
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 1 1 , NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, FEBRUARY 1993 191

A High-Performance Network
Architecture for a PA-RISC Workstation

David Banks and Michael Prudence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract- With current low-cost high-performance worksta-

tions, application-to-application throughput is limited more by
host memory bandwidth than by the cost of protocol processing.
Conventional network architectures are inefficient in their use
of this memory bandwidth, because data is copied several times
between the application and the network. As network speeds
increase further, network architectures must be developed that
reduce the demands on host memory bandwidth.

In this paper, we discuss the design of a single-copy network
architecture, where data is copied directly between the appli-
cation buffer and the network interface. Protocol processing is
performed by the host, and transport layer buffering is provided
on the network interface. We describe a prototype implementa-
tion for the HP Apollo Series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA700 workstation family that consists
of an FDDI network interface and a modified 4.3BSD TCP/IP
protocol stack, and we report some early results that demonstrate
twice the throughput of a conventional network architecture and
significantly lower latency.

I. INTRODUCTION

s new and faster computer networks are developed, we A are starting to see inadequate performance with con-
ventional network interface architectures and communication
protocol implementations. More precisely, workstation users
replacing 10 Mb/s Ethernets with 100 Mb/s FDDI (Fiber
Distributed Data Interface) networks are not observing a
tenfold increase in application-to-application throughput.

The interprocess communication facilities in many versions
of Unix, including Hewlett-Packard’s HP-UX, are based on
those provided by the University of California Berkeley Soft-
ware Distribution 4.3BSD [I]. Their socket abstraction allows
networked applications to be developed independently of the
underlying networks and protocols. Several different socket
types exist and these provide services that include in-order,
unduplicated, and reliable delivery of packets. For the reliable
delivery of large amounts of data, applications predominantly
use stream sockets. In the Internet communications domain,
this reliable stream-based service is provided by the Trans-
mission Control Protocol (TCP) [2].

One of the most demanding aspects of network interface
and protocol stack design is the provision of high throughput
all the way up the protocol stack to the application. With a
conventional network interface, the socket layer and network
protocols are implemented entirely in software on the host.
Overheads are incurred whenever data is sent or received,
because the host is involved in these higher-layer protocols.

Manuscript received February 15, 1992; revised August 31, 1992.
The authors are with Hewlett-Packard Laboratories, Bristol BSI2 6QZ

IEEE Log Number 9205970.
United Kingdom.

One way to reduce these overheads is to off-load them from the
host, typically using an intelligent network adaptor with some
front-end processing capabilities. Several front-end network
adaptors [4], [5] have been proposed to relieve the host of
the task of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprotocol processing, yet there is little evidence that
they will be successful in making more network bandwidth
available to the application. One of the drawbacks is that front-
end processors tend to be slower than the host processor, thus
increasing network latency. In addition, it is often difficult
to partition a protocol in a clearcut way. So, the front-end
processor ends up communicating with the host through a
complex protocol anyhow.

In this paper, we argue that it is main memory bandwidth
limitations, rather than protocol processing overheads, that
cause the communication bottlenecks seen on current work-
stations. This is likely to continue for the foreseeable future
because processor performance is increasing more rapidly than
main memory speeds, resulting in proportionally less time
being spent on protocol processing. To achieve a much higher
application-to-application throughput, it will be necessary to
adopt new network architectures that make more efficient use
of the available memory bandwidth.

The rest of this paper is organized as follows. In Section 11,
we outline the overheads of the 4.3BSD protocol stack running
over a conventional network interface, and we show how these
costs will scale with improvements in workstation technology.
We then, in Section 111, present a network interface architecture
that eliminates many of the data accesses yet is simple, cost
effective, and not protocol specific. In Section IV, we describe
the options for implementing such an interface for the HP
Apollo Series 700 Workstation. In Sections V and VI, we go
on to describe our prototype FDDI network interface, known
as Medusa, based on this architecture and the implementation
of the single-copy TCP/IP protocol stack needed to support
it. In Section VII, we present some experimental results of
application-to-application throughput and latency, and derive
some simple models to explain these results. Finally, in Section
VIII, we draw our conclusions.

11. THE COST OF INTERPROCESS COMMUNICATION

Various studies [3] have been undertaken to discover the
costs of running protocol stacks on the host, and to understand
which operations are expensive. These studies indicate that,
for bulk data transfers, the cost of operations on the data
itself dominate header and protocol processing and the related
operating system overheads.

0733-8716/93$03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1993 IEEE

192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. 2, FEBRUARY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sender receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U I kernelbuffering I

?~?%.aU.%k? mer buffering ..

kernel buffering

interface driver
....................... +- .@_...................@.. $

network MAC I
conventional network interface convt.nrional network interface

Q Application generating data

Q Socket layer reading application buffer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Socket layer writing kernel buffer

@ TCP Checksum calculation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 DMA from main memory to network interface

Q DMA from network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinterface into main memory

Q TCP Checksum verification

0 Socket layer reading kernel buffer

@ Socket layer writing application buffer

@ Application consuming data

Fig. 1 . Data paths in a conventional protocol stack.

The path taken by data as it passes through a conventional
protocol stack is illustrated in Fig. 1. The application writes
data into its buffer (called the application bufSer) and then
invokes a system call to send the data. The socket layer copies
the application data into a buffer in kernel space called the
socket buffer. Then, the transport layer reads the data in the
socket buffer to compute a checksum and, finally, the data
is copied out to the network interface using DMA. Thus, the
memory system is accessed five times for each word of data
sent. On the receive path, data is copied first from the network
interface into kernel memory using DMA. The transport layer
checksum is verified and, when the application is ready, the
socket layer copies data from the socket buffer in kernel
memory to the application buffer in user memory. Finally,
the application reads the data. Thus, the memory system is
also accessed five times for each word of data received.

Results published in 1989 [3] indicate that for a Sun 3/60
transmitting maximum-length Ethernet packets, about 65% of
the communication time is spent on these data movements
and the remaining 35% on TCPDP protocol processing and
operating system overheads. The data copy and checksum
operations are memory-intensive and their cost will scale
with improvements in host memory bandwidth. In contrast,
the protocol processing and operating system overheads will
depend more directly on the host CPU's processing power.
Over the last three years, there has been an order of magnitude
increase in the processing power of a typical workstation. This
has not, however, been matched by as large an increase in
memory bandwidth, which has only improved by a factor
of three. The effect of memory bandwith lagging behind
processor performance is illustrated by the following example.

- '
We will take as a starting point a typical workstation

of 1987, based on a 20MHz 68020 (essentially a 2 MIPS
processor) with a memory bandwidth of 8 MBytehecond.
Fig. 2(a) is obtained by projecting processor performance
increasing by a factor of ten every three years (115% per
annum), and in Fig. 2(b) memory bandwidth is projected
to increase by a factor of three every three years (44% per
annum). We assume that the cost of protocol processing and
related operating system overheads is fixed at 1000 instructions
per packet. This is a reasonable estimate, and is consistent
with [3]. We will also assume that data is accessed five times
between the application and the network, as shown in Fig. 1.

We will consider the communication costs for three different
networks: Ethernet, FDDI, and HIPPI with data link rates
of 10, 100, and 800 Mb/s, respectively, and with maximum
packet sizes of 1500, 4500, and 65,536 bytes, respectively.
Fig. 2(c) shows the host processor overhead produced by
sending one second's worth of data (ignoring the effect of
packet headers, this is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 1.25 MBytes for Ethernet, - 12.5
MBytes for FDDI, and N 100 MBytes for HIPPI). The point at
which each curve intersects with the dotted line indicates when
link saturation occurs. This happened in 1988 for Ethernet,
in 1992 for FDDI, and can be projected to happen in 1998
for HIPPI. In Fig. 2(d), we plot the proportion of time spent
accessing data. At Ethernet rates, packet header processing is
still a significant part of the total (up to about 35%), but for
FDDI and HIPPI with their longer packets, it is dominated by
the data path costs.

As advances in processor performance continue to outpace
improvements in memory bandwidth and networks support
longer packets, then proportionally less and less time is going

BANKS AND PRUDENCE: HIGH-PERFORMANCE NETWORK ARCHITECTURE

loo00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

lo00 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
loo - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 -

1

193

loo00 -

lo00 -

10

I I I I I 1 : I

/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.0 1

4.0 -

3.0 -

2.0 -

l a O --

0.0

HIPPI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

HIPPI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = IOOMBytes)

FDDI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = IZSMBytes)

Ethernet (n = I .ZSMBytes)

-* I

I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

1:: 1
0.0

1988 1992 1996 2000
Year

(4

Fig. 2. Trends in workstation performance. (a) CPU performance (MIP's). (b) Main memory bandwidth (MB/s). (c) Cost to the host of sending t i bytes
of data (CPU seconds). (d) Proportion of time on data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApaths.

to be spent on protocol processing and related operating
system overheads. The data path is the major component of
communication costs and will remain so for the foreseeable
future. The only way to substantially increase application-to-
application throughput is to eliminate some of the memory

accesses in the data path.

111. ARCHITECTURAL CHANGES

A conventional protocol stack generates five memory ac-
cesses for each word of data that passes between the ap-

'

194 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 11, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, FEBRUARY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sender receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!YS.%?.*..W%?

. 7 1 p z & x q ; i
... ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

network MAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 3. A single-copy

plication and the network. The number of memory accesses
could be reduced by eliminating the socket buffers and moving
data directly between the application buffer and the network
interface. In this section, we discuss the purpose of the socket
buffers and suggest that, if they cannot be eliminated, then
they should be moved out of system memory and on to the
network interface.

The function of the socket buffer is to decouple the ap-
plication from the network. This is easiest to understand at
the receiver. When a packet arrives from the network, there
may be some delay before its data can be consumed by
an application process: the application might be processing
previous data, or the host may be running another process.
This asynchrony between network and application is overcome
by appending the new data to the appropriate socket buffer,
which is then processed as is convenient.

The transmit socket buffer serves a similar purpose. By
decoupling the sender from the network, delays in gaining
access to the network do not necessarily slow down the
application. The transmit socket buffer also has another pur-
pose. TCP provides a reliable transfer service by the use
of positive data acknowledgments. If an acknowledgment
is not received within a given period, then a timer will
expire and the sender must retransmit all unacknowledged
data. If data were transmitted directly from the application
buffer, then this buffer could not be reused until the data
had been acknowledged. During this period, the application
must be prevented from overwriting its buffer. This could be
achieved by suspending the application or, alternately, marking
the buffer as read-only so that any attempt to overwrite
it would result in an access violation, at which time the
trap handler could suspend the application. Both of these
approaches severely limit throughput over connections with
long latency, since the application will spend most of its time

network architecture

suspended awaiting the acknowledgment. The only alternative
is for the kernel to maintain a separate copy of the data, and
in the 4.3BSD implementation this is held on the transmit
socket buffer in kernel memory space. Only when it has been
acknowledged is the data discarded. This allows application
processing and further generation of data to continue while
previous data and acknowledgments are still in transit.

Since the socket buffer cannot be eliminated, one solution
is to move these buffers onto the network interface, as shown
in Fig. 3. The network interface contains a block of memory
large enough to hold many packets. We refer to this memory
as the network buffer memory. Data is copied directly from the
application buffer to the network buffer memory, where it is
held until an acknowledgment is received. When a packet is
received, it is held in network buffer memory until it can be
copied to the application buffer. The function of this buffer is
logically identical to the socket buffer in kernel memory, but
because it is physically located on the network interface we
can eliminate the socket layer copy and thus reduce the number
of system memory accesses. Data is copied only once, from
the application buffer to network buffer memory, giving rise
to the term single-copy protocol stack.

The other essential data operation is the computation of
the transport-layer checksum. This could be combined with
the data copy between the application buffer and network
buffer memory. By doing so, no additional memory activity is
generated, and the extra computation may not actually increase
the cost of the copy if it can be done in parallel with the
memory access latency. This is possible to achieve with many
RISC processors but does require that the copy be performed
by the processor, which may not be the most efficient means
if the host provides a block move capability or the interface
supports DMA. In fact, it turns out to be cheap to provide
hardware support for the Internet checksum function on the

BANKS AND PRUDENCE: HIGH-PERFORMANCE NETWORK ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA195

interface. The checksum can be calculated on the fly as data is
moved to or from the interface, and the result can be cached
for inclusion in the TCP header.

Iv . IMPLEMENTING A SINGLE-COPY NETWORK INTERFACE

In this section, we discuss the different approaches that
could be taken to implement a network interface with support
for a single-copy protocol stack. The host system we will be
considering is the HP Apollo Series 720/730/750 workstation
family, as described in [7]-[ll]. This system implements the
PA-RISC 1.1 architecture, as described in [12].

There are two locations in a Series 700 workstation where a
block of network buffer memory can be usefully placed: within
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmain memory system or on the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/O connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8].

A. A Single-Copy Network Interface in Memory Space

If the network buffer memory was placed within the main
memory system, then data could be moved between network
buffer memory and main memory by the processor using
load and store instructions. This approach has the advantage
that accesses to network buffer memory would be cached,
thus providing very efficient access to the memory. However,
because the cache is a write-back cache, data must be explicitly
flushed back to network buffer memory prior to transmitting a
packet. Similarly, when a packet is received, the cache must be
purged so that new data is read from memory. The overhead of
this software cache management will increase the cost of the
data path between the network interface and the application.

There are some more practical difficulties with a memory-
based interface. The memory cards in Series 700 workstations
are very closely coupled to the VLSI memory controller,
allowing timing margins to be much tighter than if a memory
bus existed. This results in a higher performance memory
system, but complicates the design of a network interface in
memory space. In addition, the memory system uses an error
correction scheme. Therefore, network interface would have
to generate correct check bits for incoming data, which would
further complicate the design.

B. A Single-Copy Network Inteqace in I/O Space

The U 0 system of the Series 700 workstation family has
been optimized to improve graphics performance. For ex-
ample, stores to VO space were designed to incur only a
single-cycle pipeline penalty, resulting in a very high U 0 store
bandwidth. In addition, the VLSI memory controller supports
a block move function, allowing data to be moved between
memory and VO space without the overhead of having to pass
through the processor. Although these features were designed
with graphics in mind, they are of benefit to any device in I/O
space. If the network buffer memory was placed in VO space,
then three mechanisms exist for accessing data: programmed
VO, direct memory access (DMA), and the memory controller
block move instructions.

With programmed I/O, the processor may read or write from
VO space using single-word load and store instructions, just as
it would to memory space. The only difference is that accesses
to YO space are uncached, so there will be a significant latency

involved with loads. With direct memory access (DMA), an
VO device can read or write main memory directly without
involving the processor. Cache coherence during DMA is
maintained by the operating system, with the aid of purge
cache and flush cache instructions. Finally, an I/O device could
use memory controller block moves to move data between
memory and VO space. This block move operates on 32-byte
(one cache line) blocks, and movement in either direction is
supported.

C. Analysis and Conclusions

By considering the data path between the application process
and the network, the authors have been able to quantitatively
compare the different options outlined previously. For the
sender, this data path starts with writes to the application buffer
in main memory. Data is then copied from the application
buffer to the network buffer memory. At the receiver, the
reverse occurs, finishing with reads from the application buffer.
The analysis consisted of tabulating the operations needed
to send and receive 32 bytes (one cache line) of data, and
counting the instruction cycles consumed.

The results of this analysis have shown that the most effi-
cient scheme for outbound transfers is an YO-based interface,
with data being moved to the interface using programmed
I/O. This is because all of the other schemes involve flushing
either the application buffer or the network buffer from cache,
which will cause a cache miss when the buffer is reused. With
programmed I/O, there is a good chance that the application
buffer will remain cache resident and, as a result, data never
has to be written back to memory.

For inbound transfers, the analysis has shown that the VO-
based interface performs poorly if data is read out one word at
a time using programmed I/O. However, if data is moved from
the interface in larger blocks by using the memory controller’s
block move hardware, then a much higher throughput can
be expected. In fact, this mechanism is so effective that it
is difficult to justify the interface supporting DMA.

On the basis of this analysis, we decided that the best all-
around solution was a simple VO-based interface where the
network buffer memory is accessed using either programmed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 0 or memory controller block moves.

V. THE MEDUSA FDDI INTERFACE

A. Introduction

The Medusa FDDI interface is a research prototype that was
designed for the HP Apollo 9000 Series 700 workstations at
Hewlett-Packard Labs in Bristol. It is loosely based on the
WITLESS (Workstation Interface That’s Low-cost, Efficient,
Scalable and Stupid) architecture proposed in [6]. It contains
the network buffer memory that is required to support a single-
copy protocol stack, and appears to the host as a block of
memory in VO space. All network, transport, and socket layer
processing is performed by the host and, thus, the architecture
can support many different protocols.

The main reason for developing the Medusa FDDI interface
was to demonstrate that application-to-application communi-

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

196 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. I I , NO. 2, FEBRUARY 1993

TxReady FIFO

Fig. 4. The Medusa FDDI interface.

cation can be achieved at FDDI rates with a low-cost interface
using standard protocols such as TCP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Design Overview

The Medusa FDDI interface (see Fig. 4) attaches to the
I/O System Connect of a Series 700 workstation and is based
on a large block of multiported memory with a single wait-
state access. This is implemented efficiently and cheaply
using triple-ported video RAM’s. The video RAM’s contain
a parallel port as well as two serial ports. The parallel port is
interfaced to the host, allowing random access to the network
buffer memory using fast page mode read and write cycles,
whereas the two serial ports provide independent transmit and
receive paths to the FDDI chipset. The memory system is
organized as 256K 32-bit words and is constructed from eight
256Kx4 devices.

A video RAM is capable of sustaining high data rates from
its serial port with very little effect on the parallel port. In our
memory system, a single transfer cycle can move 2 KBytes of
data from the VRAM memory into the VRAM serial register,
or vice versa. There is an additional overhead for generating
refresh cycles, but this is small. Hence, even when transmitting
data at FDDI link rates, most of the parallel port bandwidth
is available to the host.

The network buffer memory is organized as a number
of fixed-size (8 KByte) blocks, each capable of holding
a maximum-length packet. By using fixed-size blocks, we
eliminate the problem of external memory fragmentation. It
also means that the starting address and length of a block
can be encoded into a single word, allowing transactions on
blocks to be atomic. Control of the interface is achieved with
four small (256 word) FIFO’s: TxReady, TxFree, RxReady,
and RxFree FIFO’s. The format of the data in these control
FIFO’s is shown in Fig. 5.

The only protocol-specific part of the design is hardware
support for the transport-layer checksum. It would be pos-
sible to support several checksum functions; however, the
current Medusa FDDI interface supports only the Internet
checksum function, as used by TCP [2]. A checksum function
not supported by the hardware can always be performed in
software by the host, but with a reduction in throughput. The
TCP and XTP [13] checksum functions are straightforward
to implement in hardware but the IS0 TP4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14] checksum
function is not, because it is byte-oriented and involves modulo
255 arithmetic.

C. Transmit Operation

A packet is constructed in a VRAM block by the host, and

BANKS AND PRUDENCE: HIGH-PERFORMANCE NETWORK ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Buffer Start Address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA197

Buffer Length

To send a packet: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Medusa->TxReady zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= buffer-start I buffer-length

To receive a packet:

buffer = Medusa->RxReady

buffer-start = buffer & OXFFFFEOOO

buffer-length = buffer & OxOOOOlFFF

N.B. PA-RISC 1.1 bit numbering is big endian

Fig. 5. Format of the control FIFO’s.

queued for transmission by writing the block‘s
together with its length into the TxReady FIFO.

start address
This is done

with a single atomic write, so there is no need for a semaphore
to control access to these FIFO’s. Outstanding transmission
requests are handled in the order in which they were issued.
Each transmission request is processed by the transmit control
logic, which streams the packet from the VRAM’s transmit
port into the FDDI MAC for transmission on the network.
When the packet has been transferred to the MAC, the transmit
control logic writes the block address into the TxFree FIFO,
to be subsequently read by the host. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Receive Operation

At the receiver, the host will have written the addresses of
some free blocks into the RxFree FIFO. When a packet amves,
the receive control logic will read the first of these addresses,
and stream the data from the FDDI MAC into the VRAM’s
receive port. When the end of the packet is reached, the start
address of the block together with the packet length will be
written into the RxReady FIFO by the receive control logic.
Again, because of the coding of the address and length into
a single word, this transaction is atomic. An interrupt will be
generated only when the RxReady FIFO goes from empty to
nonempty. This reduces the overhead when a packet arrives
and the host is still processing the previous one.

VI. IMPLEMENTATION OF A SINGLE-COPY PROTOCOL STACK

To fully realize the potential of the Medusa FDDI interface,
it is necessary to modify the TCPAP protocol stack to reduce
the number of data copies to one: from the application buffer to
network buffer memory. This gives us the expected increase
in performance, and also highlights a number of issues for

implementing high-speed network protocols in a conventional
UNIX environment.

Management of the buffers in network buffer memory is
a key area in the single-copy stack implementation. The
traditional mechanism of mbufs [I] can be used, simply by
pointing the offset field of an mbuf cluster to network buffer
memory. However, it is advantageous to treat a packet as a
set of two different types of mbuf those that hold data in
network buffer memory, called Medusa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmbufs, and normal
mbufs that hold protocol headers in system memory. The latter
are accessed a number of times by the network protocols, and
will reside in cache for the duration of protocol processing.
Cache accesses are far quicker than 110 accesses, so having
the header information cache resident speeds up the protocol
processing.

The device driver supports packets containing data in nor-
mal mbufs, as well as packets containing data that are already
on the interface and pointed to by a Medusa mbuf. This
allows protocols other than TCPAP to be run over the Medusa
network interface, without having to rewrite those protocols
for the single-copy architecture.

A. Data Transmission

A user process presents data to the socket layer by means
of a send() system call. This causes the socket layer procedure
sosend() to be called. In a conventional stack, sosend() would
check the amount of space available in the send socket buffer,
and copy as much data as possible from the application buffer
into normal mbufs. These are appended to the socket buffer,
and the protocol output routine is called.

In a single-copy stack, the socket layer looks at the routing
information maintained by IP to find the network interface
that the data is destined for. If this interface has network
buffer memory for supporting a single-copy protocol stack,
the socket layer copies data directly to this memory. Space is
left at the front of the network buffer for the protocol headers,
and data is copied in blocks not larger than the data-link layer
maximum transmission unit. A Medusa mbuf pointing to this
data is appended to the send socket buffer, and the protocol
output routine is called as usual.

By allowing the socket layer to perform the copy operation,
we are effectively packetizing the data before passing it to
TCP. This is a change from the conventional stack, where TCP
takes data from the socket buffer byte stream and packetizes it.

During the data copy operation, a checksum is computed
on the fly. This can either be done using a software copy-
and-checksum routine, or using the hardware checksum unit
on the Medusa interface itself. This checksum is stored with
the data in network buffer memory for later use. TCP and IP
work as usual, with TCP using the checksum calculated by the
socket layer instead of calling in-cksum() directly. The data,
with protocol headers prepended in normal mbufs, is passed
to the device driver.

The device driver is very simple. If the packet data is in
network buffer memory (pointed to by a Medusa mbuf), then
the device driver copies the headers into the space reserved at
the front of the buffer and causes the packet to be transmitted.

198 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, FEBRUARY 1993

If the packet presented is not in network buffer memory,
a buffer is allocated by the driver and data is copied from
kernel memory to network buffer memory. The packet is then
transmitted as normal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData Reception

The arrival of a packet in network buffer memory causes the
device driver interrupt routine to be invoked. A block of data
from the front of the packet is copied into a normal mbuf, on
the assumption that it contains a valid TCP/IP header. The
driver then performs a partial parse of the packet header,
looking for a valid TCP/IP packet with data in it. If this
is successful, the data is left in the network buffer memory
with a Medusa mbuf pointing to it. Packets received that are
not TCP/IP, or that do not contain any data such as TCP
acknowledgments, are copied to normal mbufs and passed up
the protocol stack to the IP layer.

IP passes the packet to TCP as usual. Normally, TCP
checksums the data to make sure it is correct and then appends
this data to the socket buffer for the connection. This cannot
be done in the single-copy architecture because the checksum
is produced as a result of the data copy from network buffer
memory to the user buffer. Until the socket layer is invoked,
with the address of a user buffer to place the data in, we cannot
do the data copy and, hence, cannot obtain the checksum.

Consequently, acknowledgment of the data to the peer TCP
must be delayed until the socket layer has copied the data
and verified the checksum. This means that the socket layer
becomes responsible for acknowledging data for TCP, rather
than TCP itself. We need to extend the notion of a TCP
window to cover data that has been received but not yet
acknowledged. This covers data that is in transit in the system,
allowing the TCP layer to properly reject any duplicate data
received.

VII. EXPERIMENTAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARESULTS

In this section, we present the results of some performance
measurements of the single-copy protocol stack (as described
in Section VI) running over the Medusa FDDI interface. For
comparison purposes, we have made similar measurements of
a conventional protocol stack running over both Medusa and
the built-in Ethernet interface.

In Section VII-A, we discuss what sort of performance
measurements are representative of real applications, and
explain why maximum socket-to-socket throughput tests can
result in pessimistic estimates of communication cost. In
Section VII-B, we describe a simple profiling technique used
to determine the amount of time spent in particular sections of
code. Using this, we have measured the amount of time spent
in the driver, IP, TCP, and socket layers. In Section VII-C, we
examine TCP stream performance. We present a simple model
of socket-to-socket throughput based on the results of the
profiling, and verify this with experimental results. We show
that FDDI link saturation is achievable. Finally, in Section VII-
D, we examine TCP requestlresponse transaction rates, again
using a simple model of socket-to-socket latency.

A. Network Performance Measurements

Usually, network performance measurements are taken to
determine the maximum socket-to-socket throughput. With
low-cost workstations and very high-speed networks such as
FDDI, this can only be achieved if the application performs
minimal processing on the data. This is not representative of
real applications, which take time to generate and consume
data, and will also lead to higher protocol overheads. If the
receiver is doing nothing other than executing recv() calls,
then there will be little chance of packets building up in the
receive socket buffer. Consequently, most recv() calls will
return only a single packet of data rather than several. This
is inefficient, and will result in acknowledgments being sent
more frequently (probably one every other packet rather than
one per socket buffer). If the throughput bottleneck is the
network, then this may not affect maximum throughput figures
but will lead to a pessimistic view of communication overhead,
in terms of processor time per kilobyte of data transferred.
We have tried to make our performance measurements more
realistic by including a delay between rem() calls to simulate
the application taking time to consume data.

B. Detailed Projiling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a Network Protocol Stack

To be able to understand and explain socket-to-socket
performance, it is useful to track the progress of a packet
through the protocol stack, noting the time at which particular
sections of code are executed. This projiling can be done
with the aid of a powerful logic analyzer, set up to record
particular instructions being fetched. Alternately, there are
software-based schemes where additional codes must be added
to the protocol stack. The hardware scheme can only be used if
instruction fetches are visible, which is unlikely to be the case
if the processor has an on-chip instruction cache. The obvious
advantage, though, is that no modifications are required to
the protocol stack. Software-based schemes usually involve
calling gettimeofday(), which returns a time in microseconds.
This will impact the performance, and is not really accurate
enough for our needs.

The scheme we have used for profiling is software-based,
yet is extremely accurate and involves very little overhead.
PA-RISC processors have a hardware interval timer register.
On the model 720, this register is incremented every processor
clock cycle (20 ns) and wraps around every 85.9 seconds. Both
the application and kernel can read this register because it is
a nonpriviledged operation. Our profiling scheme involves a
single function, med_trace(n), that simply reads the interval
timer register and writes its value, together with n, into
a global data array. Trace points are recorded by calling
med-trace() at various points in the protocol stack, using a
different trace point number, n7 each time. The overhead of
med-trace() is very low, taking only 15 instructions including
the function call and return. Since each call to med-frace()
writes two words of data into the data array and a cache line
contains eight words, then a cache miss is likely to occur every
fourth call. Taking this into account, the average time spent in
a call to med-trace() will be 0.41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps, and overall we estimate

BANKS AND PRUDENCE: HIGH-PERFORMANCE NETWORK ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
per packer per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys. call rota1 percenrnge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(UT1 l U S l (I S 1

scale with processor speed:
Socket 5.01 40.42 80.50 4.1

TCP 24.05 89.36 281.76 14.4

IP 7.23 16.25 74.09 3.8

Driver 66.33 76.03 606.67 30.9

scale with memory speed:
Data copy 1 14.67 917.36 46.8

taals: 217.29 222.06 1960.38 100.0

Fig. 6. TCP stream test-send path summary (assuming 32 KByte socket

buffer).

per packer per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys. call rota1
(us, percentage

(us) /us)

scale with processor speed:
Socket 9.80 40.97 119.37 5.4

TCP 13.90 23.76 134.% 6.1

IP 13.34 7.62 114.34 5.2

Dnver 51.06 63.82 472.30 21.5

scale wrih memory speed: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Data copy 169.93 1359.44 61.8

totals: 258.03 136.17 2200.41 100.0

Fig. 7. TCP stream test-receive path summary (assuming 32 KByte socket

buffer).

that tracing will result in a 2.2% increase in communication
overhead.

To make the measurements, a simple application was written
to transfer data over a stream socket connection. The send and
receive socket buffers were both set to 32 KBytes, and data
was transferred in one direction using send() and recv() system
calls. The application buffers and send size were also set to
32 KBytes, and each packet transmitted contained 4 KBytes
of data. The amount of time spent processing data in between
recv() calls was sufficient to ensure that the receive socket
buffer had filled up completely before the next recv() call was
made.

Because the first send() call will fill up the send socket
buffer, the sender will be put to sleep at the start of the next
send() call. When an acknowledgment is received, the sender
will be awakened and more data may be sent. We have not
included the sleep time in our results.

In Fig. 6, we summarize our measurements of the send path,
resulting from four successive calls to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend(). We have grouped
the overheads according to whether they are incurred just
once per send() system call or for every packet sent. Similar
measurements of the receive path are given in Fig. 7.

In both the send and receive cases, the driver contributes
a significant proportion to the total cost. There are known
inefficiencies with our driver implementation, and with some
optimizations we should be able to greatly reduce this cost.
However, the driver is only perceived as expensive when
compared to the IP, TCP, and socket layers. What this really
illustrates is that the protocol processing itself is not expensive.
The cost of even a single data copy dominates everything else.
As we noted earlier, processor speeds are increasing faster than
memory speeds so we should expect protocol processing costs
to continue to drop.

In the following two sections, we present empirical models
for socket-to-socket throughput and socket-to-socket latency

and verify the models with experimental measurements. Our
measurement system consisted of a pair of HP9000 Series 720
workstations, running a version of the HP-UX 8.05 operating
system that was modified to include the Medusa device driver
and the single-copy TCP/IP protocol stack. To ensure our
measurements were repeatable, we conducted all tests on a
private network, with only the two workstations involved in
the tests attached. For Ethernet, this consisted of a short length
of coaxial cable interconnecting the two nodes. For FDDI, two
single attach nodes were connected directly together, without
the use of a concentrator, to form a two-node ring.

C. TCP Stream Pegormance

at which the receiving application can consume data, then

throughput = a
- + b + x
n

Where the socket-to-socket throughput is limited by the rate

2,

p = packet size (KBytes)

n = number of packets received per system call

a = per system call overhead (seconds)

b = per packet overhead (seconds)

5 = application per packet processing time (seconds).

Taking the values of a = 136.17~s and b = 2 5 8 . 0 3 ~ s from
Fig. 7, p = 4 KBytes, and n = 8 packets per socket buffer,
we have varied z from 1 p s to 10 ms, giving the graph
shown in Fig. 8. The other curves shown on this graph are our
experimental measurements of socket-to-socket throughput. Of
primary importance is the curve for the single-copy stack
running over Medusa. For comparison purposes, we have
also shown the performance of a conventional protocol stack
running over Medusa and of the built-in Ethernet interface.

The theoretical and experimental curves are coincident to
the point where the application processing time drops below
about 320 ,us14 KByte packet. This is the point at which the
receive socket buffer has just been refilled when the next rem()
call is made. If the processing time is reduced further, then
the amount of data returned by each recv() decreases. Our
model has assumed n is fixed, hence the difference in results.
The other effect illustrated by the graph is that of network
saturation at 11 700 KBytes/s. The transmission of protocol
headers and acknowledgment packets account for this being
less than the FDDI link rate of 100 Mb/s.

A different way of presenting this data is to plot CPU

utilization along the horizontal axis, where

utilization = 1 - throughput x . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3
This has been done in Fig. 9, which shows a direct correlation
between data rate and processor utilization, until the point of
network saturation. Although the curves extend beyond this
point, this does not mean that the protocol overheads continue
to increase. Most of the time the receiver will be sleeping,
waiting for the next packet to arrive, and other processes could
be run.

200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I , NO. 2, FEBRUARY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

16000 -

14Ooo - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Data Rate (KBytesls) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l6Oo0 1

- Medusa FDDI with single copy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstack

Medusa FDDI with cmventicnal stack - 1 ,,,,..

-!- Ethernet ,...'

Theoretical
Medusa FDDI with single copy stack

Experimental
Medusa FDDI with single copy stack

..........

- 2

10 100 loo0 loo00 O J

Application Processing Time (usl4KBytesi

Fig. 8. Graph of data rate versus application processing time.

O J 0.0 0.2 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6 0.8 1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CPU Ufi/!mfiort

Fig. 9. Graph of data rate versus CPU utilization.

D. TCP Request/Response Per$omance

Often, it is not socket-to-socket bandwidth that is important
to an application, but socket-to-socket l<atency. This is the case
with many distributed applications, where most of the com-

scale with scale with scale with

speed speed speed
percenrogc

memory processor

(U) (4 (4
fued overheads:

Send socket layer 28.29 3.1

TCP output 28.44 3.1

IF output 1.12 0.8

Driver output 42.15 4.6

Network Latency 15.60 1.7

Driver Input 48.93 5.4

lP input 15.05 1.7
TCP input 52.00 5.1

Receive socket layer 56.91 6.3

Send data copy 115.08 12.6

Transmission of data 321.68 36.0

Receive data copy 172.12 19.0

totals: 287.20 219.49 343.28 100.0

scale wifh message size:

Fig. 10. TCP requestksponse critical path (4 KBytes messages).

munication takes the form of short requestlresponse messages.
Since the amount ofedata being transferred is small, data path
performance is not critical, and we would not expect to see a
great deal of difference between a single-copy architecture and
a conventional architecture. However, the extremely simple
design of the Medusa interface will introduce far less latency
than an intelligent interface adaptor, which may have several
processors operating on a pipelined data path.

Using the same profiling techniques as before, we have
identified all of the components of this latency. The appli-
cations in this case simply exchange messages, using send()
and rem() calls. Data packets flow in both directions and so
no explicit acknowledgments need to be sent. The components
of the send-network-receive critical path are identified in Fig.
10, where they have been categorized according to whether
they scale with memory, network, or processor speed.

With the 4 KE3yte messages used, the data copy and net-
work transmission times are significant. However, for small
messages these will be dominated by the path through the
protocol stack. The socket-to-socket latency can be modeled
as

latency = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A) + s + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) d + h + T + (k)
d = data size

h = header size

s = send path through protocol stack

T = receive path through protocol stack

ml = main memory to network interface bandwidth

m2 = network interface to main memory bandwidth

n1 = network latency

n2 = network bandwidth.

Using values for FDDI and from Fig. 10,

h = 70Bytes

s = 1 0 6 . 6 ~ ~

T = 172.8911s

ml = 4096 Bytes per 115.08 ps

BANKS AND PRUDENCE: HIGH-PERFORMANCE NETWORK ARCHITECTURE 20 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Transaction Rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s-* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj

2000 1
Theoretical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.......... I Medusa FDDI with single copy stack

Experimental
- * Medusa FDDI with single copy stack
- Medusa FDDI with conventimd stack

0 4
0 1024 2048 3072 4096 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Bytes)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1. Graph of TCP requesuresponse transaction rate versus message size.

m2 = 4096Bytes p e r 1 7 2 . 1 2 ~ ~

n1 = l o p s (estimated)

n2 = 12.500 x 106Bytes/s.

This expression reduces to

latency = 295.09 + 0.1508d (,us).

Our benchmark specifies a single transaction as a request
and response; hence, the transaction rate involves twice the
socket-to-socket latency. In Fig. 11, we have plotted the
theoretical transaction rate verses message size, together with
some experimental results. With 4 KByte messages, the model
is very accurate, but with 4 byte messages some difference is
observed, which corresponds to an extra 15 ps socket-to-socket
latency. We suggest two reasons for this discrepancy. First,
our estimate of FDDI network latency, which involves waiting
to capture the token, may be slightly low. Second, we have
assumed that the cost of the uiomove() call, which moves data
between the application buffer and network buffer memory,
scales proportionally with data length. This will not be the case
when copying small amounts of data, since the fixed costs of
checking for boundary conditions and loop initialization will
dominate the cost of the data copy.

The other curves in Fig. 11 confirm that for small message
sizes, there is little benefit from a single-copy architecture but,
as the message size increases, then so does the performance
differential. With the conventional stack, an increase in trans-
action rate as the message size passes 1024 bytes is caused
by the socket layer changing its buffer management policy.
Small messages are held on the socket buffer as a chain of
normal mbufs (each one holding 96 bytes of data). When the

message size is greater than 1024 bytes, then a single cluster
mbuf is used. Operations on cluster mbufs are more efficient
since data is contiguous, and copies of the mbuf may be taken
by reference rather than by duplicating the data. This anomaly
is not seen with a single-copy stack, because there is only one
buffer management policy.

VIII. CONCLUSIONS

The design, implementation, and performance analysis of
the Medusa network interface and the associated single-copy
protocol stack has demonstrated that it is possible to provide
very high network throughput between application processes
running on low-cost workstations. In particular, it is the
combination of an interface with network buffer memory and
a single-copy protocol stack that provides twice the throughput
of a conventional architecture. This type of network interface
can be engineered to low cost, with the expense of providing
memory on the interface being offset by the lack of complex
processors and DMA engines.

We have devised a simple and effective scheme for profiling
the protocol stack that makes use of the PA-RISC interval
timer register. With this scheme, detailed measurements of the
time taken to perform various protocol and operating system
tasks were taken. We have used these measurements to derive
empirical models of socket-to-socket throughput and socket-
to-socket latency for our single-copy stack running over the
Medusa FDDI interface. These models can be used to deter-
mine the impact of faster processors, memory systems, and
physical networks on network performance to the application.
The conclusion we must draw here is that the cost of the IP,
TCP, and socket layers is now small when compared to the
cost of even a single data copy and will continue to drop,
because workstation performance is increasing at a ferocious
pace. Off-loading these layers from the host, by making the
network interface smart enough to perform protocol processing
functions, cannot really be justified on performance grounds
and would probably increase the network latency as seen by
an application.

REFERENCES

[I] S. Leffler, M. McKusick, M. Karels, and J. Quaterman, The Desigil t r d

Implementation efthe 4.3BSD UNIX Operating S\..sterii. Reading, MA:
Addison-Wesley, 1989.

[2] J. Postel, "Transmission control protocol," RFC 793, SRI Netw. Inform.
Cent., Menlo Park, CA, Sept. 1981.

[3] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, "An analysis of
TCP processing overhead," IEEE Corizm~tn. Mog., June 1989.

[4] Excelan Inc., TcP/IP Proloco/ Package for VAXh'Ms s\.s/etm Referrrlc.r
Manual, pub. 4 200 01240. Rev. A, July 31, 1985.

[5] A. G. Fraser, "Toward a universal data transport system," IEEE J . Select.
Areas Commun., vol. SAC-I, no. 5, Nov. 1983.

[6] V. Jacobson, "Efficient protocol implementation," in Pm.. ACM SIC-
COMM '90, Sept. 24, 1990.

[7] M. Forsyth, S. Mangelsdorf, E. DeLano, C. Gleason, and J . Yetter.
"CMOS PA-RISC processor for a new family of workstations." in Pmc.
IEEE COMPCON, spring 199 1.

[8] R. Horning, L. Johnson, L. Thayer, D. Li, V. Meier, C. Dowell. and D.
Roberts, 'System design for a low cost PA-RISC desktop workstation."
in Proc. IEEE COMPCON. spring 1991.

[9] D. Odnert, R. Hanson, M. Dadoo, and M. Laventhal, "Architecture
and compiler enhancements for PA-RISC work\tation\," in Proc.. / € € E
COMPCON, spring 1991.

202 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, V o L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 . NO 2 , FEBRUARY 1993

[IO] A. J. DeBaets and K. M. Wheeler, “Midrange PA-RISC workstations
with pncelperformance leadership,” Hewlett-Packard J . , Aug. 1992.

[I l l C. A. Gleason, L. Johnson, S. T. Mangelsdorf, T. 0. Meyer, and
M. A. Forsyth, “VLSI circuits for low-end and mid-range PA-RISC
computers,” Hewlett-Packard J., Aug. 1992. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[12] Hewlett-Packard Co., PA-RISC 1 .1 Architecture and Insrruction Set
Reference Manual, Man. Part 09740-90039.

[131 Protocol Engines, Inc., XTP Protocol Definition Revision 3.4, 1989.
[141 “Transport protocol specification for open systems interconnection for

CCITT applications,” CCITT Recom. X.224, Sect. 6.17 and Appendix I.

David Banks was born in Leigh, England, on Jan. 21, 1967. He received
the B.Sc. (Hons) degree in computer engineering from the University of
Manchester, Manchester, England, in 1988.

Since Sept. 1988, he has been a Member of Technical Staff in the
Network Technology Department of Hewlett-Packard Laboratories in Bristol,
England. He has been involved in research into several areas of high-speed
communication and electronics, including gigabit networking and high-speed
network interfaces. He is currently continuing this work, in the context of the
architecture of next-generation computer systems.

Michael Prudence received the B.Sc. (Hons) degree in computer engineering
from the University of Manchester, Manchester, England, in 1988.

Since 1988, he has been a Member of Technical Staff in the Network
Technology Department of Hewlett-Packard Laboratories in Bristol, England.
He has worked in a number of different areas, including fast packet switching,
network protocol implementations in UNIX, and high-speed network inter-
faces. Currently, he is working in the field of asynchronous transfer mode
technology for the local area.

