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A High-Performance Optical Time-Domain Brillouin
Distributed Fiber Sensor

Silvia Diaz, Stella Foaleng Mafang, Manuel Lopez-Amo, Senior Member, IEEE, and Luc Thévenaz

Abstract—A novel configuration for a Brillouin distributed fiber
sensor based on Brillouin optical time-domain analysis is proposed.
This configuration eliminates many intensity noise issues found in
previous schemes. Resolution of 7 m all over a 47 km single-mode
fiber was achieved and resolution down to 30 cm in a few Kkilo-
meter fiber. Noise reduction makes possible measurements with a
16 times averaging.

Index Terms—Brillouin scattering, nonlinear optics, optical fiber
sensors.

1. INTRODUCTION

RILLOUIN scattering (BS) is a optical process resulting

from the interaction between an incident lightwave and
an acoustic waves in a medium and giving rise to backward
propagating frequency-shifted light [1]. The mechanism of this
scattering is the following: thermally excited acoustic waves
generate through the elasto-optic effect a refractive index
grating that propagates at the acoustic velocity in the material.
This moving grate reflects the incident light and causes this
backscattered light to be precisely shifted in frequency through
the Doppler effect.

The Brillouin frequency shift is given by

WA ZHVA
= — = 1
VB 2 )\p ( )

where w 4 is the acoustic wave’s frequency, V4 is the acoustic
wave’s velocity in the optical fiber, and n is the modal refractive
index at the pump wavelength Ap.

Stimulated Brillouin Scattering (SBS) is a nonlinear para-
metric process in the optical fiber coupling two contrapropa-
gating lightwaves showing the exact frequency difference given
by the Brillouin shift (1) due to Doppler effect. In this case, the
acoustic wave is generated by the electrostriction resulting from
the interference of the two lightwaves and plays the role of the
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idler wave in the parametric process. The net result of the in-
teraction is a power transfer from the higher frequency optical
wave to the lower frequency wave. This latter will, therefore, ex-
perience gain and the former loss. Within optical fibers the spec-
tral characteristics of the Brillouin gain depend not just on the
type of fiber (dopants concentration, index profile, material . . .),
but also on the relative polarization of the pump and probe light-
waves, and on temperature and strain applied to the fiber. This
dependence on extrinsic parameters suggests the possibility of
using SBS as a sensor to determine environmental variations
along the whole length of the sensing fiber [2], [3].

Since the Brillouin shift essentially depends on the refractive
index and on the acoustic velocity, that in turn depends on envi-
ronmental quantities such as temperature or strain, its determi-
nation can be used for sensing [4], [5].

A Brillouin Optical-Fiber Time-Domain Analyzer, or
BOTDA, was initially developed as an instrument enabling
nondestructive evaluation of optical fiber attenuation [6], based
on the Brillouin interaction between two counterpropagating
lightwaves generated by two laser sources placed at the extrem-
ities of the fiber under test.

The majority of methods for BOTDA [4], [6] used two dis-
tinct lasers for generating pump and probe signals. This requires
excellent frequency locking between the two lasers to secure
the 1 MHz stability for accurate measurement. Niklés et al. [5],
[7]-[9] proposed a simple way to achieve an ideal stabilization
of the frequency difference in a BOTDA. The configuration uses
a microwave generator and a LiNbO3 electro-optic modulator
(EOM) to generate pump and probe signals from one single
laser source. This configuration, however, suffers from sensi-
tivity to optical noise, as a result from the bidirectional propa-
gation of optical waves showing the same frequency along the
optical fiber.

In this paper, a novel configuration that avoids as much
as possible the bidirectional propagation of waves showing
the same optical frequency is presented [10]. This drastically
reduces the optical noise resulting from the superposition of
coherent waves with the same frequency, but showing a ran-
domly fluctuating phase difference as generated from spurious
reflections and Rayleigh scattering in the system. The random
phase difference generates an important intensity noise and is
frequently observed in bidirectional fiber optics systems.

II. EXPERIMENTAL SETUP

The block diagram of the setup is shown in Fig. 1. The laser
light is first split into probe and pump channels. The laser used
was a standard single frequency DFB laser diode at a wave-
length of 1557 nm and with a 30 mW output power. The light
in the probe channel is first modulated by an EOM that is a

1530-437X/$25.00 © 2008 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 26, 2009 at 15:00 from IEEE Xplore. Restrictions apply.



DIAZ et al.: A HIGH-PERFORMANCE OPTICAL TIME-DOMAIN BRILLOUIN DISTRIBUTED FIBER SENSOR

90/10

coupler
L}

95/5
Isolator coupler
95

Electro-optic
modulator 70l
O

1t

Probe

30/70
coupler

Pulse
generator

EDFA

S0A
l\
1

Fig. 1. Novel low-noise configuration for distributed Brillouin gain spectrum
measurement.

guided-wave Mach—Zehnder LiNbO3 integrated device based
on the proton exchange technology, showing a modulation band-
width of 12 GHz and a 30 dB extinction ratio. This is a key
element of the setup since it is used for the generation and fre-
quency tuning of the probe signal. The frequency shift on the
laser light is achieved by simply applying a CW microwave
signal in the frequency range of the Brillouin shift on the EOM
electrodes. This creates sidebands in the laser spectrum. This
technique makes the control of the probe optical frequency very
convenient and reliable by adjusting the microwave modulation
signal frequency. The DC bias setting on the EOM just deter-
mines the amount of transmitted power at the fundamental fre-
quency. The DC bias condition on the EOM electrodes is set, so
that the optical power at the laser original wavelength is kept as
small as possible. This minimal power amount depends on the
EOM characteristic extinction ratio that is specially selected to
exceed 35 dB.

The other fiber channel is gated by a SOA, model Qphotonics
QSOA-1550, with 40 nm spectral width at a central wavelength
of 1534 nm and 2 mW output power, operated in a gain-switched
mode to properly shape the pump pulse with a high on—off ratio
(45 dB). This gives the system an inherent stability, as far as fre-
quency drifts of the laser are concerned. The pump pulse pro-
vides gain to the probe signal during its forward propagation
through the stimulated Brillouin scattering process, while the
CW probe is amplified on the way back.

To avoid any gain fading effect resulting from the polariza-
tion-dependent Brillouin interaction, we have built and devel-
oped a new passive polarization scrambler. It consisted of two
branches, one with a 2 km SSMF and another with a polariza-
tion controller, and two couplers, resulting in a highly unbal-
anced Mach—Zehnder interferometer. The arm length difference
is much larger than the laser coherence length, so that they com-
bine incoherently in the output coupler. The states of polariza-
tion in the two arms are set orthogonal before the recombination,
so that the phase noise results in a perfect and passive polariza-
tion scrambling without intensity noise. The couplers’ splitting
ratios were adjusted to compensate the loss in the delaying fiber,
so that the same amount of power is obtained from the two arms
after the recombination to secure a uniform scrambling.

1269

It was placed after the EOM and before the isolator, from
which the light is no longer subject to polarization dependent
elements. It must be pointed out that this kind of passive scram-
bling is absolutely perfect, but is restricted to CW waves since
the delay present in one arm of the scrambler would entirely
modify the modulation content. It is robust, cost-effective, and
does not require any power supply. In the other channel, the
pump pulse is generated by a SOA, in which the gain is gated
using a train of electric pulses. The SOA shows an ON-OFF
ratio over 40 dB, so that the presence of light at the original
laser frequency is extremely low when the SOA is in the OFF
state, i.e., when the pump pulse is off. In addition, there is ab-
solutely no light generated at the sidebands frequencies. Hence,
the configuration secures a total absence of intensity noise at the
sideband frequencies that were the main source of noise in the
former configuration. The output is then boosted by an EDFA.

The signals from each channel are then directed to each end
of the sensing fiber. There is conceptually no wave showing
the same frequency propagating in the two opposite directions
through the fiber, except the small residual light at the original
laser frequency that results from the finite extinction ratio of
the EOM, which can interfere with the Rayleigh light from the
intense pump pulse.

Light from the probe channel is extracted at the fiber output
using an optical circulator. This signal is leveled up using an-
other EDFA and then filtered using a very narrowband fiber
Bragg grating filter (< 0.1 nm) to transmit only one sideband
onto the detector. This filtering is crucial: it eliminates the un-
wanted modulator sideband that reduces the measurement con-
trast and any presence of the pump frequency due to the finite
extinction ratio of the EOM that would generate substantial op-
tical noise at the detection when combined with the Rayleigh
light from the pump pulse.

When the modulation frequency f,, is close to the Brillouin
frequency shift v, the first lower sideband lies in the Brillouin
gain spectrum generated by the pump and is amplified through
the Brillouin interaction. As a matter of fact, the Brillouin gain
spectrum can be determined by simply sweeping the modulation
frequency f,,, and recording the probe intensity. The frequency
spacing between the first upper and first lower sidebands is twice
the frequency modulation f,,, (approximately 22 GHz), and
corresponds to a wavelength separation of 0.25 nm at 1.55um.
As the first upper sideband is not relevant for the measurement
and even has a negative effect on the contrast, it is filtered out
just before acquisition using a tunable fiber Bragg grating of
0.1 nm bandwidth.

III. RESULTS

The main performances of our Brillouin optical fiber system

may be summarized as follows.

* The massive noise reduction by more than 15 dB down to
optical shot noise has made a 50 km sensing range possible
without any amplification along the sensing fiber to restore
the pump power.

* The ultimate spatial resolution of the Brillouin sensor de-
pends on the sensing range since the pump pulse must be
made longer to maintain a sufficient gain after experiencing
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The quality of the traces, obtained after a 16X averaging, illustrates the massive reduction of noise.
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Fig. 3. Trace of maximum Brillouin gain over 5 km of the SSMF fiber without
polarization control.

the propagation loss through the fiber. The actual best spa-
tial resolution amounts roughly to 2 m for 40 km-range and
7 m for 50 km. For ranges shorter than 5 km, a 30 cm res-
olution was obtained.

* For short ranges (< 5 km), a 16X averaging results in per-
fect measurements. For very long ranges, 256X averaging
is required.

* A new passive polarization scrambling method was suc-
cessfully implemented, resulting in a perfectly flat ampli-
fication profile along the fiber and reducing polarization
fading to zero.

The overall information carried by the frequency-distance
distribution of the Brillouin amplification is obtained by per-
forming a frequency sweep of the probe lightwave.

The data acquisition system was controlled using a LabView
program and it acquires a normalized amplification trace at
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Fig. 4. Trace of maximum Brillouin gain over 5 km of the SSMF fiber with
polarization control.

each frequency step, measuring the local amplification of the
probe signal, while crossing the counterpropagating pump
pulse. A simple time-of-flight to in-fiber position conversion
is performed knowing the speed of propagation v of the light
pulse launched into the fiber.

The trace is acquired by a 125 MHz photodetector and an os-
cilloscope acquisition PCI-board working at 2 x 109 samples/s.

The scan in the time/distance and frequency domain can be
viewed as a 3D-surface (Fig. 2) representing the spectral distri-
bution of the Brillouin gain at any location along the fiber.

The results obtained with and without the polarization scram-
bler are compared (Figs. 3 and 4). As stated before, this part of
the setup behaved as a Mach—Zehnder interferometer. As shown
in Fig. 4, the results are greatly improved in the case of using
the polarization scrambler.
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The results of Fig. 4 were obtained using 256 averages in
the oscilloscope. Shown is the 47 km of SSMF. The graph
is nearly flat in the case of using the polarization scrambler
system, as represented in Fig. 4. The mean Brillouin frequency
is 10.81 MHz in both cases.

The resultant maximum Brillouin gain is depicted in Figs. 5
and 6 and when there was not included the passive polarization
scrambler and in the case of using the polarization scrambler,
respectively. A clear improvement is observed on the first kilo-
meters, that fades out for large distances. This is certainly due to
the loss penalty on the signal due to the polarization scrambler.

As before, there is a clear improvement when the polariza-
tion control given by the Mach—Zehnder interferometer was im-
plemented. A 33 kHz maximum variation in the Brillouin fre-
quency was observed in the case of using the polarization scram-
bler, whereas the change was increased to more than 50 kHz, as
shown in Fig. 5, when there is no polarization control.
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IV. CONCLUSION

A novel BOTDA configuration able to perform a distributed
measurement of the Brillouin gain spectrum using a single laser
source has been developed. This configuration is designed to
minimize all sources of intensity noise, resulting in extreme per-
formances in terms of range, spatial resolution, and acquisition
time. A spatial resolution of 7 m over a 47-km fiber length has
been obtained. Actually, the range is limited by the modula-
tion instability that actively spreads the spectrum of the pump
pulse and longer fiber lengths can certainly be measured using a
fiber showing a normal group velocity dispersion. A new passive
polarization scrambler made of an unbalanced Mach—Zehnder
interferometer was implemented and made possible the mea-
surement of Brillouin frequencies with a maximum variation of
33 kHz and much reduced Brillouin gain oscillations.
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