in [3],
can be illustrated in Figure 1.

C
M
I
S
E

A
C
S
E

R
O
S
E

S
M
A
S
E

SACF

Application ProcessReal System

OSI
Environment

SMAE

Figure 1: Management application processes

• the service elements ACSE[6], ROSE[6] and CMISE[7];
• the protocol LPP[6];

In the approach adopted for the implementation of
the agent processes, when loaded in memory, the agent carries
in its code all of the functions needed for its execution. Figure
2 presents the structure of the agent processes in the platform.

Figure 2: Structure of the agent processes

3 - Agents and Managed Objects

Each process agent i s s et t o contain all of the
definitions of the c lasses of managed objects; this will allow
the definitions to be instantiated at the time of execution. The
implementation of the managed ob jects, was basically
conducted representing them as instances of classes of C ++
Language.

In order to d enominate their managed ob jects, the
agent processes implement an internal structure for the
representation of MIT [8]. This s tructure a llows the
representation of objects to follow the containment hierarchy
concept, defined in the OSI management model. The
implementation of MIT is not included in the implementation
of the c lasses of the managed ob jects, this being an
independent i mplementation, which offers greater flexibility
for their maintenance (creation, consultation, deletion, etc.).

A support object called OM (Object Manager), was
defined to conduct the MIT management and the maintenance
of the set of instances of classes of managed objects supported
by the agent. A more detailed description of the behavior of
OM will be presented in section 4.3.

4 - The Multithreaded Core

As indicated above, managed objects are an integral
part of the c ode of the a gent processes. Therefore, agent
processes must support t he basic requirements for the
execution and maintenance of these objects. The
multithreaded core that will support t he e xecution of the
managed objects, takes into account two basic aspects:
• Features of the handling of management operations and the
issuing of notifications;
• Dynamics (behavior) of the managed objects.

Concerning the handling of the management
operations and the issuing of notifications, a serialization

policy of these operations was defined. The servicing of the
operations requested b y the manager is done in a serialized
manner, in accord with the order of the a rrival of these
operations (FCFS - First-Come-First-Served).

As the multithreaded core is inserted in the structure
presented in Figure 2, the serialization of the management
operations takes place a t t he moment t hat PDU’s of
ACSE/CMISE arrive. At this point, the organization of the OM
input structure is in charge of grouping the operations that
arrive, according to the FIFO (first-in-first-out) policy. The
OM support object has the goal of providing MIT maintenance,
distributing the operations that arrive from the manager to their
respective managed objects, conduct the support operations for
multithreading, implement access control to the MIB objects,
and other functions of infrastructure management.

Concerning the treatment of operations issued by the
manager, some form of structuring process agents (servers)
were studied, being that one of the most utilized to enhance the
performance of these processes, is s imilar to the
implementation of a RPC multithreading server [9]. Within this
approach, for each operation which arrives a thread is created
to execute this operation. This type of organization was not
adopted, given that t he serialization of the operations is not
guaranteed, and in the cases of the operations conducted on the
same object, the CMIP protocol [10] requires the serialization
of these operations, contrary to the non-synchronized
operations on different objects, which can be executed without
any need for serialization, when it comes to the order in which
operations are issued by the manger.

An example that i nvalidates the utilization of the
approach adopted for the RPC multithreading server, can be
the e xecution of non-serialized op erations on the same
managed object. A manager requesting a SET (Replace-value)
operation on the attributes of various managed objects, utilizing
scope a nd filter, then issues a GET operation to retrieve the
value of an attribute that was altered in one of the managed
objects affected by the SET operation. The thread created for
the SET operation can lose the processor before its conclusion,
allowing the thread of the GET operation to p ick u p the
processor and possibly return the value of the attribute, which
was s till not altered b y the SET operation, creating an error
situation.

Due to the demands of the serialization of the CMIP
protocol, it was considered that the management operations are
treated sequentially, both by the OM as well as by the managed
objects, given that both types of objects have operation queues
that follow a FIFO policy. Figure 3 shows the model proposed
for the multithreaded core.

After messages arrive in its input structure, the OM
does not need to be invoked, for it possesses its own control
thread and is constantly consuming messages in its queue.
When there a re no messages to b e c onsumed, the OM
continues to execute parts of its behavior (change of priority
between the threads, synchronization of operations, etc.),
relative to the management of various managed objects.

Request /
Response

TCP/IP

Indication /
Confirmation

Sockets

LPP

CMISE

OM - SMASE

 MOs

Operational System

Agent
Code

ACSE ROSE

Communication Event

OM Object Manager MOs Managed Objects

 Agent-MOs Interaction

Figure 3
Each object t hat possesses its own control thread

and op erations queue, allows its execution to b e c onducted
independently and concurrently with other activities of the
agent, enhancing the performance of this process. To maintain
independence and concurrence between the managed objects,
the system adopts the concept of active objects (section 4.1)
for the implementation of the managed objects.

Figure 4 presents the location of the multi-threaded
infrastructure in the c ode of the process agent, according to
the structure presented in Figure 2.2. In section 5, an
evaluation of the performance of the two agent core
implementations will be presented, one utilizing active objects
and another that implements passive objects.

Figure 4

4.1 - Active Objects

In the object-oriented paradigm, we can classify the
execution states of the objects as either Active or Passive
[11]. According to Booch [12], OOP concurrence is the
property that distinguishes an active object from a non-active
(passive) one. In the presence of concurrence, it is appropriate
that t he objects are viewed as autonomous active e ntities,
which execute their behavior independently from the external
invocations [13].

Utilizing these concepts, it can be said that active
objects are those that encapsulate their own control thread, in
order to have autonomy to change their internal state without
the need for external i nvocations. Passive objects do not
encapsulate their own control thread, and can only change
their state in the presence of an external invocation, which can

come both from another active object or from the c ontrol
thread, of the process of which the passive object i s a part.
After being invoked, a passive object becomes active,
conducting some computation (its behavior) and returns to the
passive state.

Some object-oriented languages [14], offer support
for the implementation of active objects, however C++
language, which is still being utilized in the implementation of
the platform, only implements the concept of passive objects.
Due to this limitation, threads that are a ssociated with C ++
language were used, in order to resolve this constraint and
permit the active object concept to be implemented.

4.2 Objects Managed as Active Objects

With the goal of better attend the requirements of
management, the utilization of active objects to implement
managed objects was adopted, given that the representation of
real resources through the active objects is better suited to the
abstraction of system resources (layer entities, carrier
connections, hubs, etc.).

In traditional passive objects approaches, are limited
to the implementation of such abstractions, due to the lack of
dynamics and independence between the execution of objects.
Problems with objects (for example: a failure of interaction
with a real resource), compromise the e xecution of other
objects, because the control thread of the process is dedicated
to the execution of the object that failed, causing the blocking
of the e ntire a gent process. To resolve this problem, some
platforms limit t he implementation of the objects, or even
execute a more c omplex computation, because blockages in
external events are not permitted. An example of these
platforms is the OSIMIS management platforms [15], which
define that i mplementations of managed ob jects cannot be
blocked in external communication points, causing the
blockage of the entire process agent.

Restrictions such as this make the implementation of
the behavior of objects more c omplex, given that t he e ntire
process agent can be compromised by a system error in one of
its objects. This complexity can be increased, when there a re
managed ob jects representing system resources which are
weakly coupled, demanding g reater complexity in the
communication between the real resource a nd the managed
object.

By implementing managed objects as active objects,
the object that became blocked does not affect the other objects
or the ac tivities of the process agent it self, given that it s
individual threads are free to execute their computations
independently from the object that became blocked.

Active objects r eflect with g reater fidelity the
principal f unction o f t he managed ob jects; to represent real
resources [16].

The proposed core (Figure 3) does not i mpede the
utilization of passive objects, because in some cases managed
objects have a static behavior and will be better implemented
as passive objects. An example of managed ob ject
implemented as non-active e ntities, is the log class objects,
which only conduct their functions through external invocations
(writing, reading, etc.). In these cases, it i s desirable that t he
object be implemented as passive, because its constant activity,
will only consume processing resources (CPU) unnecessarily.

As said earlier, passive objects can become blocked

 root

RR
RR

RR

RR

RR
RR

notification

responses

RR - Real ResourceOM - Object Manager

 - MIT internal representation
 - Passive objects

- Control Thread

MO - Managed Object

 - Active Objects

 - Interaction MO-RR

MOsOM

Agent
Code

CMISEACSE

and compromise the operation of other passive objects or the
control thread that invoked it. To do this, an implementation
of passive objects is proposed, which ensures that a blockage
in the functioning of its behavior does not interfere with the
execution of other activities in the a gent process. This
implementation was possible, thanks to the multithreaded
features of the proposed core and will be considered in section
4.5.

4.3 - Dynamics of the Objects

The concurrent execution of the managed ob jects,
offers the system manager less response time in relation to the
requested operations, and a more precise vision of the MIB,
concerning the states of the managed objects and the states of
the resources that t hey represent. [17]. Basically, managed
objects can obtain information from their resources, accessing
them in three ways:
• through a request from the manager (access on demand);
• through periodic polling;
• by receiving traps from resources with built-in management
functions.

In the first case, traditional single-threaded
organizations would cause a temporary blocking of the entire
agent application, because the object i s interacting with a
resource at that given instant. In case this resource was weakly
coupled to the system, various later requests coming from the
manager could remain pending for a long time, waiting for the
completion of communication between the managed ob ject
and the resource. By utilizing the multithreaded core, all of
the agent activities are independent, offering greater fairness
in their executions and not allowing active c omputations to
monopolize the utilization of the processor at any given
moment.

In the second case of interaction (access by
polling), traditional, as well as multithreaded organizations
offer desirable support for their implementation. Nevertheless,
in the multithreaded approach, there is a ca pacity to o ffer
certain managed ob jects greater priorities in relation to their
executions, causing a greater frequency of their polling
operations. This is desirable because greater precision is
needed for them to support real time features. In application
acting in fault management, this feature is desirable in order to
provide more precision in the detection of problems that may
occur with certain resources that are vital for the perfect
functioning of the system.

In the third interaction (trap receptions), similar to
the ea rlier case, certain resources that demand special
attention (for ex. access control service), can be privileged in
having their notifications given priority over other managed
objects that demand less attention in relation to their
notifications.

The function of altering priorities between the
managed ob jects is delegated to the OM, which interferes
directly in the priorities of the set of threads utilized b y the
managed objects. The designer of the application agent will be
in charge of defining which priorities will be assigned to each
object.

In order to improve the performance of the process
agent, objects can pass their turn of execution to other active
entities (threads) of the system, verifying that at a given
instant, their behavior would not perform any computation.

Empty queues, attributes of the disabled operational state, and
managed resources which are temporarily unavailable, are
some e xamples of conditions in which objects pass the
processor on to other activities, in order not to consume their
entire share of execution time without any computation.

The serialization of the operations takes place at the
operations level on the same object. Requests that utilize the
scope, filter and synchronization, must previously be handled
by the OM, because in addition to managing the structure that
represents the MIT (scope, filter), this s upplies mechanisms
for the implementation of synchronization between objects,
among other functions.

In the model presented b y Figure 3, a thread is
dedicated to the execution of the OM, and two others for each
of the response and notification queues, which are dedicated to
the issue of these messages. It i s the function of the OM to
perform the maintenance (create, delete, suspend, reactivate,
alter priorities, etc.) of these threads and the threads of each
managed object.

In the c reation of an object, the OM associates a
control thread to the created object, updates the MIT, initializes
the values of the a ttributes of this object with some reference
object (if specified in the Name Binding [18]), creates an
operations queue for the object, issues an event report notifying
the creation, and updates its internal state in order to support
the new object created. The thread associated to the new object
will execute the “behavior” method of this object, being that
part of this behavior is defined by the platform and the rest will
be that defined in the constructor of the managed object class
template [18], which will be implemented b y the a pplication
designer. Part of the behavior of the object, supplied b y the
platform, is related to the handling of the operations queue of
the managed ob ject and to interactions with synchronization
objects (S). This part of the implementation is called “active
objects support code”. The functioning of the object (S) will be
described in section 4.4.

4.4 Operations that Demand Synchronization

Each object that has its own operations queue and that
executes in an independent and concurrent manner with other
system objects, creates a problem in situations where a n
operation must be executed upon multiple objects (scope) and
this requests atomic synchronization. The CMIP protocol
allows two forms of synchronization:
• atomic;
• best effort.

In the best effort synchronization, a failure in the
execution of an operation by an object in the group does not
interfere in the e xecution of the other objects. The atomic
synchronization demands that all of the objects of the group
successfully execute the operation; in case some object fails, all
of the objects involved, abort t he operation, even if they are
capable of executing them. The problem with this type of
operation can be illustrated in the following example.

Suppose that for a SET management operation (S),
requested with scope and filter, three objects were selected, and
that this operation was requested with atomic synchronization.
Figure 5 illustrates the setting of the problem.

 S

 S G C D G

 (1
)
 (2
)

Figure 5

As object (1) does not possess operation messages
in its queue, the SET operation will be the only one in the
operations queue of this object. In the case of object (2), there
are remaining operations, and SET will be the fifth operation
of the queue. The third object has only two operations in its
queue, and the SET operation will be the third to be attended.
In this scenario, it is found that the problem of operation (S)
can be executed b y the objects at different times, given that
the operation queue of each object has different sizes. To
resolve the problem an application support object called
synchronizer object (S), will coordinate operations that
demand atomic synchronism. Figure 6 d emonstrates the
solution.

Figure 6
When operations that demand atomic synchronism

are submitted to the managed objects, the OM will create an
object (S) which will contain the object identifiers (OID) that
are in the operation group. In this example, only objects 1,2
and 3 are submitted to atomic synchronization, given that their
identifiers are contained in the object (S). When the managed
object removes an operation from its queue which demands
synchronization with other objects, this will notify its object
(S), that it is ready to execute the operation. From this moment
the managed object waits for a message from the object (S),
requesting the operation to b e e xecuted. This message only
will be issued b y the object (S) when all of the objects
belonging to the group are ready to execute the operation.
Thus, new operations that arrive in the object queue, are not
handled, until it i s released by the object (S). Other activities
can be executed by the managed object, in order to keep the
real resource’s image always updated.

After the object (S) receives from all of the objects
of the group notifications that t hey are ready, (S) sends a
message to all of the objects to execute the operation. After
they execute the operation, the managed objects must send a
response to ob ject (S) indicating that t he operation was
successfully realized or that it failed, because in the execution
of the operation all of the managed resources (real resources),
problems can arise in the interaction between the managed
object and resource. In case a failure response is notified, the
transaction is canceled for all of the objects of the group,
which once they return to their earlier state, are released to
continue to serve their operation queues.

4.5 - Non-Blocking Passive Objects

In order to allow that the implementation of some
managed ob jects (log, log register, etc.), be modeled as
passive objects, does not compromise other activities of the
system in case these a re blocked, it was defined that each
passive object has its own control thread. These objects only

become ac tive in the presence of external i nvocations,
preserving the semantics of passive objects.

In this implementation, the OM does not directly
access the passive object method, because if the method is
blocked for some reason, the OM thread will be blocked and
will not handle the new PDU’s that arrive from the
CMISE/ACSE. Therefore, the OM requests that t he passive
object thread, invoke its methods to attend the queue
operations, thus not affecting the e xecution of other agent
activities, in case the passive object is blocked. Passive objects
execute their behavior by invoking the OM, which is
represented by the stepping up (sema_post()) of a semaphore
variable (OM_Signal), utilized by the passive managed object,
differently from the active objects that are constantly executing
their behavior.

5 - Modeling, Simulation and Performance Evaluation

This s ection presents the results of a performance
comparison (benchmarking) of the two agent core models. One
model adopts the implementation of the managed ob jects as
passive objects, this being the form adopted by the majority of
the management platforms implemented today. In the second
model, the implementation of the managed objects follows the
approach of the active objects, which is proposed in this paper.

The performance evaluation of the management agents
requires the construction of models, and their simulation, which
offers results concerning the behavior of the variables that
measure their performance. Such models, when exposed to
artificial loads, analogous to those in the real world, allow the
comparison of the performance of the systems being
investigated. The main components of the models are:
• Sources of emission of management operations (manager)
• Managed system (agent)

Managed Object (MO)
Object Manager (OM)
Event Report (Notifications)

5.1 - Parameters Utilized

The parameters utilized for the modeling of the above
components, were obtained from the measurements conducted
on prototypes, which were implemented for each of the
evaluated models. The management operations (requests) are
responsible for 85% of the traffic of the entities to be processed
by the agent. The remaining 15% are related to the notifications
generated by the managed objects. It is assumed that the arrival
of both requests and notifications adhere to a Poisson process.
In this way, to model t he processes of notifications and
request’s generation, exponential distributions were utilized.

For the OM processing times, according to the
measurements conducted in the two implementations, values
were adopted of 0.073 and 0.075 seconds, respectively, for the
Passive Object and the Active Object models.

In the implementation of both of the prototypes, it was
defined that the processing time of the MO’s has a duration of
2 seconds. The measurements of both models, resulted in the
total time of 2.0094 seconds for the MO’s implemented in a
passive form, and 2.0508 for the MO’s implemented as active
objects.

5.2 - Design of the Experiments

The performance of the modeled systems depends,

 S

 S G A G G

 S G A

 (1)

 (2)

 (3)

 Object
(S)

 [1,2,3]
 D A G (4)

fundamentally, on four principal factors: t he number of
managers, the number of objects, the forms of interaction
between the agent and the manager and the level of the system
load. Each of these factors can assume two po ssible levels,
thus characterizing a c omplete factorial t ype e xperiments

design [19], with the number of experiments equal to 2
4
. The

four factors and their respective levels are presented in Table
1.

Factor Level 1 (+) Level 2 (-)
Managers 5 1
Objects 30 10
WorkLoad 2,2 sec (act obj)

12,44 sec (pass obj)
1,1 sec. (act obj.)
24,88 sec. (pass obj)

Interaction Asynchronous Synchronous
Table1

As can be seen in the a bove table, the workload
allocation, within a single level, is differentiated, depending
on the model adopted. The values utilized reflect a
compatibility between the bottleneck points distinguished in
the two models, OM in the model of active objects and MO in
the model of passive objects. In this way, to characterize the
models in situations of high and low rates of processing of
their critical activities, the parameters shown in Table 1 were
adopted. To evaluate the performance of the modeled systems,
the following response variables were adopted:

• Total time spent by a request in the system;
• Number of requests attended in both models;
• Total number of notifications accounted for.

5.3 - Results of the Simulations

The results presented here were obtained from the
simulations of the models of the systems (active and passive).
The models were developed using the simulation environment
ARENA 2.0 [20]. For a statistical analysis of the results of the
simulations the ARENA Output Analyzer was utilized. The
results presented come from the value obtained from 10
replications of each of the experiments. This number proved to
be sufficient for the measurements obtained to have the
acceptable c onfidence interval at an level of 0.05. The
simulations were c onducted considering intervals of 1,000
seconds. Since they were non-terminal systems, their analyses
must be conducted within the steady-state of the systems. For
that purpose, after proper statistical procedures, the adoption
of a warm-up p eriod equivalent t o 10 % of the total time of
each replication was considered. In this way, periods of 1,100
seconds were simulated, where the observations referring to
the initial 100 seconds were ruled out.

5.3.1 - Analysis of the Results of the Passive Object Model

The results of the simulations, for the passive objects
model, is found in Table 2.

Factors/Levels
Experim. 1 2 3 4 NRA NNA TTR

1 + - + + 383 29 2.11
2 + + + + 397 75 2.18
3 + + - + 223 59 2.37
4 + - + - 430 27 13.63
5 + + + - 403 69 64.62
6 + + - - 223 59 4.5
7 - + + + 70 67 2.11

8 - + + - 70 67 2.23
9 + - - - 206 39 3.03

10 + - - + 183 26 2.11
11 - - - - 31 24 2.26
12 - - - + 31 24 2.11
13 - - + - 70 18 2.26
14 - - + + 70 18 2.11
15 - + - + 104 40 2.11
16 - + - - 104 40 2.16

Table 2
For each of the e xperiments the values adopted for

each factor are presented, as well as the results obtained by the
response variables. In the table, NRA refers to the number of
requests attended b y the OM, NNA is the number of
notifications attended b y the OM, and TTR is the total ti me
used by a request in the system.

Considering the observations in Table 2 and Graph 1,
it is found that in experiment 5, there is a considerable increase
(64.62 seconds) in the response time. This increase is justified
by the levels adopted by the various factors. The response time
to a request for the synchronous passive object model, is
dependent on the wait time for the execution by the system of
the other requests in transit. In this case, due to the high level
of requests generated by the five managers, because of the large
number of notifications generated by the 30 objects and by the
form of interaction between agent and manager (synchronous
form) the number of operations waiting to be a ttended by the
OM reaches it maximum point, causing a high response time
for the operation. In the other cases, the system presents itself
as less congested, principally due to the absence of the factor
three combination, level (+) with factor 4 level (-).

Graph 1
Concerning the number of requests attended, it i s

observed in Table 2 and in g raph 2, that t ests 1,2,4 and 5

present respective maximums of (383, 397, 430 and 403).
These values are mainly due to the high number of requests
generated b y the 5 managers with h igh rates of creation of
operations (factors 1 and 3 (+)). However, it is also observed
that especially in experiment 5, due to the large number (69) of

notifications generated by the 30 objects, the processing time
of the operations is also the highest of all of the experiments.

Graph 2

5.3.2 - Analysis of the Results of the Active Object Model

The results of the simulations, for the ac tive object
model, are found in Table 3.

Factors/Levels
Experim 1 2 3 4 NRA NNA TTR

1 + - + + 3219 34 15.21
2 + + + + 3420 97 3.13
3 + + - + 1656 98 2.57
4 + - + - 1283 34 157.79
5 + + + - 1529 97 135.96
6 + + - - 1512 98 34.849
7 - + + + 699 97 2.39
8 - + + - 344 97 117.42
9 + - - - 1220 102 79.39

10 + - - + 1677 37 3.79
11 - - - - 341 35 16.041
12 - - - + 350 35 2.41
13 - - + - 342 32 128.19
14 - - + + 683 32 2.70
15 - + - + 489 107 2.28
16 - + - - 321 107 9.67

Table 3
For each of the experiments values adopted for each

factor are presented, as well as the results obtained b y the
response variable. In the table, NRA refers to the number of
requests attended b y the OM, NNA is the number of
notifications attended b y the OM and TTR, the total ti me
spent by a request in the system.

Observing Table 3 and Graphs 3 and 4 , it i s
recognized that i n g eneral, the a verage number of requests
attended grows in relation to the ea rlier model (passive).
Examining the results more accurately it can be recognized
which factors most influence the general performance of the
system, considering the c ombination of response variables
NRA and TTR. In this s ense, experiment 2 (NRA = 3,420
requests and TTR = 3.13 seconds) can be considered to have
the best performance. In this experiment, there is a system
with the maximum utilization rate of the MO’s (due to the
levels adopted in various factors) and acting in a asynchronous
form.

Graph 3

Graph 4

6 - Conclusions

The multithreaded core presented in this paper
allows the introduction of the concept of active objects in the
implementation of managed objects. One advantage of this core
over the implementations of cores that utilize the single-thread
approach is the great independence between the executions of
the behavior of the managed ob jects, which offers a higher
degree of fault-tolerance for the process as a whole, protecting
it from faults that can occur in the scope of an object and which
interfere in other activities of the agent. The best performance
in the e xecution of the intra-agent activities is another
important factor present i n the multithreaded proposal. The
results achieved from the simulated models prove that t his
model has the best performance when compared with the
traditional model that implements passive objects.

In multiprocessed machines, the nature of the intra-
agent activities allows the parallel execution of the various
control threads causing a high performance level of its
executions.

This (core) is currently implemented as part of an
Agent Toolkit, the goal of which is to automate the
development process of the agent processes, with the user only
responsible for the implementation of the behavior of the
managed objects. This Toolkit is part of a larger project, which
seeks the implementation of an OSI network management
platform. The implementation of the platform is being
developed for Solaris 2 (SunOS 5.5). Various resources
(mutex, semaphore, LWPs, etc.) related to this environment are
being u tilized. The e ntire handling of the threads is being
conducted with a pthreads library [21] in order to make the
implementation compatible with the POSIX P1003.4a.
standard. Future papers will seek the integration of this core
into agents that utilize XOM/XMP interfaces given the
widespread utilization of these API’s in commercial
management platforms.

References
[1] ISO/IEC 10040, Information Technology - Open Systems
Interconnection - Systems management overview, 1992.
[2] Bean, A.; Wood, D.; Fairclough, W. “Specifying Goal-
Oriented Network Management Systems”, IEEE
Communications Magazine, 1993.
[3] ISO/IEC 7498-4, Information Technology - Open Systems
Interconnection - Management framework, 1992.
[4] Mansouri-Samani, M.; Sloman, M. “Monitoring Distributed
Systems (A Survey)”, Imperial College Research Report N .
DOC92/23, 1992.
[5] Bach, M. J. “The Design of the UNIX Operating System”,
1990.
[6] Rose, M. T. “The Open Book: A practical perspective on
OSI”, Prentice-Hall, 1990.
[7] I SO/IEC 9595, Information Technology - Open Systems
Interconnection - Common management i nformation service
definition, 1991.
[8] ISO/IEC 10165-1, Information Technology - Open Systems
Interconnection - Structure of management i nformation:
Management information model, 1992.
[9] Tanenbaum, A. S. “Distributed Operating Systems”,
Prentice-Hall, 1995.

[10] ISO/IEC 9596, Information Technology - Open Systems
Interconnection - Common management information protocol
- part 1: Specification, 1991.
[11] Tsichritzis, D.; Nierstrasz, O.; Gibbs, S. “Beyond
Objects: Objects “, IJICIS, vol. 1 no. 1, pp. 43-60, 1992.
[12] Booch, G. “Object-Oriented Analysis and Design with
Applications - Second Edition”, The Benjamin/Cummings
Publishing Company, 1994.
[13] L hr, K. “Concurrency Annotations”, OOPSLA’92, pp
327-340, 1992.
[14] Takashio, K.; Tokoro, M. “DROL: An Object-Oriented
Programming Language for Distributed Real-Time Systems”,
OOPSLA’92, pp. 276-294, 1992.
[15] Pavlou, G.; McCarthy, K.; Bhatti, S.; Knight. G. “The
OSIMIS Platform: Making OSI Management Simple”,1994.
[16] Matias Jr., R.; Specialski, E. S. “Managed Objects as
Active Objects: A Multithreaded Approach.”, IS&N’97 (4th
International Conference on Intelligence in Services &
Networks), Maio/1997, Como, Italia.
[17] Matias Jr., R.; Specialski, E. S. “A Multithreaded Core
for Network Management Agents“, ISCC’97 (IEEE
Symposium on Computers and Communications), Julho/1997,
Alexandria, Egito.
[18] I SO/IEC 10165-4, Information Technology - Open
Systems Interconnection - Structure of management
information: Guidelines for the definition of managed objects,
1992.
[19] JAIN, R. 1991. The Art of Computer Systems
Performance Analysis, John Wiley & Sons, Inc.

[20] PEGDEN, C.D., Shannon, R.E. Sadowski, P.P. 1995.
Introduction to S imulation Using S IMAN, 2nd Ed, McGrall-
Hill

 [21] SunSoft “Pthreads and Solaris threads: A comparison of
two user level threads APIs”, Sun Microsystems, 1994.

