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Stain normalization is an important processing task for computer-aided diagnosis

(CAD) systems in modern digital pathology. This task reduces the color and intensity

variations present in stained images from different laboratories. Consequently, stain

normalization typically increases the prediction accuracy of CAD systems. However, there

are computational challenges that this normalization step must overcome, especially

for real-time applications: the memory and run-time bottlenecks associated with the

processing of images in high resolution, e.g., 40X. Moreover, stain normalization can

be sensitive to the quality of the input images, e.g., when they contain stain spots or dirt.

In this case, the algorithm may fail to accurately estimate the stain vectors. We present

a high-performance system for stain normalization using a state-of-the-art unsupervised

method based on stain-vector estimation. Using a highly-optimized normalization engine,

our architecture enables high-speed and large-scale processing of high-resolution

whole-slide images. This optimized engine integrates an automated thresholding

technique to determine the useful pixels and uses a novel pixel-sampling method that

significantly reduces the processing time of the normalization algorithm. We demonstrate

the performance of our architecture using measurements from images of different sizes

and scanner formats that belong to four different datasets. The results show that our

optimizations achieve up to 58x speedup compared to a baseline implementation. We

also prove the scalability of our system by showing that the processing time scales

almost linearly with the amount of tissue pixels present in the image. Furthermore, we

show that the output of the normalization algorithm can be adversely affected when the

input images include artifacts. To address this issue, we enhance the stain normalization

pipeline by introducing a parameter cross-checking technique that automatically detects

the distortion of the algorithm’s critical parameters. To assess the robustness of the

proposed method we employ a machine learning (ML) pipeline that classifies images for
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detection of prostate cancer. The results show that the enhanced normalization algorithm

increases the classification accuracy of the ML pipeline in the presence of poor-quality

input images. For an exemplary ML pipeline, our new method increases the accuracy on

an unseen dataset from 0.79 to 0.87.

Keywords: stain normalization, whole-slide image analysis, large-scale image analysis, tumor detection,

convolutional neural networks, digital pathology

1. INTRODUCTION

With the advent of high-resolution whole-slide imaging
technology and the advances in deep learning, computer-aided
diagnosis (CAD) systems have become a very important part
of the clinical work today. Machine learning (ML) based image
analysis algorithms applied to digitized histological slides can
assist the pathologists in terms of workload reduction, efficient
decision support, and interpretability of the results (1–3). Given
the vast amount of gigapixel-sized whole-slide imaging data, and
the need to accelerate the time-to-insight, there is an increasing
demand to build automated and scalable pipelines for large-scale,
fast, and robust image analysis.

One of the main pre-processing algorithms in whole-slide
image (WSI) analysis is the color normalization of stained
tissue samples (4). Despite the standardized staining protocols,
variations in the staining results are still frequent due to
differences in, e.g., the antigen concentration and incubation
time and temperature, the different conditions across slide
scanners etc. (3). Such color/intensity variations can adversely
affect the performance and accuracy of the CAD systems.
Stain normalization methods aim to help the CAD systems by
generating images with a standardized appearance of the different
stains (5–12).

In this work, we use the Macenko method (7) to build a high-
performance stain normalization system. This method estimates
the stain vectors of the WSI of interest by using a singular value
decomposition (SVD) approach applied to the non-background
pixels of the input image. Using the normalized median intensity
(NMI) metric, it was shown in Zanjani et al. (13), that the
quality of this method is one of the highest when compared
to other stain normalization methods. In addition, due to the
simplicity of the algorithmic steps, the particular method can be
efficiently parallelized. Moreover, the algorithm does not involve
intermediate steps that require training of model parameters and
is thus computationally less expensive.

Our stain normalization system architecture is based on an
optimized multi-core implementation that integrates multiple
system-level optimizations (14)1. With this architecture we

1The content of sections 3.1 and 3.2 of this journal article is partially based on

results from our previously published workshop paper (14). This journal paper

includes new material as follows: (a) the optimized stain normalization system

presented in Stanisavljevic et al. (14) is enhanced with automatic detection of the

background pixels threshold; (b) we report the run-time of the optimized system

and the speedup gains over the baseline implementation using a larger set of

175 images; (c) we identify a new challenge of the stain normalization algorithm,

namely its sensitivity to the quality of the input images, and propose a method to

deal with low-quality input images; (d) we evaluate the benefits of the new method

address two challenges of the stain normalization algorithm:
(1) long processing time, and (2) large system memory
consumption, when normalizing high-resolution images. Typical
implementations of stain normalization algorithms cannot
process high-resolution images, such as 40X resolution of a
160 k × 80 k WSI corresponding to 37.5 GB of data, on typical
servers with less than 64 GB of RAM. Our implementation
enables the processing of such images and can be used with
different image formats, such as .svs, .tif, .ndpi, etc. This
allows us to evaluate the performance of our stain normalization
system on datasets generated by different scanners, e.g., Ventana,
Hamamatsu, Aperio, Philips.

Furthermore, we show that the stain normalization algorithm
under study is sensitive to the quality of the input images. To
overcome this challenge, we propose a new method to detect the
poor-quality images and design a variant of the algorithm that
is robust to such images. For the rest of the paper, we will refer
to an image as having poor quality, when that image contains
artifacts, e.g., stain spots, dirt etc. Finally, we show that our
new normalization method can increase the accuracy of machine
learning (ML) pipelines that use stain-normalized images as
input. As an exemplary ML pipeline, we used a Tensorflow-
based convolutional neural network (CNN) that detects tumor
in prostate biopsy WSIs. Figure 1 shows a top-level overview of
the ML-based pipeline used in this paper. Before feeding the ML
engine with histological WSIs, we normalize the full image in a
user pre-defined resolution, e.g., 10X. The normalized images can
be stored to disk or directly pipelined with the ML engine. Then,
the latter trains a CNNmodel using patches from the normalized
WSI. The trained model is then used for inference to predict the
presence of tumor in images.

This paper is structured as follows. In section 2 we describe
the datasets used in our study. In section 3.1 we describe the
stain normalization algorithm employed in this study and re-
emphasize the motivation of this work. In section 3.2 we present
a high-performance version of the Macenko normalization
algorithm that not only speeds up the execution time, but also
enables the normalization of large whole-slide images, e.g., in
40X resolution, on off-the-shelf servers with less than 64 GB of
RAM. In section 3.3, we show how sensitive the normalization
algorithm under study can be to input images of poor quality,
e.g., containing artifacts, spots of ink, dirt etc. We continue the
section with depicting a method that detects such images and
normalizes them using an algorithm variant which is robust to

over the original normalization algorithm by employing machine learning; (e) we

show that our new normalization method increases the classification accuracy of

our ML pipeline when compared with the original normalization algorithm.
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FIGURE 1 | Exemplary ML-based pipeline: stain-normalized WSIs feed an ML engine for tumor detection.

such input. Next, in section 3.4, we present the CNN architecture
used to train models for detection of tumor in prostate biopsy
whole-slide images. We summarize and discuss the results of the
paper in sections 4 and 5, respectively. Finally, we conclude the
paper in section 6.

2. MATERIALS

2.1. Whole-Slide Image Datasets
In this work, we use four datasets that contain H&E-stained
whole-slide images, all including 10X and 40X resolutions. Two
datasets are publicly available and two are proprietary.

• The first dataset is part of TUPAC MICCAI 2016 (15) and
provides breastWSIs for prediction of tumor and proliferation
scores. These WSIs are in Aperio format, single-file pyramidal
tiled TIFF (.svs), with JPEG compression scheme.

• The second one is the CAMELYON16 dataset (16), which
is part of the ISBI challenge on cancer metastasis detection
in lymph node. These slides are in Philips format, single-
file pyramidal tiled TIFF or BigTIFF (.tif) with non-standard
metadata and JPEG compression scheme.

• The third dataset is proprietary. The slides are in Ventana
format, single-file pyramidal tiled BigTIFF with non-standard
metadata. It contains 96 needle-based biopsy images of
prostate cancer tissue. These images were digitized with the
Ventana scanner providing a resolution of 0.25 microns.

• The fourth dataset is also proprietary and contains whole-slide
images in Hamamatsu format, single-file TIFF-like format
(.ndpi) with proprietary metadata. This dataset consists of
radical prostatectomy tissue images taken from 30 patients.
These whole-slide images were generated with the Hamamatsu
scanner at a resolution of 0.23 microns.

We use all datasets to analyze the performance, i.e., the run-
time, speedup, and scalability, of our stain normalization system.
We show that our implementation not only accelerates the
normalization pre-processing, but it also supports different
whole-slide image formats. In particular, the .ndpi/Hamamatsu
format is not yet supported by standard open-source software for
large-scale image analysis, such as the OpenSlide library (17). We
included in our performance analysis the latter dataset to show
the flexibility of our normalization system to load and process
different image formats.

To evaluate the impact of stain normalization on the accuracy
ofML-basedmedical pipelines and to assess the robustness of our
enhanced normalization method to poor-quality images, we used

only one of the proprietary datasets. More specifically, we used
the prostate biopsy dataset, as it contains poor-quality images,
which is not the case for the publicly available datasets. Thus, we
can train and test a neural networkmodel using a reasonably large
number of such images. This dataset is the main focus regarding
the new robust method presented in section 3.3, because it
allowed us to identify shortcomings of the stain normalization
algorithm andmotivated us to design an enhanced normalization
method which is robust to poor-quality images.

The prostate biopsy dataset contains 96 WSIs with tumor
regions annotated by two pathologists. The annotations include
Gleason scores: non-tumor, 3+3, 3+4, 4+3, 4+4, and 4+5.
Modeling this problem as a multi-class classification is not
appropriate in our case for several reasons. The distribution
of samples across the Gleason scores is imbalanced. Although
there are ways to compensate for class imbalance, in this
particular case, some classes have so few examples that training
on them would not be meaningful. Moreover, at Gleason score
granularity, the class patterns overlap heavily, and it is hard to
discriminate between classes, e.g., 3+3 and 3+4 or 4+3 and 4+4.
Modeling the problem as a binary classification task mitigates
these issues and still provides a useful categorization between
healthy and tumorous samples. The regions with a Gleason score
higher than or equal to 3+3 are considered as tumor and the
remaining as non-tumor. Modeling this problem as a binary
classification task has also been widely used by the scientific
community (18, 19).

3. METHODS

3.1. Stain Normalization of Whole-Slide
Images
The stain normalization (SN) method presented in Macenko
et al. (7) belongs to the class of unsupervised normalization
methods. The algorithm first estimates the hematoxylin and
eosin (H&E) stain vectors of the WSI of interest by using a
singular value decomposition (SVD) approach applied to the
non-background pixels of the input image. Second, the algorithm
applies a correction to account for the intensity variations due
to the original strength of the stain, staining procedure etc.
Finally, the image is projected to a reference image such that
after stain normalization all normalized images have similar color
characteristics. The algorithm is based on the principle that
the color of each pixel (RGB channels) is a linear combination
of the two H&E stain vectors which are unknown and need
to be estimated. A reference MATLAB implementation of the
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Macenko algorithm is publicly available in (20). We outline
the algorithmic steps of the Macenko normalization method in
Algorithm 1. Most of the processing steps are applied to the RGB
color vectors converted to optical density (OD) domain. Each
RGB vector I with the color components normalized to [0,1] is
transformed as follows OD = −log10(I). This transformation
provides a space where a linear combination of stains results in
a linear combination of OD values.

Algorithm 1: The Macenko stain normalization algorithm.

1: Convert RGB to optical density (OD)
2: Remove pixels with negligible optical density
3: Apply SVD on the OD tuples and use the largest 2 values to

create the SVD plane
4: Project data onto the plane and normalize to unit length
5: Calculate the angle φ of each point with respect to the 1st (or

2nd) SVD direction
6: Find the robust extremes (αth and (100− α)th percentiles) of

the angle φ

7: Find the projection of the extreme values back to OD space
8: Use this projection as optical density matrix (ODM)
9: Calculate the individual stain concentrations (Ch and Ce)

using the inverse of ODM
10: Find the robust maximum ((100 − α)th percentiles) of the

individual stain concentrations Ch, Ce

11: Normalize and transform concentrations to OD space and
then back to RGB using an H&E template

In Figure 2 we show how stain normalization reduces the
stain variability across images within and across different
datasets. As a reference image, we have used the H&E vectors
and maximum concentration values reported as a template
in (20). We use the same reference image for the rest of the
paper. To generate these normalized images we have used an
optimized implementation of Algorithm 1, that we will describe
in detail in section 3.2. We show original and normalized
patches extracted from WSIs that belong to the two proprietary
datasets described in section 2 and generated by different
scanners A and B.

Previous state-of-the-art studies such as Ciompi et al. (21)
demonstrated that the classification accuracy of a machine
learning-based histopathology system is improved when using
stain-normalized images. Other machine learning-based systems
that use stain-normalized histopathology images have been
proposed in the past. Zerhouni et al. (4) introduce an ML
architecture for mitosis detection in breast histopathology
WSIs. The approach uses stain-normalized patches of the
original image in 40X resolution to train a Wide Residual
Network. Ciresan et al. (22) propose an ML-based pipeline
also for mitosis detection in breast histopathology images.
The study uses H&E-stained WSIs split into patches that
feed the training engine of an 11-layer CNN model. Litjens
et al. (19) describe an ML pipeline for the detection of prostate
cancer in H&E-stained whole-slide biopsy specimens. In general,
stain normalization helps significantly to reduce the variability

between whole-slide images, especially when they come from
different hospitals or laboratories. When the variability between
images is small, e.g., when they belong to the same dataset
from the same clinic, stain normalization may have small
impact on the ML pipeline, as was also shown in Lafarge
et al. (23).

In Figure 3, we show the prediction accuracy of an ML
pipeline with and without applying stain normalization to the
input images. For these experiments we have used images from
one of the proprietary datasets described in section 2 where the
images show variability. We train a convolutional neural network
(CNN) architecture with non-normalized images (SN: no) and
with normalized images (SN: fast_sn) and we plot the loss
(Figure 3A) and F1 score (Figure 3B) on a validation dataset at
different training epochs. We describe the CNN architecture in
detail in section 3.4. The results depicted in Figure 3 show that
after the same number of epochs, i.e., 430, training on stain-
normalized images leads to a 35% lower validation loss and to
an improvement in F1 score of 11 percentage points. We have
also evaluated the generalization strength of the two trained CNN
models on an unseen (test) dataset: normalizing the input whole-
slide images improves the F1 score by 5 percentage points, from
0.74 (without normalization) to 0.79 (with normalization).

3.2. Optimized Stain Normalization of
Whole-Slide Images (fast_sn)
An example of a reference MATLAB implementation of
Algorithm 1 is publicly available in (20). A direct porting of
this implementation to C++ suffers from memory and run-time
bottlenecks, especially when trying to process 40X images. For
example, the implementation fails to run on systems with 64
GB of RAM on 40X WSIs. Even when increasing the RAM
capacity, it suffers from long processing time (>16 min per
image on an 8-core Intel(R) Xeon(R) CPU E5-2630 v3) for 40X
images. The reason behind these issues is the lack of a system-
aware implementation that uses the multi-core processors and
the memory of the running system in an efficient way to allow
fast loading and processing of the WSIs. For the rest of the
paper, we will denote this C++ reference implementation by
reference. In this section we present the steps we have taken
to build an optimized stain normalization implementation that
addresses the drawbacks of the reference implementation.
We will refer to this optimizedMacenkomethod implementation
as fast_sn.

Before describing the run-time optimizations, we present
an algorithm enhancement that we have introduced in our
optimized stain normalization implementation (the processing
block A in Figure 4) in addition to what we have previously
presented in Stanisavljevic et al. (14). This first processing step
automatically calculates the threshold based on which the pixels
with low optical density are removed in Step 2 of Algorithm 1.
In the original Macenko method, these pixels are removed based
on an empirically-defined value which is common for all WSIs in
a dataset. However, due to the intra-dataset color and intensity
variability, a unique threshold is usually not recommended, as
for some images the algorithm might remove too few or too
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FIGURE 2 | Original patches (A–D) and their normalized versions (E–H) after applying our optimized stain normalization method fast_sn described in section 3.2.

FIGURE 3 | The impact of stain normalization on the accuracy of an ML pipeline. After 430 epochs, training on stain-normalized images leads to a 35% lower

validation loss (A) and an improvement in F1 score of 11 percentage points (B). The CNN architecture used for these experiments is described in section 3.4.

FIGURE 4 | Mapping the steps of Algorithm 1 to our optimized implementation fast_sn.

many pixels and the robust extremes from Steps 6 and 11 in
Algorithm 1 could be wrongly identified.

We propose to use an Otsu-based algorithm (24) to
automatically identify the correct threshold for each individual
image. To reduce the processing overhead, the block A in
Figure 4 reads the input image in a low resolution, e.g., 2.5X,
converts the pixels to gray-scale and applies Gaussian blur to
further separate the maximum of the image intensity histograms.
The optimal threshold is then extracted using Otsu thresholding.
Both the Gaussian blur and the Otsu thresholding functions are
integrated from the C/C++ opencv library.

Figure 5A shows an original image from one of the datasets
described in section 2. In Figure 5B we display its corresponding
image after applying Otsu thresholding. We further extract

the Otsu-detected thresholds for a set of images from the
same dataset and we plot them in Figure 5C. The background
threshold value is a number between 0 and 255. As we can
see in Figure 5C, even though the images belong to the same
dataset they can have very different thresholds for filtering the
pixels with low optical density. This parameter may therefore
significantly affect the output of the SN algorithm. Our proposed
automated detection step in Figure 4 ensures the determination
of an accurate parameter value for each image.

Next, we present a set of implementation optimizations
to decrease the run-time and memory footprint of the
Macenko algorithm. The processing blocks B, C, and D in
Figure 4 correspond to the optical density matrix (ODM (5))
calculation, the computation of stain concentrations and
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FIGURE 5 | (A) Original image. (B) Otsu thresholding. (C) Otsu-detected thresholds for a set of images.

their robust maximum values, and the pixel normalization
after transformation back to RGB space, respectively. Our
implementation follows the steps shown in Algorithm 1. Due to
multiple optimizations, we reorganize the steps of the original
Macenko algorithm as shown in Figure 4.

(a) After image loading, only the RGB pixel values are stored
in CPUmemory. Since stain normalization is typically performed
in the optical density (OD) domain, the conversion from RGB to
OD in the various processing blocks B, C, and D is performed
on the non-background pixels only. A look-up table method is
used for the conversion from RGB to OD space instead of the log
function in order to speed up the logarithmic computation.

(b) In block B, the covariance matrix in Step 3 of Algorithm 1
is calculated using the property that the element (i, j) of the
matrix,Σij =

1
N2 (

∑
p xp,ixp,j−

∑
p xp,i

∑
p xp,j), requires only the

sums of OD components.
(c) In blocks B and C, which are benchmarked as the

most time-consuming steps, we use partial sorting to find the
percentiles from Steps 6 and 10 in Algorithm 1. This partial
sorting runs 3-4x faster compared to full sorting for our data.

(d) For the exponential function in processing block D,
we use the fast exponentiation library (25) since it performs
5-10x faster compared to the corresponding function in the
standard C library.

(e) Since processing blocks B-D perform many independent
operations on individual pixels, their execution is parallelized
across all available CPU threads using the OpenMP library (26).

(f) Given that processing blocks B and C are the most
time-consuming due to the inherent difficulty of parallelizing
the sorting operations, we propose a further optimization that
is based on a Monte Carlo sampling technique (27). In
this method, a sample of non-background pixels is randomly
chosen from the set of all non-background pixels in order
to estimate the required robust extremes from Steps 6 and
10. Even though there are different methods for estimating
the population percentiles (28), an analytical estimation of the
required sample size is difficult (29). Therefore, we derive the
optimal sample size based on empirical experimental results.
A good sampling rate that we use in this paper is 1%. This
rate was found by computing the Euclidean distance of the OD
matrix and the relative error of the robust maximum of the
individual stain concentrations (max Ch and max Ce) between

the sampling (with different sampling rates) and no-sampling
results (14).

3.3. Normalization Method Robust to
Poor-Quality WSIs (fast_rsn and
fast_rsn_all)
In the previous section, we have shown how to deal with the
run-time and memory performance challenges of the Macenko
algorithm. In this section we address yet another challenge
of this normalization method. We show that the Macenko
algorithm may fail to estimate the correct H&E vectors when
the quality of the input image is poor, e.g., the image contains
artifacts and/or impurities, such as staining spots, dirt, etc. In
such cases, the estimated H&E vectors may not be accurate
and may be biased toward a specific color (e.g., blue or pink).
Such normalization results may adversely impact the accuracy
of a machine learning pipeline that uses as input normalized
whole-slide images. We demonstrate examples of such cases
in section 4.

Figures 6A,D show two examples of poor-quality whole-
slide images that contain artifacts. Those images were found
in one of the proprietary datasets described in section 2.
Figures 6B,E depict selected patches from their corresponding
normalized images. We can see that these normalized patches
are not projected to a common color space as expected. These
results show that the Macenko algorithm does not work in
the presence of artifacts in the input image. This is due to
the algorithm taking artifact pixels into account while calculating
the H&E vectors.

A conventional method to identify the presence of artifacts in
an image is to divide it into patches, and then analyze each patch
in order to detect the presence of artifacts, e.g., by examining
the color, intensity, or other features of the image. For example,
Vahadane et al. (30) describe a method of dividing the image into
patches which are then filtered based on a luminosity threshold
for background. Only the remaining patches are used for the
estimation of the stain vectors. Such a method however increases
the complexity and latency of medical pipelines. We propose a
less complex method to detect the cases of problematic H&E
estimation for input images. For the rest of the paper, we will refer
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FIGURE 6 | First column (A,D) shows two original images from a prostate biopsy dataset. The second column (B,E) shows patches extracted from the original

images, normalized using fast_sn. The third column (C,F) shows the same patches but normalized using fast_rsn.

FIGURE 7 | Method to detect and handle problematic H&E estimation (fast_rsn).

to this method as fast_rsn. Figure 7 gives an overview of our
proposed method.

For each image in a given dataset, we apply the optimized
normalization engine fast_sn to estimate the H&E vectors
and the robust maximum (99th percentile) of the pixel stain
concentrations Ch and Ce. We run fast_sn without the last
normalization step, as we only need the estimated H&E vectors
and maximum Ch and Ce concentrations. Next, we assess the
quality of these values, assuming that poor-quality images have
values that deviate from those estimated from good-quality
images. By removing images that are assessed to be of poor
quality we create a subset of good-quality images. If the image is
detected as poor-quality, then the method replaces its estimated
parameters with average estimates of the subset of the good-
quality images in the same dataset. The image is then normalized
using Step 11 in Algorithm 1. Two main components of this
proposed method are: (1) detecting the poor-quality images
(there is no a-priori knowledge about which images have artifacts
and which not), and (2) finding a representative set of H&E and

maximum Ch and Ce values. Figure 8 illustrates how the two
components work in this paper.

For all images in the dataset, we run the optimized
stain normalization engine fast_sn and we extract the
estimated H&E components of the three RGB channels
(Figures 8A–C,E–G). In addition, we extract the estimated
maximum Ch and Ce stain concentration values (Figures 8D,H).
We define acceptable ranges for the values of each H&E channel
and maximum Ch and Ce. Figure 8A shows an example of such
a range defined by a lower bound and an upper bound. A value
that falls outside its respective range is considered an outlier and
any image that has at least one outlier value is considered of poor
quality. Otherwise, the image is a good-quality WSI. Once we
identify the poor-quality WSIs, we normalize them by using a
representative set of H&E vector values and maximum Ch and Ce

stain concentration values. This representative set is derived from
the values of the good-quality images from the same dataset, by
taking the mean of HR, HG, HB, ER, EG, EB, maximum Ch and
maximum Ce, respectively.
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FIGURE 8 | H&E vector components (A–C,E–G) and maximum Ch and Ce values (D,H) for a prostate biopsy WSI dataset.

Figures 6C,F show the patches in Figures 6B,E but
normalized using the new fast_rsn method. We can already
visually notice that fast_rsn projects the images to a more
common color space than fast_sn. Moreover, the original
images containing the red and blue artifacts (Figures 6A,D)
are correctly identified by our new normalization method as
poor-quality images as they show up as outliers in Figure 8. For
example, Figures 6A,D correspond to the red and blue outliers
marked in Figures 8F,H, respectively.

Another variant of the robust normalization method depicted
above is the following. Similarly to the fast_rsn method,
we first detect the good-quality images and compute the
representative set of the H&E and maximum Ch and Ce stain
concentration parameters, as described above. Then, instead
of replacing the values of the critical parameters only for
the outliers (the poor-quality images), we replace them for
all images. This method can further reduce the runtime of
the stain normalization algorithm and could help in using a
more uniform set of stain vectors for normalization across
WSIs from the same dataset. We denote this second method
by fast_rsn_all.

In our methods we use a set of H&E vectors and
maximum Ch and Ce values that are representative of the
dataset that contains the identified poor-quality image. This
is different from other methods that use color deconvolution
with fixed H&E vectors. For example, the main differences
when compared to Ruifrok et al. (5) are: (1) our method
does not use an arbitrary set of fixed H&E vectors but a
set of representative vectors that have been estimated and
updated for each dataset and, thus, they are characteristic
of the dataset and not agnostic to it, and (2) the set of
representative vectors is coming from the same dataset as the
input image.

3.4. CNN Architecture for Tumor
Classification in Whole-Slide Images
To show the benefits of the new stain normalization
method described in section 3.3 (fast_rsn) over the stain
normalization baseline (fast_sn), we employ a convolutional
neural network (CNN) model. We first train a CNN model to
detect prostate cancer using images normalized with fast_sn.
All images are normalized using their own estimated H&E
vectors and maximum Ch and Ce values. We train from scratch
the CNN model using images normalized using fast_rsn.
Namely, the outliers, i.e., poor-quality images, are normalized
using the average of the H&E vectors and maximum Ch and
Ce values of the good-quality images. We then compare which
model generalizes better on an unseen (test) dataset.

3.4.1. Pre-processing
The size of a WSI at any given resolution level can be too
large to process at once. Therefore, we process the WSIs for
the tumor detection task in a patch-wise manner. We choose
to extract patches from resolution 10X, because 10X contains
biological information, such as shape and structure of glands, and
arrangement of cells around glands, which are important features
for tumor detection. First, we fully normalize the 10X images.We
use 70% of the images for training, 15% for validation and 15% for
testing. Each patient’s biopsies are in a single WSI and this WSI
is assigned to exactly one of the train/validation/test partitions to
make the testing scenario as realistic as possible (we do not assess
the accuracy of our CNN model on data used for training). After
normalization, we split the 10X images into patches. The average
tumor content in aWSI of our dataset is 5%, thus in order to deal
with such a class imbalance, we start extracting patches from the
full 10X image using a stride of 512 and reduce it to a stride of 10
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when we identify a patch with tumor tissue. The stride is restored
to 512 when a patch without tumor region is identified. These
stride values ensured a good tumor/non-tumor class balance for
our dataset.

3.4.2. CNN Architecture
As an ML model for tumor classification, we use a VGG-inspired
CNN architecture that is shown in Figure 9. The model input
represents patches extracted as described previously and the
output is the predicted label of the input patch, e.g., tumor or
non-tumor. The model does not include fully connected layers
in order to ensure that the network requires fewer parameters to
tune and less GPU memory. All the CNN convolutions have a
kernel size of 3 × 3, a stride of 1 × 1 and a ReLU nonlinearity
except for the last one. All max pooling layers have a filter size
of 2 × 2 and a stride of 2 × 2. For the initialization of weights
we used the He normal initializer (31), namely the weights are
random but differ in range depending on the size of the previous
layer of neurons.

3.4.3. Training and Evaluation
To train the CNN model, we use an SGD optimizer with
momentum for optimizing the cross entropy classification loss, a
learning rate of 0.0001 and a batch size of 16. After each iteration
we save the model weights if the model shows an improvement
of the F1 score on the validation dataset. To evaluate the model
performance on an unseen test dataset, we use the F1 score and
the cross entropy loss.

4. RESULTS

We start this section by showing the run-time measurements of
our optimized stain normalization algorithm fast_sn for 10X

and 40X whole-slide images from the four datasets described in
section 2. For 10X images we also show the speedup of fast_sn
when compared with a C++Macenko algorithm implementation
based on the MATLAB code available in (20). The latter uses
the OpenSlide library (17) for reading the input images. All run-
time measurements were collected on a single node with a 10-
core Intel R© i7-6950X CPU at 3 GHz and 96 GB of RAM. We
conclude this section with presenting the CNN accuracy results
of fast_sn vs. fast_rsn. For the latter experiments, we used
an 8-core Intel(R) Xeon(R) CPUE5-2630 v3, with 64 GB of RAM,
and 2 NVIDIA R© GTX 1080 TI GPUs.

4.1. Optimized Stain Normalization
fast_sn: Performance Results
Figure 10A presents the measurements of the WSI processing
time using the optimized stain normalization implementation
described in section 3.2. The figure shows the total processing
time, including the time to read the images, as a function of
the image size in double-logarithmic scale. The different colors
correspond to images in 10X and 40X resolutions, while the
different markers correspond to the different datasets/scanners.
The total number of images used for these experiments was 175.

Figure 10B shows the corresponding processing time only
as a function of the number of non-background pixels. We
construct a linear regression model where the target variable is
t_proc and the dependency between this target variable and
the number of non-background nbg pixels can be expressed as
t_proc(nbg) = 6.43 · 10−9 · nbg + 3.25. This linear model
has a multiple R-squared metric of 0.7522 which indicates that
our implementation scales almost linearly with the number of
non-background pixels.

FIGURE 9 | CNN architecture overview. A convolution layer with 16 3 × 3 filters, and a stride of 1 × 1 is denoted by n16s1. The same, followed by a batch

normalization layer (yellow) and a ReLU non-linearity (green) is denoted by n16_bn_relu. The learning rate used for training is 0.0001, the optimizer is SGD with

momentum 0.9 and the batch size is set to 16.

FIGURE 10 | The performance of fast_sn on WSIs from different datasets and resolution factors. (A) Read and processing time as a function of the image size. (B)

Processing time only as a function of non-background pixels.
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TABLE 1 | reference vs. fast_sn: processing time (in seconds) and

fast_sn speedup.

Dataset Proc. time (reference) Proc. time (fast_sn) Proc. speedup

A 52.4 s 2.5 s 20.7

B 157.4 s 2.7 s 58.1

C 78.3 s 1.5 s 51.8

D 61.7 s 1.4 s 41.8

4.2. Optimized Stain Normalization fast_sn

vs. reference: Performance Results
Table 1 reports, for each dataset, the average processing time
across all 10X images using fast_sn vs. the average processing
time of the reference C++ implementation based on the
MATLAB code in (20). As shown in the table, our fast_sn
achieves a speedup factor of at least 40 for 10X images, except for
the dataset generated with scanner A, where our implementation
achieves a speedup of 20. The images in this dataset have a very
small percentage of non-background pixels (<5%) which makes
the achieved speedup gain less pronounced.

Table 2 reports for each dataset the average processing
and read time across all 10X images using fast_sn vs.
reference. As shown in the table, fast_sn achieves a
speedup factor of at least 9 for 10X images. This speedup can
be further improved by replacing the OpenSlide library used
for image loading/storing with an optimized libtiff library.
The description of the latter is out of the scope of this paper.
The reference implementation could not run for the 40X
resolution due to out-of-memory issues, thus we cannot report
speedups for 40X images.

4.3. Machine Learning Pipeline Accuracy
Results: fast_sn vs. fast_rsn
Figure 11 shows the impact of normalizing the full whole-slide
images with the two normalization variants of fast_rsn on the
prediction accuracy of the CNN model described in section 3.4,
where the input dataset includes images that contain artifacts.
We train a convolutional neural network (CNN) architecture
with fast_sn-normalized images (SN: fast_sn), with
fast_rsn-normalized images (SN: fast_rsn), and with
fast_rsn_all-normalized images (SN: fast_rsn_all).
We plot the loss (Figure 11A) and F1 score (Figure 11B) on a
validation dataset at different training epochs.

The results in Figure 11 show that after the same number of
epochs, i.e., 500, training using our new normalization methods
described in section 3.3 leads to an improvement in validation
loss of up to 30% and in F1 score of up to 5 percentage
points. We have also quantified the generalization strength of
the CNN models on an unseen (test) dataset. Normalizing the
input whole-slide images with fast_rsn improves the F1 score
by 5 percentage points (from 0.79 to 0.84). We get similar
results when normalizing the input whole-slide images with
fast_rsn_all, in which case the F1 score improves by 8
percentage points (from 0.79 to 0.87). Both our normalization

TABLE 2 | reference vs. fast_sn : processing and read time (in seconds) and

fast_sn speedup.

Dataset Proc.+Read

time (reference)

Proc. + Read

time (fast_sn)

Proc. + Read

speedup

A 68.1 s 7.3 s 9.3

B 202.2 s 15.1 s 13.3

C 108.1 s 6.7 s 15.9

D 82.31 s 6.1 s 13.4

methods exhibit a better generalization than fast_sn when
tested on an unseen dataset.

5. DISCUSSION

In this paper we address two aspects related to the stain
normalization pre-processing that is part of modern ML-based
pipelines in histopathology.

• Stain normalization can significantly impact the latency of
such pipelines especially when dealing with large-size and
high-resolution whole-slide images. In this work we have
presented a high-performance architecture that enables large-
scale processing of high-resolution images.

• Poor-quality images can decrease the decision accuracy
of the ML pipelines. We have shown that the stain
normalization output can be seriously affected when the input
image contains artifacts. We have demonstrated such cases
based on a real dataset and proposed an enhanced robust
normalization method.

5.1. High-Performance Stain Normalization
System
Our algorithmic enhancements and system-level optimizations
can be applied to other pre-processing algorithms that involve,
e.g., automatic detection of background pixels, arithmetic
operations such as exponentiation or logarithm, conversions
from RGB to optical density domain, pixel sorting and extraction
of percentiles, or singular-value decomposition.

Pixel sampling is also a generic optimization that, for example,
in the stain normalization algorithm presented in Bejnordi
et al. (10) is used indirectly through image tile sampling. Only
the pixels in the sampled tiles are used for pixel classification.
When using pixel sampling, it is important to define metrics that
quantify the impact of using only a part of the available pixels
on the quality of the normalization. In our work, we used the
Euclidean distance of the H&E vectors and the relative error of
the robust maximum of the individual stain concentrations (max
Ch and max Ce) between the sampling (with different sampling
rates) and no-sampling results (14).

Performance-wise, we show that our implementation scales
with the amount of tissue present in the image and it processes
a 40X whole-slide image in <50 s. This result is comparable
with the 60 s scanning time of ultra-fast WSI scanners
for 40X images (32). Our high-performance pre-processing
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FIGURE 11 | The impact of fast_rsn and fast_rsn_all on the prediction accuracy of an ML pipeline. (A) Impact on cross-entropy loss. (B) Impact on F1 score.

system is a first step toward making the stain normalization
step suitable for a seamless integration with image scanning
in histopathology.

5.2. Robust Stain Normalization and
Machine Learning
Our proposed method to handle poor-quality images may be
applied to other stain normalization algorithms as well. In the
case of the stain normalization algorithm under study, the critical
parameters that define the normalization quality are the H&E
vectors and the robust maximum concentrations of the two
stains. In the case of poor-quality images, these parameters are
replaced with the average parameter values of the good-quality
images from the same dataset. As shown in section 4, such a
method can significantly increase the accuracy of ML pipelines.
Other color-based normalization algorithms may have similar or
other critical parameters. For instance, the Vahadane et al. (30)
method also needs to estimate the stain vectors, but it uses a
different method based on a dictionary learning-based approach,
instead of performing singular-value decomposition.

5.3. Other Stain Normalization Methods
Many stain normalization algorithms have been proposed over
the past years (5–12). In this paper, we have used the Macenko
algorithm (7) for multiple reasons. (1) From a normalization
quality perspective, it is one of the best performing algorithms
as shown by the in-depth study presented in Zanjani et al. (13).
(2) From a system performance perspective, it can be efficiently
optimized and parallelized. Building a high-performance and
scalable stain-normalization engine is important for the future
computer-aided diagnosis systems in histopathology.

Another method that can be used together with stain
normalization to improve the variability between the input
images and thus increase the accuracy of machine learning
pipelines is color augmentation (33). Color augmentation
involves various image processing techniques, e.g., random
brightness and contrast image perturbations, random shift in hue
and saturation, random perturbations in the stain vectors, which
are typically manually tuned via visual examination. Lafarge
et al. (23) show that color augmentation can improve the ML

pipeline accuracy when used alone or in combination with
the stain normalization algorithm in Macenko et al. (7). Tellez
et al. (34) show that the stain normalization algorithm presented
in Bejnordi et al. (10) combined with color augmentation is not
necessarily better than color augmentation alone. In this paper,
we have focused on optimizing and enhancing the robustness of
the stain normalization algorithm.

6. CONCLUSIONS

We presented a high-performance and scalable system that
enables large-scale stain normalization of high-resolution
histological whole-slide images. Our pipeline uses a highly-
optimized low-level multi-core engine that tackles the
memory and runtime bottlenecks of the stain normalization
computational load. Moreover, it can be used with different
whole-slide image formats, generated by scanners such as
Ventana, Aperio, Philips, or Hamamatsu, and it can be easily
extended to other whole-slide image formats. Such a system
enables the pre-processing of large datasets, which is a critical
pre-requisite for any machine learning framework applied to
biomedical images.

We also proposed a stain normalization enhancement that
improves the accuracy of machine learning pipelines in the
presence of poor-quality whole-slide images. To illustrate the
robustness of our new normalization method to such images, we
employed a machine learning pipeline based on convolutional
neural networks that classifies images for detection of prostate
cancer. On this exemplary pipeline, our enhanced normalization
method increases the F1 score on a test dataset from 0.79 to 0.87.
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