
I.J. Intelligent Systems and Applications, 2011, 2, 52-59
Published Online March 2011 in MECS(http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

A High Performance Image Authentication

Algorithm on GPU with CUDA

Caiwei Lin
School of Computer Science and Technology, Soochow University, Suzhou, China

Email: lincwei@gmail.com

Lei Zhao and Jiwen Yang
School of Computer Science and Technology, Soochow University, Suzhou, China

Email: {zhaol, jwyang}@suda.edu.cn

Abstract—There has been large amounts of research on

image authentication method. Many of the schemes perform

well in verification results; however, most of them are time-

consuming in traditional serial manners. And improving the

efficiency of authentication process has become one of the

challenges in image authentication field today. In the future,

it’s a trend that authentication system with the properties of

high performance, real-time, flexible and ease for

development. In this paper, we present a CUDA-based

implementation of an image authentication algorithm with

NVIDIA’s Tesla C1060 GPU devices. Comparing with the

original implementation on CPU, our CUDA-based

implementation works 20x-50x faster with single GPU

device. And experiment shows that, by using two GPUs, the

performance gains can be further improved around 1.2

times in contras to single GPU.

Index Terms—GPU, CUDA, image authentication, semi-

fragile watermarking

I. INTRODUCTION

Digital images are widely distributed today over the

internet and through other mediums, and there are
powerful digital image processing tools which have made

perfect image duplication a trivial procedure. Therefore,

copyright protection and integrity verification of digital

image have become an urgent issue in the digital world.

Image authentication technology is important in various

types of images’ protection. A vast research has been

conducted on methods of image authentication, and many

useful concepts such as signal transform (DCT, DWT,
etc.) and HVS (Human Visual System), was employed to

improve the performance and to satisfy the practical

requirement. As a result, lots of the algorithms proposed

in literatures are complicated in computation, which

restrain their being adopted in some real-time occasions.

Improving the efficiency of image authentication process

has become one of the challenges in this field.

Some researchers have used hardware like FPGA and
custom IC as co-processor in image processing, but the

procedure of hardware designing and programming is not

a friendly work. On the other hand, nowadays, GPU

devices are wildly equipped in personal computers and

have a great potential in mass parallel computing

capability. Traditional GPGPU (General Purposes

Graphical Processing Unit) methods, however, require
programmers equipped with graphic knowledge and API,

which make the work of designing of GPU parallel

computing tedious and hard to debugging. As the release

of NVIDIA’s Compute Unified Device Architecture

(CUDA), researchers can design programs for both CPU

and GPU conveniently with a C-like programming

language, without knowing fundamental knowledge on

computer graphics.
In this paper, we firstly propose an image

authentication scheme, and then discuss the

implementation of it on CUDA-enabled GPUs, which

have been widely equipped in today’s PCs. Experimental

results show that our CUDA-based method for image

authentication gains a good performance in both

authentication results and operation speedup. The rest of

this paper is organized as follows. Related work is
discussed in Section II. In Section III, the hardware

model and programming model of CUDA is reviewed.

And the image authentication algorithm proposed in this

paper is presented in section IV. Section V describes the

detail of CUDA-based implementation of the proposed

algorithm, and experimental results of the implementation

are presented in Section VI. Conclusions are drawn in

Section VII.

II. RELATED WORK

Generally speaking, image authentication techniques

can basically be categorized into two types: digital

signature and digital watermarking [1]. Extensive

research on image authentication algorithms have been

proposed in the last decades, especially on semi-fragile

watermarking. Semi-fragile watermarking technology is

mainly used for image content authentication. It is
required that the authentication method is able to tolerate

incidental manipulations while being sensitive to

malicious distortions.

Chen proposed an image authentication scheme

combines digital signature and watermarking [2], which

extracts signature from the original image and embeds

Corresponding Author: Lei Zhao

 A High Performance Image Authentication Algorithm on GPU with CUDA 53

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

them back into the image as watermark and avoid

additional signature bandwidth for transmission, the

algorithm shows not only tolerate JPEG compression but

also able to locate the illegal modifications. Ho and Li [3]

proposed a semi-fragile watermarking scheme which

tolerates JPEG compression and equipped with the

properties of nondeterministic block-wise dependence,
obliviousness and localize attacks. Lin and Su present a

semi-fragile method by employ a new concept of the

lowest authenticable JPEG quality (LAJQ), and also

prove the validity of pre-compression method mentioned

in literatures [3-5]. The scheme in [10] took HVS into

account to against special attack of watermarked images.

Other schemes can not only localize the modifications,

but also recover the tampered region [11].
Although these methods performed well in image

authentication, most of them need computational

intensive operations, and thus are unable to generate a

result instantaneously. Several hardware assisted methods

for digital signature and watermarking acceleration have

been studied in recent years, for instance, some attempts

for accelerating watermarking methods by using

dedicated special-purpose hardware like digital signal
processor (DSP) and field programmable gate array

(FPGA) [6], for example, [14] proposed robust and

fragile watermarking acceleration schemes by using

custom IC hardware, and Seo and Kim presented a FPGA

co-processed method for robust watermarking in DWT

domain [15]. Nevertheless, these methods are designed at

the hardware level that limit the capability of

programming, thus designing different schemes may
require complete changes of hardware architectures.

What’s more, these devices are not commonly available

in consumer level PC, which constraints the deployment

of related technology. Graphics Processor Unit (GPU) is

one of high performance computing platforms and wildly

available in today’s PC. Brunton and Zhao [7] used GPU

as a co-processor, and proposed a watermarking-based

content authentication method for real-time video
application, and the system was shown to have good

performance both on processing efficiency and

authentication results. Mohanty [8] presented an efficient,

real time and low cost watermarking system for image,

by implementing a dedicated processor chip as a co-

processor for the GPU. However, their methods are still

focused on hardware designing or required knowledge on

graphics API or dedicated processor chips. On the other
hand, the new release of GPU programming platform

CUDA [9] offers highly parallel computation and flexible

programmable environment. Many recent papers have

devoted to exploiting the massive parallel computing

processors on GPU’s massive cores, and lots of problems

in the fields of linear algebra [16], image processing [17],

biomedical information [18], signal processing [19], etc.,

have benefited from its speed and parallel processing
capability. However, seldom CUDA-based accelerating

watermarking or image authentication methods have been

presented in literatures. The goal of using CUDA in

image authentication field is to establish a high

performance, real time, flexible and ease developed

system of authentication.

III. CUDA OVERVIEW

Compute Unified Device Architecture (CUDA) is a

new hardware and software architecture for designing and

dealing with computations on the GPU, without the need

of mapping them to a graphics API, and allow direct
access to GPU processors and device memory. Its

straightforward extension of the C programming style and

native interface to GPU’s data-parallel model have made

the implementation of GPU-based parallel computation a

friendly work [9]. However, to achieve high performance,

software designers need to acquire knowledge about

CUDA’s architecture and programming optimize strategy.

A. Hardware Model

The CUDA device is equipped with a set of SIMD

stream multi-processors (SM), and each SM contains

several stream processors (SP). For example, NVIDIA

Tesla C1060 GPU is build with 240 SP cores, organized
in 30 SM streaming multiprocessors. GPU’s massive

process cores make it naturally to run great amount of

concurrent threads at the same time. As a result, GPU is

suitable for data-parallel and computing intensive tasks.

CUDA architecture provides access to several types of

memory. Global (device) memory can be read and written

by all threads. For each thread block, there is a shared

memory (on-chip memory) available for all threads
within the block, and registers are local storage for each

SP. Share memory has low access latency and high

bandwidth, similar to an L1 cache. Thus, the access speed

of shared memory and register are much faster than

global memory, so it is an important strategy for

accelerating data access. There are also two additional

read-only memory spaces accessible for all threads: the

constant and texture memory spaces. Texture memory is
a special case of device memory which is cached for

locality. Constant memory is cached memory that can be

written by the CPU and read by the GPU. To achieve

highest throughput, consecutive memory locations must

be simultaneously accessed by the threads, which is

called memory access coalescing. By coalescing the

global memory reads and writes, and avoiding on-chip

shared memory bank conflicts, performance gains can be
further increased. This is an effective technique for hiding

memory latency and will be taken into account in our

later implementation.

B. Programming Model

Under the CUDA programming model, applications

are divided into grain independent tasks. These tasks are

parallelized by scalar execution units called threads. A set

of threads are organized as thread blocks, and each thread

and block is given a unique ID that can be accessed

within the thread during its execution. The CPU invokes

the GPU by calling a CUDA kernel. In fact, kernel is a

special C function. In a given execution of CUDA kernel,
each thread can perform the kernel task on different set of

data using the thread and block IDs. The set of all blocks

54 A High Performance Image Authentication Algorithm on GPU with CUDA

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

Figure 1. (a) Zigzag order of 8×8 DCT-coefficient block; (b) Frequency

domains 8×8 DCT-coefficient block.

run during the execution of a CUDA-kernel is called a

grid.

Threads within a block can share data with each other.

Besides, it’s able to place synchronization points to

control the execution flow of all the threads within a

block. Threads from different blocks in the same grid can

coordinate only via operations in a shared global memory
space visible to all threads. This provides fine-grained

data parallelism and thread parallelism. 16 consecutive

threads in a block form a half-warp, and 2 half-warps

form a warp. A warp size of consecutive threads which

take the same execution path will be activated at the same

clock cycle of GPU. Thus, threads in a warp that execute

different task paths (also called diverge) must wait in turn

for the next executing clock cycle. Therefore, it is highly
suggest avoiding divergence in a warp to achieve

substantial efficiencies of processors.

IV. IMAGE AUTHENTICATION ALGORITHM

In this section, we propose a semi-fragile

watermarking algorithm for image authentication. The

algorithm extracted features from low and middle

frequency domain of DCT coefficient blocks and

embedded them into high frequency region.

A. Review of DCT

Discrete Cosine Transform (DCT) is a transformation

function which transforms the representation of data from

space domain to frequency domain. DCT method is well
known in image processing for it’s used in the standard of

JPEG compression. As for matrix
M N

I × , 2-dimensional

DCT formulate is defined as follow:
1 1

0 0

(2 1) (2 1)
(,) () () (,) cos[]cos[]

2 2

M N

i j

i u j v
C u v u v I i j

M N

π π− −

= =

+ += ∂ ∂ ∑∑ (1)

And the corresponding inverse DCT formulate is:
1 1

0 0

(2 1) (2 1)
(,) () () (,)cos[]cos[]

2 2

M N

u v

i u j v
I i j u v C u v

M N

π π− −

= =

+ += ∂ ∂∑∑ (2)

Where

11
, 0, 0

() , () ,0 1,0 1
2 2

, 0 , 0

vu
NMu v u M v N

u v
M N


==  ∂ = ∂ = ≤ ≤ − ≤ ≤ − 

 ≠ ≠
  

B. Feature extraction and embedding scheme

The steps of image feature extraction and embedding
are expressed as follows:

1) Performing block-based DCT

 Divided the original M N× image I into non-

overlapped 8 8× blocks, where ,i j are locations of the

blocks in image I , and apply 2D-DCT to each block,

then we get DCT-coefficient blocks ,i j
C (suppose the

whole block-wise DCT-coefficient matrix is C). For each

8 8× DCT-coefficient block, the well known zigzag

order is employed, and each block is partitioned into low

(L), middle (M), high (H) frequency domain, as

illustrated in Fig.1.

2) Secure serial-numbers generation

To increase the security of the algorithm and avoid

block-wise independence, we employ the Logistic chaotic

model and generate a unique serial-number (, ,)T i j µ for

each block ,i j
C using the following equation:

1

(1)
n n n

x x xµ+ = − (3)

where (3.5699 4)µ µ< < is an initial private key.

3) Watermark extraction

The watermark sequences extracted from image are

invariant relationship between two DCT-coefficients

in 8 8× block pairs, which was proved to be robust

before and after JPEG compression by Lin and Chang [5].

Thus, we will employ this property to extract image

features. In order to make later expression clearer, let us

take the neighboring block 0, 0C and 0,1C for example,

and we define the following symbols:

• ,
l m

K K : tow dynamic secret keys used to pick

the positions from the low and middle frequency
domain, and they are defined as below:

(0,0,) (0,1,)
l l

K T Tλ µ µ= ⊕ ⊕

(0,0,) (0,1,)m mK T Tλ µ µ= ⊕ ⊕

 where lλ and
m

λ are another two private keys,

and (, ,)T i j µ is a serial-number generated by (3).

•
s

l : the zigzag order indexes of four coefficients

picked from the low frequency domain by
l

K ,

s ={1,2,3,4};

•
s

m : another four indexes picked from the middle

frequency domain with private key
m

K ;

Then the low frequency feature vectors
1

L
W and

2

L
W

are extracted using the following rules:

 {1 0,0 0,11 () ()
()

0
s s

L

C l C l
W s

otherwise

≤=

 {2 0,0 0,1
1 (()) (())

()
0

s s
L

sign C l sign C l
W s

otherwise

≠=

and the watermark vector generated from low frequency

domain can be defined as:

 ° 1 2
L L L

W W W= ⊕ (4)

Similarly, for the middle frequency domain, we have:

 A High Performance Image Authentication Algorithm on GPU with CUDA 55

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

Figure 2. (a) The region for embedding watermark; (b) JPEG

quantization table Q

{1 0,0 0,11 () ()
()

0
s s

M

C m C m
W s

otherwise

≤=

 {2 0,0 0,1
1 (()) (())

()
0

s s
M

sign C m sign C m
W s

otherwise

≠=

And define the watermark vector of middle frequency

domain as follow:

 ° 1 2
M M M

W W W= ⊕ (5)

As a consequence, we completed watermark extraction

from block pair: 0, 0C and 0,1C . The similarly processing

will be done for the other block pairs.

4) Embedding watermark

The step of embedding watermark, we take the partial

high frequency domain as watermark embedding region

Em. Fig.2 (a) shows the embedding region of each 8×8

block. It is in order to ensure the perceptible quality of

the image. By pre-quantize the DCT coefficient with a

predetermined quality factor [4] [5], the watermarked

image will tolerate any number of further compressions

of smaller quantization steps. Here we take / 4Q as the

quantization table whose elements are corresponding

values equal to 1/4 times of the values from JPEG

quantization table Q , which is illustrated in Fig.2 (b).

Still, take
0, 0C and

0,1C for example, four coefficients

will be picked out from Em region in each block with a

private key
h

K , which can be got by the ruler below:

(,) (, ,)
h h

K i j T i jλ µ= ⊕

where
h

λ here is also a private key. Let 1 2,s sh h means the

indexes of the four embedded coefficients

in 0, 0C and 0,1C . And 1

0, 0 1()C h and 1

0, 0 2()C h will be embed

the first two elements of the watermark vector °
LW ,

and 1

0, 0 3
()C h , 1

0, 0 4()C h will be embedded the first two

elements of the watermark vector °
MW . Another two

elements of °
LW and °

MW will be embedded into
2

0,1()sC h (s =1… 4) respectively. Then, we define the

following symbols:

, ,() (() / ())k k k

i j s i j s sRC h round C h Q h=

, ,() () / ()k k k

i j s i j s s
URC h C h Q h=

 , ,1 (() ()) 0

1

k k

i j s i j sif URC h RC h
Sgn

otherwise

 − ≥= −

where ()k

s
Q h is the

k

sh th element of Q in zigzag order.

Also we define two cases:

 °
,

1: (()) (())k k
L s i j s

case W Index h LSB RC h=　

 °
,

2 : (()) (())k k

s i j s
case W Index h LSB RC h=Ｍ　

here ()Index ⋅ means the corresponding index of

watermark vector and ()LSB ⋅ denotes the least

significant bit. The embedding strategy can be expressed

as:

(a) For {1,2}s = , embbeding ° LW ,

 ,
,

,

() () 1
()

(()) ()

k k
k i j s s

k ki j s

i j s s

RC h Q h if case
C h

RC h Sgn Q h else

 ×=  + ×
 (6)

(b) For {3,4}s = , embbeding ° MW ,

 ,
,

,

() () 2
()

(()) ()

k k
k i j s s

k ki j s

i j s s

RC h Q h if case
C h

RC h Sgn Q h else

 ×=  + ×
 (7)

After all the blocks of the coefficient matrix C are

watermarked, performing IDCT to the watermarked

coefficient matrix and we get the watermarked image
W

I .

C. Procedure of Authentication

The procedure of authentication can be performed

without the reference of original image, thus this

algorithm is obliviousness. Assume
*

I is the
watermarked image under attack at the receiver end. The

authentication scheme can be describe as follows:

• Firstly, processing the image
*

I with the same
steps performed in the feature extracting, and get

the watermark vectors ° *

LW , ° *

MW from block

pairs. Also, extracting watermarking ° *

HW from
high frequency domain in each block. Verifying

the embedded coefficients of block
*

,i j
C as

follows:

(a) For {1,2}s = ,

° °* *
*

,
0 (()) (())(())
1

k k
k L Hs s

i j s
if W Index h W Index hVer C h
else

 == 


 (8)

(b) For {3,4}s = ,

° °* *
*

,
0 (()) (())(())
1

k k
k M Hs s

i j s
if W Index h W Index hVer C h
else

 == 


 (9)

• Then the integrity of each block can be
authenticated with the following rule (9), and

*

,i j
C will be marked as “invalid”

if *

,
() 3

i j
Auth C ≥ , otherwise marked as “valid”.

The authentication result of this scheme will be
show in the latter section.

56 A High Performance Image Authentication Algorithm on GPU with CUDA

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

Figure 4. Divide block-wise matrix into non-overlapped macro-blocks

Figure 3. Executing process of CUDA-based watermarked image

generation

Figure 5. Structure of shared memory and thread-tasks decomposing in

each thread block of CUDA

Figure 6. (a) 8 threads involved in watermark extracting; (b) 16

threads involved in watermark embedding

4
* *

, ,

1

() (())k

i j i j s

s

Auth C Ver C h
=

= ∑ (10)

V. CUDA-BASED IMPLEMENTATION

A. Details of Watermarked Image Generation with CUDA

Looking into the image authentication algorithm

proposed in section IV, we can find that the amount of

calculation of the algorithm centralized on the process of

DCT and watermark extracting and embedding, which

are highly amenable to parallel processing. Thus

parallelizing these processing will accelerate the

performance of the algorithm considerably. The CUDA-

based watermarked image generation will be
implemented with a CUDA kernel function named

CuAIG-Kernel, as illustrated in Fig.3.

The CuAIG-Kernel is implemented on a grid of

/ 32 / 32M N× thread blocks, and each block consists of

8 4 4× × threads. The implementation of CuAIG-Kernel

is described below.

For computing partition, we firstly further divided the

DCT coefficient Matrix C into 4 4× non-overlapped

macro-blocks, namely each macro-block consists of

sixteen 8 8× blocks, as showed in Fig.4.

In the executing of DCT, we decompose the task into

series of macro-blocks, and they are mapped into equal

numbers of CUDA blocks, that is one thread block is

allocated to process its corresponding pixel of macro-

block. Because of shared memory (on-chip memory) has

lower latency and much higher bandwidth than global
memory, the data accessed by each thread block will be

read firstly from the global memory to shared memory

before doing any arithmetic. As illustrated by Fig.5, each

thread reads 8 element (one column) of 8 8× block into

shared memory, and computes the corresponding DCT-

coefficients for each 8 8× block, thus a warp of threads

will round off the DCT-coefficients' computing of four

8 8× blocks. As the equation (10) showed, the

performing of 2D-DCT on sample X can subsequently

apply DCT to columns (
T

Y A X=) and rows (AC Y=)

of the input signal:

 (,) ()
T

C u v A X A= (11)

where A is an 8-order cosine matrix, X is a 8 8× block.

To make the DCT-computing of each block even more

efficiently, we also employed the high redundancy and

symmetry of the elements of matrix A . More detail can

be seen in [11].
While performing the step of watermark extracting, 8

threads as showed in Fig.6 (a) involved to generate

watermark vectors °
LW and °

MW by the rule defined in

section IV.

In the step of embedding watermark, 16 threads will be

involved to embed several elements of the previous

 A High Performance Image Authentication Algorithm on GPU with CUDA 57

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

Figure 7. (a) Original images; (b) Watermarked images generated by

CPU version; (c) Watermarked images generated by CUDA version

watermark with the rules of (6) (7), as illustrated by Fig.

6 (b). After all watermark elements are embedded, all

threads of each CUDA block are involved in performing

inverse DCT (IDCT) to the block-wise coefficients and

got the final watermarked image data.

At last, all threads are involved to write all of the DCT-
coefficients back to global memory with the inverse

procedure of reading.

VI. EXPERIMENTAL RESULTS

In this section, we will present the experiment results

of the proposed algorithm for image authentication on
both CPU and GPUs. As for the CPU implementation, the

algorithm is implemented by using primary-optimized

single-threaded C language. Both CPU and CUDA

implementations of the algorithm have been performed

under a workstation computer equipped with two

NVIDIA Tesla C1060 devices. The host’s parameters are

showed in Table I and Table II shows the main properties

of NVIDIA Tesla C1060.

A. Results of Authentication

In the experiment of image authentication, we choose

three BMP format image (Lena, Pepper, and Baboon) to

demonstrate the effects of the proposed algorithm both on

CPU and GPU.

a) Imperceptibility

Fig.7 shows the original images and the results of

watermarked images on CPU and CUDA version, which

fit the imperceptibility as we expected. Table III displays

the average PSNR (db) of CPU-processed and GPU-

processed Images (512×512 size), and also compare with

Lin’s related work [13]. Fig.8 shows the PSNR values of
GPU-processed Images in varied sizes.

b) Localization of tampering

Fig.9 shows the detected results of the tampered-

images (512×512 size) using CUDA version, from which

we can see the accurately locating of tampered regions
with the proposed algorithm.

c) Tolerance of JPEG compression

Fig.10 illustrates the watermarked image undergoing
different scales of JPEG compression and their respective

authentication results. When the compression scales

under the pre-quantization value, authentication results

come out be resisting the compression and stay integrity

with images before authentication.

B. Performance of CUDA-based Parallelization

To illustrate the accelerating performance of CUDA,

we compare the executing time of the proposed CUDA

method with CPU version, both executing time of CPU

and CUDA version are average values of experiment

results in 10 times' running. The speedups achieved with

the proposed CUDA implementation range from 20x
(512×512 size) to 50x (8192×8192 size), as illustrate by

Fig.11.

To make full use of the computing resource of GPU

devices, the algorithm was also implemented on multiple

GPUs. Two NVIDIA Tesla C1060 devices are involved

in the batch processing of images (1024×1024 size).

Table IV shows the executing time of watermarked

processing on CPU, single GPU and dual GPU with

different amount of files, and we can see that the system

gains higher work efficiency with two GPUs than single
GPU.

VII. CONCLUSIONS AND FUTURE WORK

An image content authentication algorithm is presented

and its CUDA-based parallel implementation is also

presented in this paper. Experimental results have shown

TABLE I.
MAIN CONFIGURATION PARAMETERS OF TEST ENVIRONMENT

Parameters Values

CPU

RAM

GPU Architecture

OS

CUDA

Intel Xeon 5520 (2.26GHz)

12GB DDR3 (1333MHz)

Tesla C1060

Centos 5.3 (64 bit)

V2.3

TABLE II

PROPERTIES OF NVIDIA TESLA C1060

Parameters Values

Number of multiprocessors

Number of cores

Global Memory

Shared Memory per block

DRAM

Registers per block

Clock Rate

30

240

4 GB

16 KB

4GB

16384

1.3 GHz

TABLE III

PSNR OF CPU-PROCESSED AND CUDA-PROCESSED IMAGES

 Lena Pepper Baboon

CPU

GPU

Lin[12]

39.26

39.24

37.38

39.36

39.26

36.97

38.77

38.65

40.52

58 A High Performance Image Authentication Algorithm on GPU with CUDA

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

38.2

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40

512×512 1024×1024 2048×2048

Image Size

P
S

N
R

(d
b

)

lena
peppers
baboon

Figure 8. PSNR of GPU-processed images in varied sizes

Figure 9. (a) Modification-attacked image and detected result by

CUDA version; (b) Collage-attacked image and detected result by

CUDA version

that the performance of the scheme is effective both in

authentication results and operations speedup. And

further more, multiple GPUs implementation are also

employed to make full used of the GPU devices, which

works 1.2x times faster than single GPU method. The

study of this paper is mainly focuses on acceleration of

the image authentication scheme with a novel CUDA-
based manner. It is truly that the proposed authentication

algorithm can be improved to make it more robust to

unintentional manipulation and even be able to recovery

the tamper region. Future work involves a more in depth

analysis of the optimizations and parallelization strategy

of CUDA program in order to further exploit the high

performance of GPU’s computation capability, and also

extending the CUDA-based method to authentication
method within wavelet transform domain.

ACKNOWLEDGMENT

The paper is supported by National Natural Science

Foundation of China (No. 61073061). The authors are

grateful to all the people for helpful suggestions. The

authors would like to thank all the anonymous reviewers

for their helpful comments on earlier drafts of this paper.

Figure 10. Different scale of JPEG compression of watermarked images

and respective authentication results

0

10

20

30

40

50

60

512×512 1024×1024 2048×2048 4096×4096 8192×8192

Image Size

S
p

ee
d

u
p

Lena

Peppers

Baboon

Figure 11. Speedup of the generation of watermarked images on GPU

compared with CPU version

TABLE IV

EXECUTING TIME OF DIFFERENT NUMBERS OF IMAGES

Executing time (msec)

Number of Images (1024×1024 size)
Computing

device
500 1000 2000

Speedup

vs. CPU

CPU

Single GPU

Dual GPU

7153.62

220.53

179.37

14291.22

440.85

378.60

28877.66

903.83

646.27

--

32x

40x

 A High Performance Image Authentication Algorithm on GPU with CUDA 59

Copyright © 2011 MECS I.J. Intelligent Systems and Applications, 2011, 2, 52-59

REFERENCES

[1] A. Haouzia and R. Noumeir, “Methods for image
authentication: a survey,” Multimedia Tools Appl, pp. 1 –
46, 2008.

[2] T. Chen, J. C. Wang, and Y. L. Zhou, “Combined digital
signature and digital watermark scheme for image
authentication,” International Conferences on Info-tech

and Info-net, Vol. 5, pp. 78 – 82, 2001.
[3] C. K. Ho and C. T. Li, “Semi-fragile watermarking scheme

for authentication of jpeg images,” In Information

Technology: Coding and Computing, 2004, Proceedings,
Vol. 1, pp. 7 – 11, 2004.

[4] C. T. Li, “Digital fragile watermarking scheme for
authentication of jpeg images,” IEE Proc.-Vis. Image

Signal Process., Vol. 151, pp. 460 – 466, 2004.
[5] C. Y. Lin and S. F. Chang, “A robust image authentication

method distinguishing jpeg compression from malicious
manipulation,” Circuits and Systems for Video Technology,

IEEE Transactions on, Vol.11, pp.153–168, 2001.
[6] E. Kougianos, S. P. Mohanty, and R. N. Mahapatra,

“Hardware assisted watermarking for multimedia,”
Computers Electrical Engineering, Vol.35, pp. 339 – 358,
2009.

[7] A. Brunton and J. Y. Zhao, “Real-time video watermarking
on programmable graphics hardware,” In Electrical and

Computer Engineering, 2005. Canadian Conference on, pp.
1312 – 1315, 2005.

[8] S. P. Mohanty, N. Pati, and E. Kougianos, “A
watermarking co-processor for new generation graphics
processing units,” In Consumer Electronics, 2007. Digest

of Technical Papers. International Conference on, pp. 1– 2,
2007.

[9] NVIDIA Corporation, “NVIDIA CUDA Programming
Guide_Version1.1,”http://developer.download.nvidia.com/
compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide
1 1.pdf, 2007.

[10] H. Kourkchi and S. Ghaemmaghami, “Improvement to a
semi-fragile watermarking scheme against a proposed
counterfeiting attack,” Advanced Communication

Technology, 2009. 11th International Conference on, Vol.
03, pp. 1928-1932, 2009

[11] C. Y. Lin and S. F. Chang, “Sari: self-authentication-and
recovery image watermarking system,” in

MULTIMEDIA ’01: Proceedings of the ninth ACM

international conference on Multimedia, pp. 628 – 629,
2001.

[12] A. Obukhov and A. Kharlamov, “Discrete Cosine
Transform for 8x8 Blocks with CUDA,” NVIDIA white

paper, 2008.
[13] C. H. Lin, T. S. Su and W. S. Hsieh, “Semi-Fragile

Watermarking Scheme for Authentication of JPEG

Images,” Tamkang Journal of Science and Engineering,
Vol. 10(1), pp. 57–66, 2007.

[14] S. P. Mohanty, E. Kougianos and N. Ranganathan, “VLSI
architecture and chip for combined invisible robust and
fragile watermarking,” Computers Digital Techniques, IET,
Vol. 1(5), pp. 600–611, 2007.

[15] Y. H. Seo and D.W. Kim, “Real-time blind watermarking
algorithm and its hardware implementation for motion
JPEG2000 image codec,” In Proceedings of the 1st

workshop on embedded systems for real-time multimedia,
pp. 88–93, 2003

[16] S. Lahabar, P. J. Narayanan, “Singular value
decomposition on GPU using CUDA,” IEEE International

Symposium on Parallel & Distributed Processing, pp. 1-10,
2009.

[17] S. H. Yoo, J. H. Park, C. S. Jeong, “Accelerating Multi-
scale Image Fusion Algorithms Using CUDA,”
International Conference of Soft Computing and Pattern

Recognition, SOCPAR '09, pp. 278-282, 2009.
[18] S. Chen, J. Qin, Y. M. Xie, W. M. Pang, P. A. Heng,

“CUDA-based acceleration and algorithm refinement for
volume image registration,” International Conference on

Future Biomedical Information Engineering, FBIE 2009,
pp. 544-547, 2009.

[19] S. Datla, N. S. Gidijala, “Parallelizing Motion JPEG 2000

with CUDA,” Computer and Electrical Engineering,

ICCEE '09. Second International Conference on, pp. 630-
634, 2009.

Caiwei Lin received the B.S. degree in 2008 from Yangzhou

University, Yangzhou, China. He is now a M.S. candidate in the
school of computer science and technology of Soochow
University. His current research areas are digital image
processing, parallel and distributed computing.

Lei Zhao received the Ph.D. degree in 2006 from Soochow

University, Suzhou, China. He has been a faculty member of the
school of computer science and technology of Soochow

University since 1998. He is now Associate Professor at the
Department of Network Engineering. His research interests
include distributed data processing, data mining, parallel and
distributed computing.

Jiwen Yang received the B.S. degree in 1984 from Nanjing

Normal University, Nanjing, China. He has been a faculty
member of the school of computer science and technology of
Soochow University since 1984. He is now Professor at the
Department of Information Management. His research interests
include distributed data processing, management information

system, parallel and distributed computing.

