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Abstract- With current low-cost high-performance worksta- 

tions, application-to-application throughput is limited more by 
host memory bandwidth than by the cost of protocol processing. 
Conventional network architectures are inefficient in their use 
of this memory bandwidth, because data is copied several times 
between the application and the network. As network speeds 
increase further, network architectures must be developed that 
reduce the demands on host memory bandwidth. 

In this paper, we discuss the design of a single-copy network 
architecture, where data is copied directly between the appli- 
cation buffer and the network interface. Protocol processing is 
performed by the host, and transport layer buffering is provided 
on the network interface. We describe a prototype implementa- 
tion for the HP Apollo Series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA700 workstation family that consists 
of an FDDI network interface and a modified 4.3BSD TCP/IP 
protocol stack, and we report some early results that demonstrate 
twice the throughput of a conventional network architecture and 
significantly lower latency. 

I. INTRODUCTION 

s new and faster computer networks are developed, we A are starting to see inadequate performance with con- 
ventional network interface architectures and communication 
protocol implementations. More precisely, workstation users 
replacing 10 Mb/s Ethernets with 100 Mb/s FDDI (Fiber 
Distributed Data Interface) networks are not observing a 
tenfold increase in application-to-application throughput. 

The interprocess communication facilities in many versions 
of Unix, including Hewlett-Packard’s HP-UX, are based on 
those provided by the University of California Berkeley Soft- 
ware Distribution 4.3BSD [ I]. Their socket abstraction allows 
networked applications to be developed independently of the 
underlying networks and protocols. Several different socket 
types exist and these provide services that include in-order, 
unduplicated, and reliable delivery of packets. For the reliable 
delivery of large amounts of data, applications predominantly 
use stream sockets. In the Internet communications domain, 
this reliable stream-based service is provided by the Trans- 
mission Control Protocol (TCP) [2]. 

One of the most demanding aspects of network interface 
and protocol stack design is the provision of high throughput 
all the way up the protocol stack to the application. With a 
conventional network interface, the socket layer and network 
protocols are implemented entirely in software on the host. 
Overheads are incurred whenever data is sent or received, 
because the host is involved in these higher-layer protocols. 
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One way to reduce these overheads is to off-load them from the 
host, typically using an intelligent network adaptor with some 
front-end processing capabilities. Several front-end network 
adaptors [4], [5] have been proposed to relieve the host of 
the task of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprotocol processing, yet there is little evidence that 
they will be successful in making more network bandwidth 
available to the application. One of the drawbacks is that front- 
end processors tend to be slower than the host processor, thus 
increasing network latency. In addition, it is often difficult 
to partition a protocol in a clearcut way. So, the front-end 
processor ends up communicating with the host through a 
complex protocol anyhow. 

In this paper, we argue that it is main memory bandwidth 
limitations, rather than protocol processing overheads, that 
cause the communication bottlenecks seen on current work- 
stations. This is likely to continue for the foreseeable future 
because processor performance is increasing more rapidly than 
main memory speeds, resulting in proportionally less time 
being spent on protocol processing. To achieve a much higher 
application-to-application throughput, it will be necessary to 
adopt new network architectures that make more efficient use 
of the available memory bandwidth. 

The rest of this paper is organized as follows. In Section 11, 
we outline the overheads of the 4.3BSD protocol stack running 
over a conventional network interface, and we show how these 
costs will scale with improvements in workstation technology. 
We then, in Section 111, present a network interface architecture 
that eliminates many of the data accesses yet is simple, cost 
effective, and not protocol specific. In Section IV, we describe 
the options for implementing such an interface for the HP 
Apollo Series 700 Workstation. In Sections V and VI, we go 
on to describe our prototype FDDI network interface, known 
as Medusa, based on this architecture and the implementation 
of the single-copy TCP/IP protocol stack needed to support 
it. In Section VII, we present some experimental results of 
application-to-application throughput and latency, and derive 
some simple models to explain these results. Finally, in Section 
VIII, we draw our conclusions. 

11. THE COST OF INTERPROCESS COMMUNICATION 

Various studies [3] have been undertaken to discover the 
costs of running protocol stacks on the host, and to understand 
which operations are expensive. These studies indicate that, 
for bulk data transfers, the cost of operations on the data 
itself dominate header and protocol processing and the related 
operating system overheads. 
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Fig. 1 .  Data paths in a conventional protocol stack. 

The path taken by data as it passes through a conventional 
protocol stack is illustrated in Fig. 1. The application writes 
data into its buffer (called the application bufSer) and then 
invokes a system call to send the data. The socket layer copies 
the application data into a buffer in kernel space called the 
socket buffer. Then, the transport layer reads the data in the 
socket buffer to compute a checksum and, finally, the data 
is copied out to the network interface using DMA. Thus, the 
memory system is accessed five times for each word of data 
sent. On the receive path, data is copied first from the network 
interface into kernel memory using DMA. The transport layer 
checksum is verified and, when the application is ready, the 
socket layer copies data from the socket buffer in kernel 
memory to the application buffer in user memory. Finally, 
the application reads the data. Thus, the memory system is 
also accessed five times for each word of data received. 

Results published in 1989 [3] indicate that for a Sun 3/60 
transmitting maximum-length Ethernet packets, about 65% of 
the communication time is spent on these data movements 
and the remaining 35% on TCPDP protocol processing and 
operating system overheads. The data copy and checksum 
operations are memory-intensive and their cost will scale 
with improvements in host memory bandwidth. In contrast, 
the protocol processing and operating system overheads will 
depend more directly on the host CPU's processing power. 
Over the last three years, there has been an order of magnitude 
increase in the processing power of a typical workstation. This 
has not, however, been matched by as large an increase in 
memory bandwidth, which has only improved by a factor 
of three. The effect of memory bandwith lagging behind 
processor performance is illustrated by the following example. 

- ' 
We will take as a starting point a typical workstation 

of 1987, based on a 20MHz 68020 (essentially a 2 MIPS 
processor) with a memory bandwidth of 8 MBytehecond. 
Fig. 2(a) is obtained by projecting processor performance 
increasing by a factor of ten every three years (115% per 
annum), and in Fig. 2(b) memory bandwidth is projected 
to increase by a factor of three every three years (44% per 
annum). We assume that the cost of protocol processing and 
related operating system overheads is fixed at 1000 instructions 
per packet. This is a reasonable estimate, and is consistent 
with [3]. We will also assume that data is accessed five times 
between the application and the network, as shown in Fig. 1. 

We will consider the communication costs for three different 
networks: Ethernet, FDDI, and HIPPI with data link rates 
of 10, 100, and 800 Mb/s, respectively, and with maximum 
packet sizes of 1500, 4500, and 65,536 bytes, respectively. 
Fig. 2(c) shows the host processor overhead produced by 
sending one second's worth of data (ignoring the effect of 
packet headers, this is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 1.25 MBytes for Ethernet, - 12.5 
MBytes for FDDI, and N 100 MBytes for HIPPI). The point at 
which each curve intersects with the dotted line indicates when 
link saturation occurs. This happened in 1988 for Ethernet, 
in 1992 for FDDI, and can be projected to happen in 1998 
for HIPPI. In Fig. 2(d), we plot the proportion of time spent 
accessing data. At Ethernet rates, packet header processing is 
still a significant part of the total (up to about 35%), but for 
FDDI and HIPPI with their longer packets, it is dominated by 
the data path costs. 

As advances in processor performance continue to outpace 
improvements in memory bandwidth and networks support 
longer packets, then proportionally less and less time is going 
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to be spent on protocol processing and related operating 
system overheads. The data path is the major component of 
communication costs and will remain so for the foreseeable 
future. The only way to substantially increase application-to- 
application throughput is to eliminate some of the memory 

accesses in the data path. 

111. ARCHITECTURAL CHANGES 

A conventional protocol stack generates five memory ac- 
cesses for each word of data that passes between the ap- 
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Fig. 3. A single-copy 

plication and the network. The number of memory accesses 
could be reduced by eliminating the socket buffers and moving 
data directly between the application buffer and the network 
interface. In this section, we discuss the purpose of the socket 
buffers and suggest that, if they cannot be eliminated, then 
they should be moved out of system memory and on to the 
network interface. 

The function of the socket buffer is to decouple the ap- 
plication from the network. This is easiest to understand at 
the receiver. When a packet arrives from the network, there 
may be some delay before its data can be consumed by 
an application process: the application might be processing 
previous data, or the host may be running another process. 
This asynchrony between network and application is overcome 
by appending the new data to the appropriate socket buffer, 
which is then processed as is convenient. 

The transmit socket buffer serves a similar purpose. By 
decoupling the sender from the network, delays in gaining 
access to the network do not necessarily slow down the 
application. The transmit socket buffer also has another pur- 
pose. TCP provides a reliable transfer service by the use 
of positive data acknowledgments. If an acknowledgment 
is not received within a given period, then a timer will 
expire and the sender must retransmit all unacknowledged 
data. If data were transmitted directly from the application 
buffer, then this buffer could not be reused until the data 
had been acknowledged. During this period, the application 
must be prevented from overwriting its buffer. This could be 
achieved by suspending the application or, alternately, marking 
the buffer as read-only so that any attempt to overwrite 
it would result in an access violation, at which time the 
trap handler could suspend the application. Both of these 
approaches severely limit throughput over connections with 
long latency, since the application will spend most of its time 

network architecture 

suspended awaiting the acknowledgment. The only alternative 
is for the kernel to maintain a separate copy of the data, and 
in the 4.3BSD implementation this is held on the transmit 
socket buffer in kernel memory space. Only when it has been 
acknowledged is the data discarded. This allows application 
processing and further generation of data to continue while 
previous data and acknowledgments are still in transit. 

Since the socket buffer cannot be eliminated, one solution 
is to move these buffers onto the network interface, as shown 
in Fig. 3. The network interface contains a block of memory 
large enough to hold many packets. We refer to this memory 
as the network buffer memory. Data is copied directly from the 
application buffer to the network buffer memory, where it is 
held until an acknowledgment is received. When a packet is 
received, it is held in network buffer memory until it can be 
copied to the application buffer. The function of this buffer is 
logically identical to the socket buffer in kernel memory, but 
because it is physically located on the network interface we 
can eliminate the socket layer copy and thus reduce the number 
of system memory accesses. Data is copied only once, from 
the application buffer to network buffer memory, giving rise 
to the term single-copy protocol stack. 

The other essential data operation is the computation of 
the transport-layer checksum. This could be combined with 
the data copy between the application buffer and network 
buffer memory. By doing so, no additional memory activity is 
generated, and the extra computation may not actually increase 
the cost of the copy if it can be done in parallel with the 
memory access latency. This is possible to achieve with many 
RISC processors but does require that the copy be performed 
by the processor, which may not be the most efficient means 
if the host provides a block move capability or the interface 
supports DMA. In fact, it turns out to be cheap to provide 
hardware support for the Internet checksum function on the 
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interface. The checksum can be calculated on the fly as data is 
moved to or from the interface, and the result can be cached 
for inclusion in the TCP header. 

Iv .  IMPLEMENTING A SINGLE-COPY NETWORK INTERFACE 

In this section, we discuss the different approaches that 
could be taken to implement a network interface with support 
for a single-copy protocol stack. The host system we will be 
considering is the HP Apollo Series 720/730/750 workstation 
family, as described in [7]-[ll]. This system implements the 
PA-RISC 1.1 architecture, as described in [12]. 

There are two locations in a Series 700 workstation where a 
block of network buffer memory can be usefully placed: within 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmain memory system or on the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]. 

A. A Single-Copy Network Interface in Memory Space 

If the network buffer memory was placed within the main 
memory system, then data could be moved between network 
buffer memory and main memory by the processor using 
load and store instructions. This approach has the advantage 
that accesses to network buffer memory would be cached, 
thus providing very efficient access to the memory. However, 
because the cache is a write-back cache, data must be explicitly 
flushed back to network buffer memory prior to transmitting a 
packet. Similarly, when a packet is received, the cache must be 
purged so that new data is read from memory. The overhead of 
this software cache management will increase the cost of the 
data path between the network interface and the application. 

There are some more practical difficulties with a memory- 
based interface. The memory cards in Series 700 workstations 
are very closely coupled to the VLSI memory controller, 
allowing timing margins to be much tighter than if a memory 
bus existed. This results in a higher performance memory 
system, but complicates the design of a network interface in 
memory space. In addition, the memory system uses an error 
correction scheme. Therefore, network interface would have 
to generate correct check bits for incoming data, which would 
further complicate the design. 

B. A Single-Copy Network Inteqace in I/O Space 

The U 0  system of the Series 700 workstation family has 
been optimized to improve graphics performance. For ex- 
ample, stores to VO space were designed to incur only a 
single-cycle pipeline penalty, resulting in a very high U 0  store 
bandwidth. In addition, the VLSI memory controller supports 
a block move function, allowing data to be moved between 
memory and VO space without the overhead of having to pass 
through the processor. Although these features were designed 
with graphics in mind, they are of benefit to any device in I/O 
space. If the network buffer memory was placed in VO space, 
then three mechanisms exist for accessing data: programmed 
VO, direct memory access (DMA), and the memory controller 
block move instructions. 

With programmed I/O, the processor may read or write from 
VO space using single-word load and store instructions, just as 
it would to memory space. The only difference is that accesses 
to YO space are uncached, so there will be a significant latency 

involved with loads. With direct memory access (DMA), an 
VO device can read or write main memory directly without 
involving the processor. Cache coherence during DMA is 
maintained by the operating system, with the aid of purge 
cache and flush cache instructions. Finally, an I/O device could 
use memory controller block moves to move data between 
memory and VO space. This block move operates on 32-byte 
(one cache line) blocks, and movement in either direction is 
supported. 

C.  Analysis and Conclusions 

By considering the data path between the application process 
and the network, the authors have been able to quantitatively 
compare the different options outlined previously. For the 
sender, this data path starts with writes to the application buffer 
in main memory. Data is then copied from the application 
buffer to the network buffer memory. At the receiver, the 
reverse occurs, finishing with reads from the application buffer. 
The analysis consisted of tabulating the operations needed 
to send and receive 32 bytes (one cache line) of data, and 
counting the instruction cycles consumed. 

The results of this analysis have shown that the most effi- 
cient scheme for outbound transfers is an YO-based interface, 
with data being moved to the interface using programmed 
I/O. This is because all of the other schemes involve flushing 
either the application buffer or the network buffer from cache, 
which will cause a cache miss when the buffer is reused. With 
programmed I/O, there is a good chance that the application 
buffer will remain cache resident and, as a result, data never 
has to be written back to memory. 

For inbound transfers, the analysis has shown that the VO- 
based interface performs poorly if data is read out one word at 
a time using programmed I/O. However, if data is moved from 
the interface in larger blocks by using the memory controller’s 
block move hardware, then a much higher throughput can 
be expected. In fact, this mechanism is so effective that it 
is difficult to justify the interface supporting DMA. 

On the basis of this analysis, we decided that the best all- 
around solution was a simple VO-based interface where the 
network buffer memory is accessed using either programmed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 0  or memory controller block moves. 

V. THE MEDUSA FDDI INTERFACE 

A. Introduction 

The Medusa FDDI interface is a research prototype that was 
designed for the HP Apollo 9000 Series 700 workstations at 
Hewlett-Packard Labs in Bristol. It is loosely based on the 
WITLESS (Workstation Interface That’s Low-cost, Efficient, 
Scalable and Stupid) architecture proposed in [6]. It contains 
the network buffer memory that is required to support a single- 
copy protocol stack, and appears to the host as a block of 
memory in VO space. All network, transport, and socket layer 
processing is performed by the host and, thus, the architecture 
can support many different protocols. 

The main reason for developing the Medusa FDDI interface 
was to demonstrate that application-to-application communi- 
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TxReady FIFO 

Fig. 4. The Medusa FDDI interface. 

cation can be achieved at FDDI rates with a low-cost interface 
using standard protocols such as TCP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Design Overview 

The Medusa FDDI interface (see Fig. 4) attaches to the 
I/O System Connect of a Series 700 workstation and is based 
on a large block of multiported memory with a single wait- 
state access. This is implemented efficiently and cheaply 
using triple-ported video RAM’s. The video RAM’s contain 
a parallel port as well as two serial ports. The parallel port is 
interfaced to the host, allowing random access to the network 
buffer memory using fast page mode read and write cycles, 
whereas the two serial ports provide independent transmit and 
receive paths to the FDDI chipset. The memory system is 
organized as 256K 32-bit words and is constructed from eight 
256Kx4 devices. 

A video RAM is capable of sustaining high data rates from 
its serial port with very little effect on the parallel port. In our 
memory system, a single transfer cycle can move 2 KBytes of 
data from the VRAM memory into the VRAM serial register, 
or vice versa. There is an additional overhead for generating 
refresh cycles, but this is small. Hence, even when transmitting 
data at FDDI link rates, most of the parallel port bandwidth 
is available to the host. 

The network buffer memory is organized as a number 
of fixed-size (8 KByte) blocks, each capable of holding 
a maximum-length packet. By using fixed-size blocks, we 
eliminate the problem of external memory fragmentation. It 
also means that the starting address and length of a block 
can be encoded into a single word, allowing transactions on 
blocks to be atomic. Control of the interface is achieved with 
four small (256 word) FIFO’s: TxReady, TxFree, RxReady, 
and RxFree FIFO’s. The format of the data in these control 
FIFO’s is shown in Fig. 5. 

The only protocol-specific part of the design is hardware 
support for the transport-layer checksum. It would be pos- 
sible to support several checksum functions; however, the 
current Medusa FDDI interface supports only the Internet 
checksum function, as used by TCP [2]. A checksum function 
not supported by the hardware can always be performed in 
software by the host, but with a reduction in throughput. The 
TCP and XTP [13] checksum functions are straightforward 
to implement in hardware but the IS0 TP4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14] checksum 
function is not, because it is byte-oriented and involves modulo 
255 arithmetic. 

C. Transmit Operation 

A packet is constructed in a VRAM block by the host, and 
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Buffer Length 

To send a packet: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Medusa->TxReady zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= buffer-start I buffer-length 

To receive a packet: 

buffer = Medusa->RxReady 

buffer-start = buffer & OXFFFFEOOO 

buffer-length = buffer & OxOOOOlFFF 

N.B. PA-RISC 1.1 bit numbering is big endian 

Fig. 5. Format of the control FIFO’s. 

queued for transmission by writing the block‘s 
together with its length into the TxReady FIFO. 

start address 
This is done 

with a single atomic write, so there is no need for a semaphore 
to control access to these FIFO’s. Outstanding transmission 
requests are handled in the order in which they were issued. 
Each transmission request is processed by the transmit control 
logic, which streams the packet from the VRAM’s transmit 
port into the FDDI MAC for transmission on the network. 
When the packet has been transferred to the MAC, the transmit 
control logic writes the block address into the TxFree FIFO, 
to be subsequently read by the host. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Receive Operation 

At the receiver, the host will have written the addresses of 
some free blocks into the RxFree FIFO. When a packet amves, 
the receive control logic will read the first of these addresses, 
and stream the data from the FDDI MAC into the VRAM’s 
receive port. When the end of the packet is reached, the start 
address of the block together with the packet length will be 
written into the RxReady FIFO by the receive control logic. 
Again, because of the coding of the address and length into 
a single word, this transaction is atomic. An interrupt will be 
generated only when the RxReady FIFO goes from empty to 
nonempty. This reduces the overhead when a packet arrives 
and the host is still processing the previous one. 

VI. IMPLEMENTATION OF A SINGLE-COPY PROTOCOL STACK 

To fully realize the potential of the Medusa FDDI interface, 
it is necessary to modify the TCPAP protocol stack to reduce 
the number of data copies to one: from the application buffer to 
network buffer memory. This gives us the expected increase 
in performance, and also highlights a number of issues for 

implementing high-speed network protocols in a conventional 
UNIX environment. 

Management of the buffers in network buffer memory is 
a key area in the single-copy stack implementation. The 
traditional mechanism of mbufs [ I ]  can be used, simply by 
pointing the offset field of an mbuf cluster to network buffer 
memory. However, it is advantageous to treat a packet as a 
set of two different types of mbuf those that hold data in 
network buffer memory, called Medusa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmbufs, and normal 
mbufs that hold protocol headers in system memory. The latter 
are accessed a number of times by the network protocols, and 
will reside in cache for the duration of protocol processing. 
Cache accesses are far quicker than 110 accesses, so having 
the header information cache resident speeds up the protocol 
processing. 

The device driver supports packets containing data in nor- 
mal mbufs, as well as packets containing data that are already 
on the interface and pointed to by a Medusa mbuf. This 
allows protocols other than TCPAP to be run over the Medusa 
network interface, without having to rewrite those protocols 
for the single-copy architecture. 

A. Data Transmission 

A user process presents data to the socket layer by means 
of a send() system call. This causes the socket layer procedure 
sosend() to be called. In a conventional stack, sosend() would 
check the amount of space available in the send socket buffer, 
and copy as much data as possible from the application buffer 
into normal mbufs. These are appended to the socket buffer, 
and the protocol output routine is called. 

In a single-copy stack, the socket layer looks at the routing 
information maintained by IP to find the network interface 
that the data is destined for. If this interface has network 
buffer memory for supporting a single-copy protocol stack, 
the socket layer copies data directly to this memory. Space is 
left at the front of the network buffer for the protocol headers, 
and data is copied in blocks not larger than the data-link layer 
maximum transmission unit. A Medusa mbuf pointing to this 
data is appended to the send socket buffer, and the protocol 
output routine is called as usual. 

By allowing the socket layer to perform the copy operation, 
we are effectively packetizing the data before passing it to 
TCP. This is a change from the conventional stack, where TCP 
takes data from the socket buffer byte stream and packetizes it. 

During the data copy operation, a checksum is computed 
on the fly. This can either be done using a software copy- 
and-checksum routine, or using the hardware checksum unit 
on the Medusa interface itself. This checksum is stored with 
the data in network buffer memory for later use. TCP and IP 
work as usual, with TCP using the checksum calculated by the 
socket layer instead of calling in-cksum() directly. The data, 
with protocol headers prepended in normal mbufs, is passed 
to the device driver. 

The device driver is very simple. If the packet data is in 
network buffer memory (pointed to by a Medusa mbuf), then 
the device driver copies the headers into the space reserved at 
the front of the buffer and causes the packet to be transmitted. 
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If the packet presented is not in network buffer memory, 
a buffer is allocated by the driver and data is copied from 
kernel memory to network buffer memory. The packet is then 
transmitted as normal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData Reception 

The arrival of a packet in network buffer memory causes the 
device driver interrupt routine to be invoked. A block of data 
from the front of the packet is copied into a normal mbuf, on 
the assumption that it contains a valid TCP/IP header. The 
driver then performs a partial parse of the packet header, 
looking for a valid TCP/IP packet with data in it. If this 
is successful, the data is left in the network buffer memory 
with a Medusa mbuf pointing to it. Packets received that are 
not TCP/IP, or that do not contain any data such as TCP 
acknowledgments, are copied to normal mbufs and passed up 
the protocol stack to the IP layer. 

IP passes the packet to TCP as usual. Normally, TCP 
checksums the data to make sure it is correct and then appends 
this data to the socket buffer for the connection. This cannot 
be done in the single-copy architecture because the checksum 
is produced as a result of the data copy from network buffer 
memory to the user buffer. Until the socket layer is invoked, 
with the address of a user buffer to place the data in, we cannot 
do the data copy and, hence, cannot obtain the checksum. 

Consequently, acknowledgment of the data to the peer TCP 
must be delayed until the socket layer has copied the data 
and verified the checksum. This means that the socket layer 
becomes responsible for acknowledging data for TCP, rather 
than TCP itself. We need to extend the notion of a TCP 
window to cover data that has been received but not yet 
acknowledged. This covers data that is in transit in the system, 
allowing the TCP layer to properly reject any duplicate data 
received. 

VII. EXPERIMENTAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARESULTS 

In this section, we present the results of some performance 
measurements of the single-copy protocol stack (as described 
in Section VI) running over the Medusa FDDI interface. For 
comparison purposes, we have made similar measurements of 
a conventional protocol stack running over both Medusa and 
the built-in Ethernet interface. 

In Section VII-A, we discuss what sort of performance 
measurements are representative of real applications, and 
explain why maximum socket-to-socket throughput tests can 
result in pessimistic estimates of communication cost. In 
Section VII-B, we describe a simple profiling technique used 
to determine the amount of time spent in particular sections of 
code. Using this, we have measured the amount of time spent 
in the driver, IP, TCP, and socket layers. In Section VII-C, we 
examine TCP stream performance. We present a simple model 
of socket-to-socket throughput based on the results of the 
profiling, and verify this with experimental results. We show 
that FDDI link saturation is achievable. Finally, in Section VII- 
D, we examine TCP requestlresponse transaction rates, again 
using a simple model of socket-to-socket latency. 

A. Network Performance Measurements 

Usually, network performance measurements are taken to 
determine the maximum socket-to-socket throughput. With 
low-cost workstations and very high-speed networks such as 
FDDI, this can only be achieved if the application performs 
minimal processing on the data. This is not representative of 
real applications, which take time to generate and consume 
data, and will also lead to higher protocol overheads. If the 
receiver is doing nothing other than executing recv() calls, 
then there will be little chance of packets building up in the 
receive socket buffer. Consequently, most recv() calls will 
return only a single packet of data rather than several. This 
is inefficient, and will result in acknowledgments being sent 
more frequently (probably one every other packet rather than 
one per socket buffer). If the throughput bottleneck is the 
network, then this may not affect maximum throughput figures 
but will lead to a pessimistic view of communication overhead, 
in terms of processor time per kilobyte of data transferred. 
We have tried to make our performance measurements more 
realistic by including a delay between rem() calls to simulate 
the application taking time to consume data. 

B. Detailed Projiling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a Network Protocol Stack 

To be able to understand and explain socket-to-socket 
performance, it is useful to track the progress of a packet 
through the protocol stack, noting the time at which particular 
sections of code are executed. This projiling can be done 
with the aid of a powerful logic analyzer, set up to record 
particular instructions being fetched. Alternately, there are 
software-based schemes where additional codes must be added 
to the protocol stack. The hardware scheme can only be used if 
instruction fetches are visible, which is unlikely to be the case 
if the processor has an on-chip instruction cache. The obvious 
advantage, though, is that no modifications are required to 
the protocol stack. Software-based schemes usually involve 
calling gettimeofday(), which returns a time in microseconds. 
This will impact the performance, and is not really accurate 
enough for our needs. 

The scheme we have used for profiling is software-based, 
yet is extremely accurate and involves very little overhead. 
PA-RISC processors have a hardware interval timer register. 
On the model 720, this register is incremented every processor 
clock cycle (20 ns) and wraps around every 85.9 seconds. Both 
the application and kernel can read this register because it is 
a nonpriviledged operation. Our profiling scheme involves a 
single function, med_trace(n), that simply reads the interval 
timer register and writes its value, together with n, into 
a global data array. Trace points are recorded by calling 
med-trace() at various points in the protocol stack, using a 
different trace point number, n7 each time. The overhead of 
med-trace() is very low, taking only 15 instructions including 
the function call and return. Since each call to med-frace() 
writes two words of data into the data array and a cache line 
contains eight words, then a cache miss is likely to occur every 
fourth call. Taking this into account, the average time spent in 
a call to med-trace() will be 0.41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps, and overall we estimate 
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scale with processor speed: 
Socket 5.01 40.42 80.50 4.1 

TCP 24.05 89.36 281.76 14.4 

IP 7.23 16.25 74.09 3.8 

Driver 66.33 76.03 606.67 30.9 

scale with memory speed: 
Data copy 1 14.67 917.36 46.8 

taals: 217.29 222.06 1960.38 100.0 

Fig. 6. TCP stream test-send path summary (assuming 32 KByte socket 

buffer). 

per packer per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys. call rota1 
(us, percentage 

(us) /us) 

scale with processor speed: 
Socket 9.80 40.97 119.37 5.4 

TCP 13.90 23.76 134.% 6.1 

IP 13.34 7.62 114.34 5.2 

Dnver 51.06 63.82 472.30 21.5 

scale wrih memory speed: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Data copy 169.93 1359.44 61.8 

totals: 258.03 136.17 2200.41 100.0 

Fig. 7. TCP stream test-receive path summary (assuming 32 KByte socket 

buffer). 

that tracing will result in a 2.2% increase in communication 
overhead. 

To make the measurements, a simple application was written 
to transfer data over a stream socket connection. The send and 
receive socket buffers were both set to 32 KBytes, and data 
was transferred in one direction using send() and recv() system 
calls. The application buffers and send size were also set to 
32 KBytes, and each packet transmitted contained 4 KBytes 
of data. The amount of time spent processing data in between 
recv() calls was sufficient to ensure that the receive socket 
buffer had filled up completely before the next recv() call was 
made. 

Because the first send() call will fill up the send socket 
buffer, the sender will be put to sleep at the start of the next 
send() call. When an acknowledgment is received, the sender 
will be awakened and more data may be sent. We have not 
included the sleep time in our results. 

In Fig. 6, we summarize our measurements of the send path, 
resulting from four successive calls to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend(). We have grouped 
the overheads according to whether they are incurred just 
once per send() system call or for every packet sent. Similar 
measurements of the receive path are given in Fig. 7. 

In both the send and receive cases, the driver contributes 
a significant proportion to the total cost. There are known 
inefficiencies with our driver implementation, and with some 
optimizations we should be able to greatly reduce this cost. 
However, the driver is only perceived as expensive when 
compared to the IP, TCP, and socket layers. What this really 
illustrates is that the protocol processing itself is not expensive. 
The cost of even a single data copy dominates everything else. 
As we noted earlier, processor speeds are increasing faster than 
memory speeds so we should expect protocol processing costs 
to continue to drop. 

In the following two sections, we present empirical models 
for socket-to-socket throughput and socket-to-socket latency 

and verify the models with experimental measurements. Our 
measurement system consisted of a pair of HP9000 Series 720 
workstations, running a version of the HP-UX 8.05 operating 
system that was modified to include the Medusa device driver 
and the single-copy TCP/IP protocol stack. To ensure our 
measurements were repeatable, we conducted all tests on a 
private network, with only the two workstations involved in 
the tests attached. For Ethernet, this consisted of a short length 
of coaxial cable interconnecting the two nodes. For FDDI, two 
single attach nodes were connected directly together, without 
the use of a concentrator, to form a two-node ring. 

C. TCP Stream Pegormance 

at which the receiving application can consume data, then 

throughput = a 
- + b + x  
n 

Where the socket-to-socket throughput is limited by the rate 

2, 

p = packet size (KBytes) 

n = number of packets received per system call 

a = per system call overhead (seconds) 

b = per packet overhead (seconds) 

5 = application per packet processing time (seconds). 

Taking the values of a = 136.17~s and b = 2 5 8 . 0 3 ~ s  from 
Fig. 7, p = 4 KBytes, and n = 8 packets per socket buffer, 
we have varied z from 1 p s  to 10 ms, giving the graph 
shown in Fig. 8. The other curves shown on this graph are our 
experimental measurements of socket-to-socket throughput. Of 
primary importance is the curve for the single-copy stack 
running over Medusa. For comparison purposes, we have 
also shown the performance of a conventional protocol stack 
running over Medusa and of the built-in Ethernet interface. 

The theoretical and experimental curves are coincident to 
the point where the application processing time drops below 
about 320 ,us14 KByte packet. This is the point at which the 
receive socket buffer has just been refilled when the next rem() 
call is made. If the processing time is reduced further, then 
the amount of data returned by each recv() decreases. Our 
model has assumed n is fixed, hence the difference in results. 
The other effect illustrated by the graph is that of network 
saturation at 11 700 KBytes/s. The transmission of protocol 
headers and acknowledgment packets account for this being 
less than the FDDI link rate of 100 Mb/s. 

A different way of presenting this data is to plot CPU 

utilization along the horizontal axis, where 

utilization = 1 - throughput x . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3 
This has been done in Fig. 9, which shows a direct correlation 
between data rate and processor utilization, until the point of 
network saturation. Although the curves extend beyond this 
point, this does not mean that the protocol overheads continue 
to increase. Most of the time the receiver will be sleeping, 
waiting for the next packet to arrive, and other processes could 
be run. 
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Fig. 9. Graph of data rate versus CPU utilization. 

D. TCP Request/Response Per$omance 

Often, it is not socket-to-socket bandwidth that is important 
to an application, but socket-to-socket l<atency. This is the case 
with many distributed applications, where most of the com- 

scale with scale with scale with 

speed speed speed 
percenrogc 

memory processor 

(U) (4 (4 
fued overheads: 

Send socket layer 28.29 3.1 

TCP output 28.44 3.1 

IF output 1.12 0.8 

Driver output 42.15 4.6 

Network Latency 15.60 1.7 

Driver Input 48.93 5.4 

lP input 15.05 1.7 
TCP input 52.00 5.1 

Receive socket layer 56.91 6.3 

Send data copy 115.08 12.6 

Transmission of data 321.68 36.0 

Receive data copy 172.12 19.0 

totals: 287.20 219.49 343.28 100.0 

scale wifh message size: 

Fig. 10. TCP requestksponse critical path (4 KBytes messages). 

munication takes the form of short requestlresponse messages. 
Since the amount ofedata being transferred is small, data path 
performance is not critical, and we would not expect to see a 
great deal of difference between a single-copy architecture and 
a conventional architecture. However, the extremely simple 
design of the Medusa interface will introduce far less latency 
than an intelligent interface adaptor, which may have several 
processors operating on a pipelined data path. 

Using the same profiling techniques as before, we have 
identified all of the components of this latency. The appli- 
cations in this case simply exchange messages, using send() 
and rem() calls. Data packets flow in both directions and so 
no explicit acknowledgments need to be sent. The components 
of the send-network-receive critical path are identified in Fig. 
10, where they have been categorized according to whether 
they scale with memory, network, or processor speed. 

With the 4 KE3yte messages used, the data copy and net- 
work transmission times are significant. However, for small 
messages these will be dominated by the path through the 
protocol stack. The socket-to-socket latency can be modeled 
as 

latency = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A) + s + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) d + h  + T + (k) 
d = data size 

h = header size 

s = send path through protocol stack 

T = receive path through protocol stack 

ml = main memory to network interface bandwidth 

m2 = network interface to main memory bandwidth 

n1 = network latency 

n2 = network bandwidth. 

Using values for FDDI and from Fig. 10, 

h = 70Bytes 

s = 1 0 6 . 6 ~ ~  

T = 172.8911s 

ml = 4096 Bytes per 115.08 ps 
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m2 = 4096Bytes p e r 1 7 2 . 1 2 ~ ~  

n1 = l o p s  (estimated) 

n2 = 12.500 x 106Bytes/s. 

This expression reduces to 

latency = 295.09 + 0.1508d (,us). 

Our benchmark specifies a single transaction as a request 
and response; hence, the transaction rate involves twice the 
socket-to-socket latency. In Fig. 11, we have plotted the 
theoretical transaction rate verses message size, together with 
some experimental results. With 4 KByte messages, the model 
is very accurate, but with 4 byte messages some difference is 
observed, which corresponds to an extra 15 ps socket-to-socket 
latency. We suggest two reasons for this discrepancy. First, 
our estimate of FDDI network latency, which involves waiting 
to capture the token, may be slightly low. Second, we have 
assumed that the cost of the uiomove() call, which moves data 
between the application buffer and network buffer memory, 
scales proportionally with data length. This will not be the case 
when copying small amounts of data, since the fixed costs of 
checking for boundary conditions and loop initialization will 
dominate the cost of the data copy. 

The other curves in Fig. 11 confirm that for small message 
sizes, there is little benefit from a single-copy architecture but, 
as the message size increases, then so does the performance 
differential. With the conventional stack, an increase in trans- 
action rate as the message size passes 1024 bytes is caused 
by the socket layer changing its buffer management policy. 
Small messages are held on the socket buffer as a chain of 
normal mbufs (each one holding 96 bytes of data). When the 

message size is greater than 1024 bytes, then a single cluster 
mbuf is used. Operations on cluster mbufs are more efficient 
since data is contiguous, and copies of the mbuf may be taken 
by reference rather than by duplicating the data. This anomaly 
is not seen with a single-copy stack, because there is only one 
buffer management policy. 

VIII. CONCLUSIONS 

The design, implementation, and performance analysis of 
the Medusa network interface and the associated single-copy 
protocol stack has demonstrated that it is possible to provide 
very high network throughput between application processes 
running on low-cost workstations. In particular, it is the 
combination of an interface with network buffer memory and 
a single-copy protocol stack that provides twice the throughput 
of a conventional architecture. This type of network interface 
can be engineered to low cost, with the expense of providing 
memory on the interface being offset by the lack of complex 
processors and DMA engines. 

We have devised a simple and effective scheme for profiling 
the protocol stack that makes use of the PA-RISC interval 
timer register. With this scheme, detailed measurements of the 
time taken to perform various protocol and operating system 
tasks were taken. We have used these measurements to derive 
empirical models of socket-to-socket throughput and socket- 
to-socket latency for our single-copy stack running over the 
Medusa FDDI interface. These models can be used to deter- 
mine the impact of faster processors, memory systems, and 
physical networks on network performance to the application. 
The conclusion we must draw here is that the cost of the IP, 
TCP, and socket layers is now small when compared to the 
cost of even a single data copy and will continue to drop, 
because workstation performance is increasing at a ferocious 
pace. Off-loading these layers from the host, by making the 
network interface smart enough to perform protocol processing 
functions, cannot really be justified on performance grounds 
and would probably increase the network latency as seen by 
an application. 
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