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A High-Precision Time Skew Estimation and

Correction Technique for Time-Interleaved ADCs

Armia Salib, Student Member, IEEE, Mark F. Flanagan, Senior Member, IEEE, and Barry Cardiff, Member, IEEE

Abstract—This paper presents an all-digital background cali-
bration technique for the time skew mismatch in time-interleaved
ADCs (TIADCs). The technique jointly estimates all of the time
skew values by processing the outputs of a bank of correlators.
A low-complexity sampling sequence intervention technique,
suitable for successive approximation register (SAR) ADC archi-
tectures, is proposed to overcome the limitations associated with
blind estimation. A two-stage digital correction mechanism based
on the Taylor series is proposed to satisfy the target high precision
correction. A quantitative study is performed regarding the
requirements imposed on the digital correction circuit in order
to satisfy the target performance and yield, and a corresponding
filter design method is proposed which is tailored to meet these
requirements. Mitchell’s logarithmic multiplier is adopted for
implementation of the principal multipliers in both the estimation
and correction mechanisms, leading to a 25% area and power
reduction in the estimation circuit. The proposed calibration
is synthesized using a TSMC 28nm HPL process targeting a
2.4GHz sampling frequency for an 8 sub-ADC system. The
calibration block occupies 0.03mm2 and consumes 11mW. The
algorithm maintains the SNDR above 65dB for a sinusoidal input
within the target bandwidth.

Index Terms—Time skew, TIADC, background, digital cali-
bration, blind estimation, sampling sequence intervention, coarse
correction.

I. INTRODUCTION

T
HE analogue to digital converter (ADC) is an essential

component in any modern communication system, which

is used to link the analogue world to the digital domain.

The high demand for throughput in these systems adds more

challenges to the ADC design in terms of its sampling rate and

resolution. One of the design tools used to accommodate these

challenges is to employ a time-interleaved ADC (TIADC)

architecture. However, the performance of a TIADC system

is usually limited by the mismatches which exist among the

sub-ADCs. This creates the need to compensate the effect of

these mismatches through calibration.

The main sources of the mismatches include offset, gain,

time skew and bandwidth, which occur due to process, voltage

and temperature variations [1]. In this work we focus on

background digital calibration for time skew mismatch under
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the assumption that the input samples to this calibration

process are free from other sources of mismatch.

Estimating the time skew via sensing the cross-correlation

between the sub-ADCs output is introduced in [2] targeting

a TIADC system with two sub-ADCs. Since then, many

algorithms have been proposed to extend this idea to a larger

number of sub-ADCs, e.g., [1], [3]–[8]. In [3], [4], [6], the

number of sub-ADCs is required to be a power of 2, and

the calibration process is done over a number of stages,

where the selected reference ADC(s) are changed during

those stages. In all stages except the final one, the cross-

correlation is measured between non-consecutive sub-ADCs,

and the proportionality constant linking to the time skew

can be either positive or negative depending on the input

signal characteristics, i.e., the adaptation direction cannot be

identified directly, which adds a burden on the estimation

algorithm to determine it.

The time skew mismatch can be corrected in digital domain

where finite impulse response (FIR) filters are usually used, as

they can have a linear phase response. The filter coefficients

can be time skew dependent, for example knowing the time

skew values, the filter coefficients are obtained using Neville’s

algorithm in [9], or using the coefficients of an all pass

filter with a fractional delay in [2], also, an adaptive filter

system is used in [10] to obtain those coefficients. Since

both the coefficients and the input are changing during run

time for these approaches, the implementation of the filter

multipliers is inefficient, which affects both area utilization

and power consumption; also, obtaining these coefficients adds

extra overhead to the circuit.

Differentiator FIR filters with constant coefficients are sug-

gested in [5], [8], [11], [12] to guarantee the efficiency of the

filter implementation, where these approaches are based on

the Taylor series. However, using the Taylor series requires

the filter input to be uniformly sampled, which is not satisfied

in the existence of time skew; this degrades the system

performance especially at large input frequencies, as will be

described later in Subsection V-A.

The time skew calibration can be either [8] feed-forward

(open-loop) with digital correction, e.g., [5], [7], [8], or feed-

backward (closed-loop), e.g., [1], [2], [4], [9], [10], [13]–

[16]. In the former, the estimation mechanism uses uncal-

ibrated samples, which allows to avoid the possibility of

system instability in the feed-backward approaches; however,

it requires high-precision calculations including divisions and

multiplications. Also, the estimated values are inaccurate in

the existence of large time skew values due to ignoring the



second and higher order effects of the time skew mismatch.

The feed-forward algorithms can offer fast estimation for

simple sinusoidal input signals; however, their convergence

speed can be comparable with other feed-backward calibration

algorithms when a practical band-limited random input is used,

where the randomness of the input decreases the precision of

the estimates as we illustrate in Section VIII.

In feed-backward calibration, the time skew estimation

mechanism is fed by the calibrated samples, and the estimates

are updated via measuring the uncompensated time skews

residues. Unlike feed-forward calibration, feed-backward cal-

ibration is not sensitive to the second and higher order effects

of the time skew, since the residues diminish on convergence;

this allows introducing further approximation to the estimation

mechanism without affecting the overall performance. An

example for an approximation in feed-backward calibration

is to replace each multiplier in the cross-correlation based

estimation by a mean-absolute difference [4].

In this paper, we propose an high precision blind calibration

algorithm for time skew mismatch in TIADCs consisting

of all digital estimation and correction blocks arranged in

a closed-loop architecture. The estimation block performs

joint estimation of all of the time skew values using the

measured cross-correlations between the outputs of adjacent

sub-ADCs. In contrast to other methods, our scheme explicitly

estimates the slope of the autocorrelation function, facilitating

fast convergence and making the feed-backward mechanism

less susceptible to stability issues. Additionally, we outline

some of the problems associated with blind estimation in

general and propose a novel sampling sequence intervention

method, suitable for SAR ADCs, that mitigates many of

these problems. The proposed correction block is a two stage

Taylor series approach composed of a low-complexity coarse

correction followed by a fine correction stage. We develop a

statistical approach to analyze the various error terms in the

correction mechanism, and these are then used to constrain

the parameters of the design in order to achieve the desired

bandwidth and manufacturing yield whilst ensuring that any

resulting distortions are below the quantization noise level.

Incorporated into this methodology is a fixed point filter design

approach that ensures the constraints are met. Simplified

hardware implementations for the principal multipliers in both

the estimation and correction sides are also presented.

This paper is organized as follows. Section II provides an

overview of the proposed calibration algorithm. Section III de-

scribes in detail the blind time skew estimation mechanism. A

sampling intervention mechanism is proposed in Section IV to

relax the limitations associated with blind estimation. Section

V highlights the proposed digital correction technique, and

Section VI quantifies the constraints on the filters used in the

digital correction to satisfy the target yield and performance.

In Section VII, simplified hardware implementations for the

main multipliers used in both the correction and estimation

parts are proposed. Simulation results are presented in Section

VIII, accompanied by area utilization and power consumption

results for the hardware implementation. Finally, conclusions
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Fig. 1: Block diagram of the proposed time skew calibration.

are drawn in Section IX.

II. TIME SKEW CALIBRATION

Figure 1 shows a block diagram for the proposed time

skew calibration algorithm for a TIADC system that has an

aggregated sampling rate fs, and consists of M slower sub-

ADCs each with sampling rate fs/M .

Let x(t) be the analogue input to the TIADC system, which

is sampled every Ts , 1/fs [sec], and y
(m)
n denote the nth

output of the mth sub-ADC (m = 0, 1, ...,M − 1). Assuming

that the system suffers only from time skew, we have

y[nM +m] , y(m)
n , x

(
(nM +m+ τm)Ts

)
, (1)

where τm is the time skew associated with the mth sub-ADC

normalized to Ts, and y[.] is the aggregated discrete-time ADC

output. Each time skew τm can be modeled using a Gaussian

distribution with mean zero and standard deviation στ based

on the manufacturing process.

The ADC output y
(m)
n is processed by the ‘Time skew

digital correction’ block depicted in Figure 1 to compensate

the estimated time skew mismatch, which is denoted by τ̃m
for the mth sub-ADC. Assuming an ideal application of the

estimates τ̃m, the correction block output can be written as

x̃[nM +m] , x̃(m)
n , x

(
(nM +m+∆m)Ts

)
, (2)

where

∆m , τm − r − τ̃m (3)

is the time skew residue for the mth sub-ADC, and r is a timing

reference. The timing reference r is imposed by the calibration

mechanism. Its value can be selected arbitrarily; however, as

described in Subsection III-C, a constraint is placed on its

selection in order to relax the requirements on the correction

mechanism.



The corrected samples x̃
(m)
n are processed by the ‘Time

skew residue estimation’ block to produce ∆̃m, an estimate of

∆m. Using ∆̃m, we update the estimated time skew via

τ̃m ← [ τ̃m + µ∆̃m, 0 ≤ m < M, (4)

where all τ̃m are initialized to zero at the start of the cal-

ibration, and µ is the least-mean-squares (LMS) adaptation

step size which is chosen to be less than 1 to avoid system

instability.

The estimated time skew values τ̃m are fed back to the

‘Time skew digital correction’ block forming a closed-loop.

Upon convergence, all ∆m become small, and the τ̃m become

close to the values τ̇m, which, using (3), are given by

τ̇m , τ̃m|∆m=0
= τm − r. (5)

While the exposition throughout this paper is general, we

consider a particular TIADC system for illustration purposes

in our discussions. This TIADC system consists of M = 8
SAR sub-ADCs with N = 12-bit resolution. The target

ADC bandwidth is β = 88% of the Nyquist frequency. The

system suffers from time skew mismatch having a Gaussian

distribution with standard deviation στ = 0.01. The target

yield is η = 98%, i.e., all performance constraints are required

to be satisfied for at least η of the fabricated ADCs.

III. TIME SKEW ESTIMATION

For ease of notation, we define x̃
(M)
n , x̃

(0)
n+1 and

∆M , ∆0. We define the autocorrelation function of x(t)
as Rxx(τ) = E (x(t)x(t− τ)), where E(X) is the expectation

of X . We compute M estimates of Rxx(τ) in the vicinity of

τ = Ts, each denoted by cm, as follows

cm,
1

L

L−1∑

n=0

x̃(m+1)
n x̃(m)

n , ∀0 ≤ m ≤M − 1, (6)

=
1

L

L−1∑

n=0

x
(
(nM+m+1+∆m+1)Ts

)
x
(
(nM+m+∆m)Ts

)
,

(7)

where L is selected to be a large integer, and we have used (2)

to formulate (7). Comparing (7) to the definition of Rxx(τ),
we can approximate cm to

cm ≈ Rxx ((1 + ∆m+1 −∆m)Ts) , 0 ≤ m < M. (8)

This approximation is due to the discrete and finite nature

of the summation. It is assumed for this work that the input

signal, x(t), is such that the approximation holds. This is

the case for overwhelmingly many input signals; however, as

outlined in Section IV, there are some exceptions.

Using the Taylor series expansion for the right-hand side of

(8) around Ts, a first-order approximation for cm is given by

cm ≈ Rxx(Ts) + Ts

dRxx(Ts)

dτ
(∆m+1 −∆m), (9)

where
dRxx(Ts)

dτ is the derivative of the autocorrelation function

evaluated at τ = Ts. Using (9), the differences between

adjacent cm are given by

em , cm − cm−1 (10)

≈ −Ts

dRxx(Ts)

dτ
(−∆m−1 + 2∆m −∆m+1) (11)

where c−1 , cM−1 and ∆−1 , ∆M−1.

Here, we can notice that em does not depend only on ∆m,

but also on ∆m−1 and ∆m+1; therefore, we should not attempt

to use em to adapt ∆m directly. A similar observation was

made independently in [8], [16] and [1].

Writing (11) in matrix form, we obtain

e ≈ −Ts

dRxx(Ts)

dτ
U∆, (12)

where e , {em} and ∆ , {∆m} are M×1 vectors, and U

is an M×M circulant matrix given by

U =










2 −1 0 . . . 0 0 −1
−1 2 −1 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . −1 2 −1
−1 0 0 . . . 0 −1 2










M×M

. (13)

Given the observation vector e, we seek ∆ satisfying (12),

we elaborate on the process used to achieve this target in the

following subsections.

A. Estimation of the derivative of the autocorrelation function

Many calibration algorithms (e.g., those proposed in [4],

[15]) ignore the estimation of the term
dRxx(Ts)

dτ , assuming

only that this term is always negative, which is correct for

a band-limited input; hence, this term does not affect the

adaptation direction of the estimation process. However, it

makes the convergence speed dependent on the input signal.

Also, its estimation is required to guarantee the stability of the

calibration mechanism [8] given that µ in (4) is less than 1.

This term can be written as [1]

Ts

dRxx(Ts)

dτ
= −Ts E (x(t)x' ((t− Ts)) , (14)

where x'(.) is the first order time derivative of the input.

For the applications that do not use digital correction, an

approximated value for x'(t − Ts) can be simply calculated

using a subtractor as in [1]. However, the signal derivative

is calculated with high precision for time skew correction

as illustrated in Section V, which enables us to estimate

Ts
dRxx(Ts)

dτ via

Ts

dRxx(Ts)

dτ
≈ −

⌈

1

L

L−1∑

n=0

x̃[nM + 1] y'[nM ]

⌉

2

, (15)

where y'[.] is the output of the first order differentiator filter in

the correction mechanism (depicted in Figure 5). Here, ⌈X⌉2
denotes the smallest power of two greater than or equal to X;

this approximation replaces the division needed to evaluate ∆

by a simple bit-shift operation. Note that this simplification is

feasible since a feed-backward calibration is used.
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Fig. 2: Block diagram of the proposed time skew estimation.

B. Overall solution

Using (12), we obtain a solution for ∆̃, an estimate of ∆,

according to

∆̃ ≈ −
(

Ts

dRxx(Ts)

dτ

)−1

U
†
e, (16)

where U
† is the precomputed pseudo inverse of U that can be

obtained using the computations in Appendix A. This estimate

is then used to adapt each τ̃m using (4).

Figure 2 shows a block diagram of the proposed time skew

estimation. It consists of M + 1 correlators; the first M of

these are used to compute e using (6) and (10), and the M th

correlator is used in estimating Ts
dRxx(Ts)

dτ according to (15).

All e are processed jointly to estimate the time skew residues

∆̃ via (16).

C. Timing reference

In Appendix A, we showed that the computed ∆̃ via (16)

has a zero mean, i.e.,

M−1∑

m=0

∆̃m = 0. (17)

This fact, when considered in the context of the update

equation (4), allows us to further conclude that the sum of

the τ̃m remains constant throughout the adaptation process. In

particular, since all τ̃m are initialized to zero, it always holds

during the adaptation process that

M−1∑

m=0

τ̃m = 0. (18)

Summing (3) for all m ∈ {0, . . . ,M−1} while replacing ∆m

with its estimate ∆̃m and using (17) and (18), we find that the

pseudo inverse procedure indirectly implies the constraint

r =
1

M

M−1∑

i=0

τi = τ̄ . (19)

Thus by (5), we have

τ̇m|r=τ̄ =
M − 1

M
τm −

1

M

M−1∑

i=0
i 6=m

τi, (20)

which has mean zero, and its variance can be expressed as

σ2
τ̇

∣
∣
r=τ̄

=
(

1− 1

M

)

σ2
τ . (21)

Many estimation algorithms, e.g., [2]–[4], [11], [14], [15],

[17]–[20], choose the first sub-ADC as a timing reference, i.e.,

r = τ0, which, recalling (5), results in the following variance

σ2
τ̇

∣
∣
r=τ0

= 2σ2
τ . (22)

Compared to this work, these approaches require a larger

dynamic range for the time skew correction circuits, and

impact adversely the digital correction accuracy due to the

reduction in the reliability of the used approximations for large

time skew values.

IV. SAMPLING SEQUENCE INTERVENTION

In blind estimation techniques, it is generally assumed that

the input signal is wide sense stationary, and the statistical

characteristics for each sub-ADC output are the same in the

absence of mismatches. This assumption is used in many

algorithms available in the literature, e.g., [2]–[5], [8], [14]–

[16], which is valid for a wide range of input signals; however,

it is inaccurate for a number of ‘pathological’ input types, here,

we list two [1]:

1) An input signal containing multiple frequency compo-

nents, some of which appear in the frequency locations

of the spurs of any of the input components. In this case,

the blind estimator cannot differentiate between the input

signal and the spurs generated by the time skew, and the

statistical characteristics for each sub-ADC output are

different even in the absence of any mismatches. Note

that this situation can occur for any arbitrary frequency.

2) A special case for the previously discussed pathological

input type can occur when the input signal contains one

or more components at any of the frequencies k fs

2M for

k ∈ {0, ...,M−1}, where the spurs of those components

coincide with themselves. In [2] and [14], a notch filter

before the estimation mechanism is used to remove

these components and avoid this problem. However, this

solution is not suitable for the generalized pathological

input type previously discussed.

Blind estimation techniques can be misled when the input

signal contains components that resemble these pathologi-

cal signal types, which causes performance degradation. To

demonstrate this limitation, we used an M = 2 TIADC system

with an input signal consisting of two amplitude modulated

(AM) channels whose carrier frequencies are located at 373
512π

and 307
512π. Figure 3a depicts the output power spectral density

(PSD) after using the proposed calibration method, where

we can notice that the unwanted spurs are brought down to

the noise floor. However, after adding another AM channel



Fig. 3: Illustration of the effect of the problematic components on blind
estimation: (a) without and (b) with problematic components.

with carrier frequency 139
512π (which is at the spur location

of 373
512π), the time skew calibration causes significant perfor-

mance degradation as can be seen in Figure 3b. Note that, due

to the incorrect estimation, there is an in-band interference

in the AM channels in addition to the visible high spurs

in Figure 3b. This problem decreases the robustness of the

blind estimation techniques, thus making them unsuitable for

applications requiring general-purpose ADCs.

Figure 4a shows the timing diagram for the conventional

sampling sequence with M = 4. In the presence of prob-

lematic components, the statistical characteristics for each

sub-ADC’s output can be different, which misleads the blind

estimation. This limitation can be relaxed by letting each sub-

ADC experiences input samples that would be sampled by

other sub-ADCs if the conventional sampling sequence was

used. To achieve this with only a minor penalty in area and

power, we introduce a minor intervention to the TIADC’s

sampling sequence, whereby the ‘analogue de-multiplexer’

and the ‘sampling controller’ blocks shown in Figure 1 both

skip a sub-ADC every L aggregated samples [1]. This change

is particularly suitable for TIADC systems with a ring divider

clocking architecture, e.g., [13], [21], where altering the ring

divider circuit enables changing the sampling sequence with-

out affecting the time skew mismatch.

Figure 4b shows the corresponding timing diagram using the

proposed sampling sequence intervention with L = 11, where

a complete conversion cycle is required to be finished within

(M − 1)Ts, thus tightening the constraints on the analogue

circuit. It can be noticed that the samples with indices greater

than L− 1 and up to M L− 1 are sampled by different sub-

ADCs when the sampling sequences depicted in Figures 4a

and 4b are compared. Note that the total number of samples

needed to estimate all cm using (6) is M L, and it contains

exactly M intervention events.

However, in this work we target a SAR sub-ADC archi-

tecture, where the time of a complete conversion cycle is

divided into smaller periods to resolve each decision bit.

That allows forcing an early termination for the conversion

cycle without losing the previously acquired decision bits.

Through exploiting this early termination, we can design the

sub-ADCs to perform a complete conversion within M Ts,

and the conversion time is shortened by Ts when a sampling

sequence intervention occurs. This period corresponds to 1/M

Time
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Fig. 4: Timing diagrams for the sampling sequence for a TIADC system
having M = 4 sub-ADCs with: (a) conventional sampling sequence, (b)
sampling sequence intervention with a (M − 1)Ts conversion cycle, and (c)
sampling sequence intervention with a M Ts conversion cycle, modified
from [1].

of the complete conversion time, i.e., approximately ⌈N/M⌉
bits are lost in each early terminated sample. Figure 4c shows

the proposed timing diagram when early termination is used.

Each skipping event leads to forcing an early termination for

M − 1 samples, which are partially shaded in Figure 4c.

Note that for a large M , only a small fraction of the ADC

output word is missed when early termination is forced. In

practice, L is selected to be a large integer, e.g., L = 213 is

used in the results presented in Section VIII. This makes the

overall performance degradation due to the early termination

events negligible.

V. DIGITAL CORRECTION

For the purpose of the development and analysis of the

digital correction algorithm, we assume that the time skew

estimation has correctly converged, i.e., τ̃m = τ̇m = τm − r.

In this case, we can reconstruct a time skew corrected version

of x̃ from the ADC output y using a Q-term Taylor series

approximation [11], [12]

x̃[n] ≈ y[n]−
Q
∑

q=1

(hd,q ∗ y)[n]
q!

(
τ̇ [n]

)q
, (23)

where ∗ is the convolution operator, τ̇ [n] , τ̇(n mod M)
1, and

hd,q is the impulse response of a non-causal2 (zero delay) qth

order differentiator filter whose ideal frequency response is

H̄d,q(w) = (jw)q, (24)

where w ∈ [0, π] is the normalized angular frequency.

1This relationship does not consider the effect of the sampling sequence
intervention proposed in Section IV.

2Without loss of generality, we ignore the effect of the filter group delay on
the frequency response in this analysis, unless stated otherwise. Implementa-
tions must use causal filters in conjunction with appropriate matching delays,
resulting in an overall group delay.
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(c) Proposed correction mechanism.
Fig. 5: Block diagram for the digital correction.

The approximation in (23) is due to the following reasons:

1) in the presence of time skew mismatch, the input is not

uniformly sampled;

2) the truncation of the Taylor series to finitely Q terms;

3) truncation of the qth order differentiator filter to Lq

coefficients, which leads to deviations from (24). For

example, the authors of [11] used (for odd L1)

hd,1[k] =

{

0, k = 0
( 1)k

k , otherwise,
|k| ≤ L1−1

2
. (25)

In the following subsections, we propose a two-stage digital

correction architecture to reduce the effect of the non-uniform

sampling, and we investigate the impact of the choice of Q.

A. Two-stage correction

Figure 5a depicts3 the conventional digital correction mech-

anism. In Appendix B, we show that some distortion is

introduced to the output of this mechanism due to the non-

uniformly sampled input. To reduce this distortion, we propose

a two-stage digital correction process, where first a coarse

Taylor series based correction is applied to reduce the time

skews seen by a second, more accurate, fine correction stage

as shown in Figure 5b.

The coarse correction stage consists of a simplified first-

order differentiator filter, hd,c, implemented as an anti-

symmetric FIR structure guaranteeing a purely imaginary fre-

quency response, Hd,c(w), i.e., it has an ideal phase response,

and it only deviates from the ideal in its magnitude response.

In Appendix B, we showed that the inclusion of the coarse

correction block leads to scaling the distortion by a factor of

3The figure does not show the matching delays needed to align the inputs
of the addition and multiplication blocks to match the filters’ group delay.

|νd, c(w)|/w where νd, c(w) ,
(
jw −Hd,c(w)

)
/j is the error

in the magnitude response of the filter hd,c. The distortion is

scaled down when |νd, c(w)| < w which is generally satisfied

for almost all w as discussed in Section VIII. In this work,

we use a 9 tap (each tap represented with 4 bits) coarse

differentiator filter.

B. Higher order correction terms

In the previous subsection, we only considered first order

correction schemes, essentially we let Q = 1 in (23). However,

it can be the case that the higher order error terms can

also have a significant impact on the system performance.

Motivated by this, we now perform a statistical analysis of

the higher order error terms with a view to assessing their

impact in meeting the target ADC performance metrics.

For a selected Q in (23), the error in the approximation

is dominated by the (Q + 1)th term in the Taylor series. For

a full-scale sinusoidal input with frequency w, the error in

the mth sub-ADC calibrated output is also sinusoidal and its

amplitude can be expressed as

εQ = 2N−1 (wτ̇m)Q+1

(Q+ 1)!
. (26)

We need to choose Q such that the power of the induced

error is below the quantization noise power level for at least

η of the sub-ADCs, i.e., P(ε2Q/2 < 1/12) ≥ η where P(X) is

the probability of an event X . Using the maximum supported

input frequency, w = βπ, this may be expressed as

P(
ε2Q
2
<

1

12
)=P (|τ̇m|<Λ)=erf




Λ

στ

√

2(1− 1
M )



 ≥ η, (27)

where

Λ =
1

βπ

(√

2

3

(Q+ 1)!

2N

) 1
Q+1

, (28)

erf(.) is the error function, and we have used the assumption

that τ̇m is normally distributed with variance given in (21).

Using Q = 1, P(ε21/2 < 1/12) = 0.56, i.e., only 56%
of the sub-ADCs will satisfy the suggested design constraint,

which of course lies below the target yield η. Similarly, setting

Q = 2, we find that the target performance can be satisfied in

99.996% of the parts.

Based on this calculations, the need for a second order

correction scheme is clear, and forms the basis of our proposed

calibration scheme in Figure 5c. This scheme is based on the

first order correction of Figure 5b with the addition of a second

order differentiator, hd,2, whose output is used to cancel the

second order error term.

To reduce the system latency, we suggest to design hd,2 as

a single filter instead of using two cascaded first order differ-

entiators as done in [12]. Note that the design requirements on

hd,2 are less stringent than on hd,1, because its output is scaled

by τ̇2m/2 compared to τ̇m on the first order correction branch.

Furthermore, hd,2 does not have any phase discontinuities

simplifying its design compared to hd,1. In the next section,

we will discuss the design methodology of these filters.



VI. FINE DIFFERENTIATOR FILTER DESIGN

In this section, we provide design methods for the two fine

differentiator filters hd,1 and hd,2 such that the required yield

η and the target performance can be achieved.

We define νd,q(w) , |H̄d,q(jw)−Hd,q(jw)| to be the error

in the magnitude response of the qth order differentiator filter

where Hd,q is the frequency response of hd,q , and H̄d,q(jw)
is the ideal frequency response defined in (24). We note

that the actual FIR implementation for these filters can have

ideal phase response, and only suffers from magnitude error.

That is because of using symmetric and anti-symmetric filter

coefficients for even and odd q respectively.

We define ξd,q(w) as the upper bound for νd,q(w) which

guarantees that the power of the total distortion induced in

the correction mechanism is less than the quantization noise

power for at least a fraction η of the ADC instances, where a

sinusoidal signal with frequency |w| ≤ βπ is used as an input.

In the following subsections, we evaluate ξd,q(w), which

will then be used in Subsection VI-C and Appendix C to com-

plete the design of hd,1 and hd,2. Finally, in Subsection VI-D,

we demonstrate the complexity of the correction mechanism

for different system specifications.

A. Limiting νd,1(w)

Using a full-scale sinusoidal input having frequency |w| ≤
βπ, the distortion at Node A in Figure 5c due to the magnitude

response mismatch of hd,1 is a sinusoid with amplitude

2N−1νd,1(w). Accordingly at Node B, the distortion induced

in the corrected output of the mth sub-ADC using (23) has

amplitude 2N−1νd,1(w) τ̇m. To satisfy the target performance

and yield η, we need to limit the average power of this dis-

tortion over the M sub-ADCs to be less than the quantization

noise power for at least η of the ADCs, i.e.,

P

((
2N−1νd,1(w)

)2

2M

M−1∑

m=0

τ̇2m ≤
1

12

)

≥ η, (29)

where
∑M−1

m=0 τ̇2m/σ2
τ̇ is a random variable that has a chi-

squared distribution with M degrees of freedom. Using the

inverse of the cumulative distribution function of a chi-squared

random variable, we can write (29) as

Z -1
M/2(η)

(
2N−1νd,1(w)

)2
σ2
τ̇

M
≤ 1

12
, (30)

where Z -1
M/2(.) is the inverse of the regularized lower incom-

plete gamma function with shape parameter M/2.

Rearranging (30) and using (21), we obtain the following

design criterion for the differentiator filter

νd,1(w) ≤
1

2Nστ

√

M

3(1− 1
M )Z -1

M/2(η)
= ξd,1(w), ∀|w|≤βπ,

(31)

i.e., to satisfy the target yield and performance constraints, we

need νd,1(w) ≤ ξd,1(w). Note that the upper bound ξd,1(w) is

independent of w.

The example specification in Section II requires νd,1(w) ≤
0.0141. We further note that had we used a reference timing

r = τ0, we would have to replace the 1 − 1
M factor in (31)

with 2, as per (22), tightening the constraint to νd,1 ≤ 0.0094.

B. Limiting νd,2(w)

A similar approach can be used to constrain νd,2(w) to limit

the total distortion power induced by hd,1 and hd,2 magnitude

errors to be lower than the quantization noise power. We let

the distortion power budget allocated for the filter hd,2 be
(
ξ2d,1(w)− ν2d,1(w)

)
/
(
12ξ2d,1(w)

)
. Then, we can express the

required constraint as

P

((
2N−1νd,2(w)

)2

8M

M−1∑

m=0

τ̇4m ≤
ξ2d,1(w)− ν2d,1(w)

12ξ2d,1(w)

)

≥ η,

(32)

which can be reformulated as

νd,2(w) ≤

√

8M
(

ξ2d,1(w)−ν2d,1(w)
)

2Nσ2
τ (1− 1

M )ξd,1(w)
√
3κ

= ξd,2(w), ∀|w|≤βπ,
(33)

where κ is chosen such that P(
∑M−1

m=0 τ̇4m/σ4
τ̇ < κ) = η.

C. Filter design

Trimming the number of taps in hd,1 produces a large error

(i.e., ripples) in its magnitude response, violating the constraint

in (31). To reduce these ripples, [8] suggests to multiply the

coefficients obtained from (25) by a Hanning window. Also,

[7] proposes to use a Blackman window for the same purpose.

The Parks-McClellan differentiator design algorithm [22]

was used to design the differentiator filters in [12] and [23].

This method minimizes the relative error in the frequency

response of the filter, i.e, νd,1/|H̄d,1|. However, the Parks-

McClellan method is suboptimal for the design problem at

hand, since in this application we focus on minimizing νd,1.

Also, the filter response will suffer from further distortion after

the obtained coefficients are quantized to a limited number of

bits for the hardware realization.

This creates a need for a design method that is tailored

to satisfy this application’s needs while directly providing a

quantized version of the coefficients and satisfying the system

level design constraints. This design method is described in

Appendix C.

D. Correction complexity versus system specifications

In the previous subsections, we defined the constraints

on the proposed correction mechanism for an N -bit TIADC

consisting of M sub-ADCs, each suffering from time skew

mismatch having a Gaussian distribution with standard devia-

tion στ . Those constraints are derived such that for at least

a fraction η of the ADC instances, the induced distortion

in the corrected output is below the quantization noise for

a sinusoidal input within a bandwidth β.

The system specifications, i.e., N , M , η, β and στ , affect

the order of correction, Q, the number of filter taps, Lq , and

the coefficient bit-width, Wq , for each filter. The correction
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Fig. 6: Magnitude response error for (a) filter hd,1 with L1 = 25 and
W1 = 10, designed using different methods, and (b) filter hd,2 with L2 = 5
and W2 = 4.

order Q is chosen such that (27) is satisfied. The first and

second derivative filters are designed to satisfy the constraints

in (31) and (33) respectively. These filters are designed using

the method described in Appendix C.

For our example specification in Section II, we obtain a

filter hd,1 with L1 = 25 and W1 = 10 (including the sign

bit). Figure 6a depicts νd,1(w) for a filter hd,1 with L1 = 25
10-bit taps designed by various methods, we note that the

filter obtained using the proposed design method satisfies the

design requirement in (31), which is marked as a light gray

horizontal line. This is in contrast with the responses obtained

using window functions and the Parks-McClellan algorithm,

which would not satisfy the design constraint.

Similarly, hd,2 was designed using the proposed design

method with L2 = 5 and W2 = 4. Figure 6b depicts νd,2

for this filter.

Note that the constraints in (31) and (33) are tightened

with increasing η, complicating the filters’ design. Similarly,

increasing the bandwidth, β, over which the constraint in (31)

is to be applied causes an increase in the filter’s complexity

due to the discontinuity in its response at w = π, making a

100% bandwidth operation not possible for any reasonable

constraint. These phenomena can be observed through the

different specification examples in Table I where it is clear

that the complexity increases with both η and β.

On the other hand, we note that both constraints in (31) and

(33) are relaxed as M increases, thus reducing the complexity

(for a fixed Ts). This can also be seen in Table I.

VII. LOW-COMPLEXITY MULTIPLIERS

Each correlator depicted in Figure 2 contains a multiplier,

which is known to be both power and area hungry. The output

of each of these multipliers is averaged over a large number

of samples and is used in a feedback calibration loop, which

allows simplifying the multiplier’s hardware implementation

at the expense of its accuracy [1].

TABLE I: Design values for different system specifications.
N στ β η M Q L1 W1 L2 W2

8 0.01Ts

88%
98%

16 1 11 8

N/A N/A

8 1 13 6

99.5%
16 1 13 6
8 1 13 6

92%
98%

16 1 17 7
8 1 17 7

99.5%
16 1 17 7
8 1 17 13

12 0.005Ts 88% 98% 16 2 21 9 5 4

12 0.01Ts

88%
98%

16 2 25 10 5 4
8 2 25 10 5 4

99.5%
16 2 25 10 5 9
8 2 25 11 7 7

92%
98%

16 2 37 10 5 8
8 2 37 11 7 7

99.5%
16 2 37 11 7 7
8 2 37 12 9 10

The multiplication operation of the two unsigned inputs a
and b can be converted into

y = a× b = 2log2 a+log2 b. (34)

The base-2 logarithmic operation can be approximated to

log2 a ≈ ⌊log2 a⌋+ ζl(a 2
−⌊log2 a⌋ − 1), (35)

where ζl(.) is a correction function selected in order to give the

required logarithmic approximation accuracy, ⌊.⌋ is the floor

operator, and ⌊log2 a⌋ can be easily evaluated by looking for

the leading ‘1’ in the binary representation of a. Similarly, the

exponential operation can be approximated to

2c ≈ 2⌊c⌋ + 2⌊c⌋ ζe(c− ⌊c⌋), (36)

where ζe(.) is a correction function.

In Mitchell’s logarithmic multiplier [24], linear interpolation

is used for both the exponential and logarithmic approxima-

tions, i.e., ζl(x) = ζe(x) = x. This is the approximation that

our design uses for the multipliers in the correlators indexed

0 through M − 1 in Figure 2. For the M th correlator we

let ζl(x)=ζe(x)=0, because only an approximate value for

Ts
dRxx(Ts)

dτ is required.

Accurate approximations are needed for the three multi-

pliers depicted in Figure 5c, in these cases we use ζl(x) =
x+cl(⌊32x⌋) and ζe(x)=x+ce(⌊32x⌋), where cl(⌊32x⌋) and

ce(⌊32x⌋) are two hard-coded look-up tables each containing

32 entries.

Table II reports the area and power result from synthesizing

an unsigned 15bit×15bit multiplier using various approxi-

mation functions targeting TSMC 28nm HPL process and

300MHz clock. We can see that the area and power are reduced

by 42% and 22% respectively when the linear correction

functions is used compared to conventional implementation.

VIII. RESULTS

In this section, we report the simulation results obtained

using a fixed-point Matlab model for the proposed calibration

algorithm targeting the system specifications detailed in Sec-

tion II, unless stated otherwise. For the estimation procedure,



TABLE II: AREA UTILIZATION AND POWER FOR DIFFERENT MULTIPLIER

IMPLEMENTATIONS.
Area Power Relative error

Conventional multiplier 625µm2 143µW 0%

Logarithmic mult. with

ζl(x) , x+ cl(⌊32 x⌋),
ζe(x) , x+ ce(⌊32 x⌋)

564µm2 135µW −1.3%∼0.8%

Logarithmic mult. with

ζl(x) = ζe(x) , x 363µm2 112µW 0%∼11.1%

Logarithmic mult. with

ζl(x) = ζe(x) , 0 174µm2 99µW −100%∼49.2%

Fig. 7: Histogram for measured SNDR using input frequency 7193

213
π. The

timing reference is selected as (a) r= τ̄ , and (b) r=τ0.

we use L = 213, i.e., M L = 216 samples are processed for

each calibration cycle.
In the following subsections, three scenarios are considered

in turn

1) an ADC system with infinite precision (N → ∞) and

perfect time skew estimation. This creates a baseline set

of results where the effects of both ADC quantization

and time skew estimation errors are ignored.

2) an ADC system with N →∞ where both the estimation

and correction mechanisms are connected to form a

closed-loop.

3) a 12-bit ADC with closed-loop calibration.

A. Scenario 1

In this scenario, the ADC has an infinite precision, and

we assume that the time skew values are known (known as

a “Genie-based” approach). Monte Carlo simulations were

run for 10,000 ADC instances with randomly generated time

skews and a full-scale sinusoidal input with frequency 7193
213 π.

Figures 7a and 7b show the resulting histogram for the

measured SNDR with a timing reference r = τ̄ and r = τ0
respectively. For a 12-bit ADC, we target 74dB SNDR per-

formance4. We see that when r= τ̄ , the target performance is

achieved in 98.7% of the ADC instances; this is in line with

the target specification of η = 98%. For r = τ0, the target

performance is satisfied in only 81.4% of the instances.

To assess any frequency dependency, we repeated the same

SNDR measurements for sinusoidal inputs at different frequen-

4In this simulation, the performance is limited only by the time skew
mismatch.

cies. Additionally, to quantify the significance of each part of

the proposed correction mechanism depicted in Figure 5c, we

simulate the system for the three correction mechanisms in

Figure 5 and using the proposed calibration method without

the coarse correction stage; the results are presented together

in Figure 8a. The frequency range is divided into four regions:

R1 through R4, as indicated.

The SNDR satisfies the required level of 74dB within the

frequency band of interest (regions R1 − R3) when the full

proposed correction mechanism depicted in Figure 5c is used.

There is a correlation between the achieved SNDR and the

error of the magnitude response for hd,1 shown in Figure 6a.

The local SNDR maximas occur when the error hits the zero

level; the corresponding frequencies are marked by light gray

triangles in both figures. This is an indication that the error

in hd,1 dominates the performance, and both the second order

and the non-uniform sampled input distortions are successfully

suppressed by hd,2 and hd,c respectively. A minor performance

degradation compared to other correction configurations can be

observed in the low frequency region marked with a circle in

Figure 8a. This degradation occurs because |νd, c(w)| > w in

this frequency range, a possibility that was noted in Subsection

V-A.

Looking at the other traces in Figure 8a, we see that in

the absence of hd,c and/or hd,2, a significant performance

degradation occurs, and this becomes more pronounced with

increasing the frequency. In the range R1, the error in hd,1

dominates the performance in all traces. In frequency range

R2, the correction mechanisms without coarse stage suffer

more SNDR degradation, suggesting that the impact of the

non-uniform sampled input distortion is larger than all other

distortion sources. For the range R3, we can notice that

the second order distortion correction stage dominates the

performance for the correction mechanisms that do not have

the filter hd,2. We may conclude that the proposed architecture

depicted in Figure 5c is suitable for ADC designs intended to

utilize most of the available Nyquist range.

B. Scenario 2

We compared the results obtained in the previous test

depicted in Figure 8a with the results shown in Figure 8b,

which are obtained when the estimation-and-correction loop is

closed. With the proposed correction mechanism, the SNDR

experiences a minor degradation in some of the cases; how-

ever, it still meets the target performance. In some other cases,

a better SNDR is obtained due to adjusting the estimated time

skew to compensate the error in the magnitude response of

hd,1 corresponding to the input frequency; however, we con-

sider this to be a false (i.e., non-representative) improvement,

because it occurs only for simple input signals with narrow

bandwidth. Because of this phenomenon, we present results

for a more complex input signal in the next subsection.

We note that there is a large drop in performance when

the second order correction stage is removed in this scenario

compared to the results obtained with perfect estimation in

Figure 8a. From this we conclude that the correction of the



Fig. 8: Measured average SNDR (N→∞) with sinusoidal input, plotted
against the input frequency, for different correction mechanisms (a) with
perfect estimation, and (b) with closed-loop calibration.

second order terms has a significant impact on the accuracy

of the time skew estimates.

C. Scenario 3

In this subsection, we verify the proposed estimation and

correction closed-loop with a 12-bit ADC where the early

terminated samples have 10-bit resolution. To model other

types of ADC impairments, Gaussian distributed noise is

added to the ADC’s input; the additive noise level is selected to

limit the ENOB to 11 bits, i.e., the maximum possible SNDR

for a sinusoidal input is 68dB. All outputs after calibration are

rounded to 12 bits, causing a minor SNDR degradation.

To verify the accuracy of the proposed estimation algorithm,

Figure 9 depicts the estimated time skew residue ∆̃1 obtained

from (16) using a sinusoidal input against the actual value ∆1

predicted in (3). The estimated values are plotted with and

without the proposed HW simplifications in Section VII and

the ⌈.⌉2 approximation in (15). Without these simplifications,

∆̃1 is estimated correctly for small values of ∆1; however,

it suffers from visible non-linearity at large ∆1, this effect is

neutralized on convergence as ∆1 → 0. Using the proposed

simplifications, ∆̃1 is under-estimated mainly due to the use

of ⌈.⌉2; however, all estimates are scaled down by the same

factor, an effect that can be absorbed in the adaptation step

size µ in (4).

Figure 10 shows the measured average SNDR using a

simple sinusoidal input at different frequencies. Figure 10a

shows the results before calibration where over 30dB SNDR

degradation is noticed at high input frequency. Figure 10b

shows the results when the sampling sequence intervention is

absent; a dramatic degradation can be noticed at certain fre-

quencies due to the limitations of blind estimation algorithms

Fig. 9: Estimated time skew residue against the actual.
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Fig. 10: Measured SNDR using a 12-bit ADC model and a sinusoidal input
(a) without calibration, (b) with calibration and normal sampling sequence,
(c) with calibration and sampling sequence intervention.

discussed in Section IV. On the other hand, these limitations

are relaxed with the proposed sampling sequence intervention

whose results are shown in Figure 10c. The average measured

SNDR is approximately 65.5dB over the target bandwidth.

The average measured SNDR and SFDR for input frequency

around w = βπ are 65.3dB and 82.6 respectively.

Figure 11a and 11b depict the average measured SNDR

and SFDR, respectively, against the input frequency using

different correction mechanisms under the same conditions of

the previous test, these measurements being taken after 100
calibration cycles. From these results, we can see that the pro-

posed correction mechanism does not suffer from significant

performance degradation on increasing the input frequency, in

contrast to conventional digital correction mechanisms based

on the Taylor series depicted in Figure 5a.

A more complex input consisting of 64 sinusoids was also

used for testing. Figure 12 shows the measured PSD for the

TIADC output before and after 50 calibration cycles, where

we note that the mismatch spurs are successfully reduced by

32.1dB.

A Monte Carlo simulation with a band-limited random input

signal is used; the input consists of independent and identically

distributed (i.i.d.) samples, and a low-pass filter is used to limit

the signal bandwidth to 0.88π. The test is repeated 1,000 times

with different input and time skew parameters; a histogram of

the measured SNDR before and after 640 calibration cycles is
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Fig. 11: Measured SNDR and SFDR using a 12-bit ADC model and a
sinusoidal input with different digital correction configurations.

Fig. 12: Measured PSD for multi-tone input (a) before, (b) after calibration.

shown in Figure 13. On average, the SNDR is improved from

37.2dB to 58.8dB.

To investigate the convergence behavior, we use a sinusoidal

input having frequency w = 7193
213 π. Figure 14 depicts the

evolution of the RMS of the time skew residues and the

SNDR during the calibration process where the algorithm

converges after 30 calibration cycles. The figure also depicts

the performance evolution for a band-limited random input

where the calibration algorithm converges after approximately

300 calibration cycles, which is ten times slower compared

to the results obtained for a simple sinusoidal input. The slow

convergence is due to the fact that it takes many more samples

to produce accurate correlation estimates, cm, in the case of a

random signal compared to a sinusoidal input. Also, the figure

compares the convergence behaviour when all multipliers and

dividers are implemented with and without the proposed HW

simplifications. For a sinusoidal input, the measured SNDR

hits 65.2dB after 25 and 20 calibration cycles with and without

those simplifications respectively; this difference is mainly due

to using the approximation ⌈.⌉2 in (15).

Fig. 13: Measured SNDR histogram using a band-limited input signal.

65.38dB

at 25

65.53dB

at 20
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Fig. 14: The convergence, using different input signal types, of (a) the root
mean square of the time skew residues, (b) the SNDR.

TABLE III: AREA UTILIZATION AND POWER BREAKDOWN FOR THE

CALIBRATION ALGORITHM.
Area Area% Power Power%

Estimation 7, 439µm2 24% 2.4mW 22%

Correction 22, 946µm2 76% 8.6mW 78%

Total 30, 386µm2 100% 11.0mW 100%

D. Hardware implementation and comparison

A VHDL implementation for the proposed calibration al-

gorithm was carried out, which was verified to be a bit-

accurate representation for the Matlab model via simulation.

The implementation supports the estimation and the correction

for time skew values within ±6στ̇ .

The design was synthesized using the Synopsys Design

Compiler tool in TSMC 28nm HPL process targeting a

300MHz clock to provide 2.4GS/s aggregated sampling rate.

Successful gate level simulation was carried out, allowing

to measure the switching activity for each internal signal in

the design across two complete calibration cycles. Table III

shows the area utilization and power breakdown. The design

occupies an area of 0.03mm2 and consumed 11mW. Without

the use of the HW simplifications proposed in Section VII, the

estimation circuit occupies 9, 852µm2 and consumes 3.2mW,

i.e., the proposed simplifications enable 25% area and power

reduction.

IX. CONCLUSION

In this paper, a digital time skew calibration technique was

presented which can be used for a TIADC system with an

arbitrary number of sub-ADCs. A novel hardware modification

suitable for SAR ADCs is suggested to relax the limitations

that face blind estimation techniques. The resulting increased



robustness of the estimator comes at the cost of a very minor

reduction in the ADC output precision. A two-stage correction

mechanism was proposed to satisfy the target high precision

correction. A quantitative study was conducted on the re-

quirements imposed on the digital correction to achieve the

target performance and yield, and a filter design method was

proposed to enforce these requirements. We proposed tailored

hardware implementations for the main multipliers in both the

correction and estimation sides, which leads to a 25% area

and power reduction in the estimation circuit. The proposed

calibration method was verified via Matlab using different

input signal types. The calibration algorithm maintains the

SNDR above 65dB for a sinusoidal input within the target

bandwidth, which cannot be achieved via conventional digital

correction mechanisms based on the Taylor series. A VHDL

model was implemented and synthesized using 28nm HPL

TSMC process, targeting a 2.4GHz sampling frequency for an

8 sub-ADC system. The calibration block occupies 0.03mm2

and consumes 11mW.
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APPENDIX A

INVERSION OF U

Using the unitary M -point discrete Fourier transform (DFT)

matrix F having (x, y) entry Fx,y = e−j 2πxy
M /
√
M , the

circulant matrix U described in (13) can be diagonalized as

U = F
H
ΛF, (37)

where (.)H is the Hermitian transpose, and Λ ,

diag (λ0, λ1, . . . , λM−1) is a diagonal matrix of eigenvalues

of U, which, recalling (13), can be computed to be (c.f. [25])

λk = 2− 2 cos

(
2π

M
k

)

. (38)

We note that U is a rank-deficient matrix since λ0 = 0, and

thus U is non-invertible. This non-invertibility was also noted

in [1], [7], [8], [16]; the solution proposed in [7], [8] involved

the removal of a row of U (and of the corresponding value

in e) and then applying the Moore-Penrose pseudo inverse

formula. In [1] and [16], it was suggested to force ∆0 =
0 in order to be able to find a solution. In this work, we

apply a more general pseudo inverse methodology that does

not involve the removal of any measurement data, nor the

application of an unnecessary constraint on any particular τm.

Specifically, we compute U
†, the generalized pseudo inverse

using the singular-value decomposition (SVD) technique [26],

as

U
† = F

H








0 0 0 . . . 0
0 λ−1

1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ−1
M−1







F. (39)

The (x, y)−entry of U† is given by

U †
x,y =

1

M

M−1∑

k=1

1

λk
e−j

2πk(y−x)
M . (40)

Since λk = λM−k for every k, all elements in U
† are real,

and from (40) we can note that U† is a symmetric circulant

matrix; this also implies that U
† can be described using at

most ⌈M+1
2 ⌉ distinct values. These features can be exploited

to simplify the hardware implementation of the calculations

needed in (16). Note that these features are not present in

other algorithms that employ matrix manipulation for time

skew estimation, e.g., [1], [7], [8], [16].

We note that F
H acts as an inverse DFT operator, and

the inclusion of a zero in the upper-leftmost position of the

diagonal matrix in (39) constrains the solution to (16) to have

zero mean as concluded in (17).

Using (40), it can be shown that the elements of U
† can

be represented as constant rational numbers whose common

denominator is at most 12M . As an example, for M = 6 we

have

U
† =

1

72











35 5 −13 −19 −13 5
5 35 5 −13 −19 −13

−13 5 35 5 −13 −19
−19 −13 5 35 5 −13
−13 −19 −13 5 35 5

5 −13 −19 −13 5 35











. (41)

For the proposed feed-backward calibration algorithm, the

denominator in (41) can be approximated to a power of two

to simplify the calculations in (16).

APPENDIX B

NON-UNIFORM SAMPLING ANALYSIS

The frequency-dependent nature of the contribution of the

non-uniform sampling to the approximation in (23) can be seen

by computing the error, compared to the uniform sampling,

induced at the output of an ideal first order differentiator

filter in response to a sinusoidal input with frequency w and

amplitude A,

x(t) = A sin
(

w
t

Ts

)

. (42)

For simplicity and without loss of generality, we let r=0, in

which case the nth input to the filter can be written as

y[n] = x((n+τ̇ [n])Ts) = A sin((n+τ̇ [n])w)

≈ x[n] +Awτ̇ [n] cos(nw)
︸ ︷︷ ︸

first order error term

= x[n] + e[n] (43)

where x[n] , x(nTs), and the approximation in (43) is valid

for sufficiently small τ̇m. The first order error term e[n] can

be written as

e[n]=Awτ̇ [n] cos(nw)=Aw cos(nw)
M−1∑

m=0

τ̇mδm(n), (44)

where δm(n) is a train of Kronecker delta functions having

period M and phase such that δm(m) = 1, i.e., δm(n) ,



∑∞
i=−∞ δ(n−m− iM) where δ(n) is the discrete-time unit

impulse function. The effect of the product of the cosine with

δm(n) is a convolution in the frequency domain which results

in M aliased components, i.e.,

e[n] = Aw
M−1∑

a=0

M−1∑

m=0

τ̇m
M

cos(nwa +mβa), (45)

where the {wa} and {βa} are the frequencies and phases of

the M spurs resulting from the time skew.

1) Using the conventional one-stage correction mechanism

in Figure 5a: the filter hd,1 output at Node A can be

expressed as y'[n] = (hd,1 ∗ y)[n]. Using an ideal hd,1 and

the approximated input in (43), the signal at Node B can be

written as

y'[n] τ̇ [n] = e[n]− w τ̇ [n]ϑ[n], (46)

where

ϑ[n] = A
M−1∑

a=0

M−1∑

m=0

τ̇m
M

wa sin(nwa +mβa). (47)

Accordingly, the output of the correction mechanism can be

written as

x̃[n] = x[n] + w τ̇ [n]ϑ[n], (48)

where we observe that the first order error term, e[n], in (43)

has been fully removed; however, another error term appears.

2) Using the two-stage correction mechanism in Figure 5b:

the output of hd,c filter for the input described in (42) can be

approximated to A (Hd,c(w)/j) cos(nw) where Hd,c(w) is

the filter hd,c purely imaginary frequency response. Thus the

input to hd,1 after the coarse correction is approximated by

ỹ[n] ≈ x(nTs) +A νd, c(w) τ̇ [n] cos(nw), (49)

where νd, c(w) ,
(
jw − Hd,c(w)

)
/j is the error in the

magnitude response of the filter hd,c at w. Using ỹ[n] as an

input to the fine correction stage and doing a similar analysis,

we can write the corrected output as

x̃[n] = x[n] + νd, c(w) τ̇ [n]ϑ[n]. (50)

Comparing (48) with (50), we can conclude that the error

magnitude is scaled by a factor of |νd, c(w)|/w.

APPENDIX C

FILTER DESIGN

We target the design of a linear phase qth order differentiator

filter hd,q with an integer number of samples group delay and

zero DC response, necessitating an odd length Lq . The result

of applying a DFT with size F on the filter hd,q can be written

as

Hd,q[k] = 2−b

Lq−1
∑

n=0

ĥd,q[n]e
−jπ 2n

F
k, (51)

where b is the fractional part width assigned for the required

coefficients, and ĥd,q[n] is an integer scaled version of hd,q[n],
i.e., ĥd,q[n] = 2bhd,q[n].

The DFT of the ideal qth order differentiator filter with a

group delay of length (Lq − 1)/2 can be expressed as

H̄d,q[k] =

(

j
2πk

F

)q

e−jπ
(Lq−1)

F
k, ∀0 ≤ k <

F

2
. (52)

According to the design specifications, hd,q needs to be

designed such that |H̄d,q[k] − Hd,q[k]| ≤ ξd,q[k], ∀0 ≤
k ≤ ⌈βF/2⌉, where β is the ADC target relative bandwidth,

and ξd,q[k] , ξd,q(2πk/F ) is the upper bound frequency-

dependent constraint set on |H̄d,q[k]−Hd,q[k]| as per Section

VI.

For odd q, if hd,q is chosen to have an odd symmetry

about the center tap, we can guarantee that the phase response

satisfies ∠H̄d,q[k] = ∠Hd,q[k] (mod π). This allows to form

the following Mixed-Integer Linear Programming (MILP)

optimization problem

minimize
ĥd,q

⌈βF/2⌉
∑

k=0

|H̄d,q[k]−Hd,q[k]|

subject to|H̄d,q[k]−Hd,q[k]| ≤ ξd,q[k], ∀k ∈ {0, ..., ⌈βF/2⌉},
ĥd,q[i] = −ĥd,q[Lq − 1− i], i ∈ {0, ..., Lq − 1},

ĥd,q

[Lq − 1

2

]

= 0. (53)

On the surface, this does not appear to be a linear program

because of the term |H̄d,q[k]−Hd,q[k]|, which is the magnitude

of a complex quantity. However, due to the phase response

property guaranteed by the odd symmetry, this term may be

expressed as






|ℜ{H̄d,q [k]}−ℜ{Hd,q [k]}|

| cos∠H̄d,q [k]|
, |ℜ{H̄d,q[k]}| > |ℑ{H̄d,q[k]}|

|ℑ{H̄d,q [k]}−ℑ{Hd,q [k]}|

| sin∠H̄d,q [k]|
, otherwise,

(54)

where ℜ{X} and ℑ{X} denote the real and imaginary parts

respectively of a complex number X . Both branches in (54)

are, in principle, the same, but for numerical accuracy reasons,

we favor one over the other in the regions indicated. The linear

relationships between ĥd,q coefficients and both ℜ{Hd,q[k]}
and ℑ{Hd,q[k]} are governed by (51), allowing reformulation

of the problem into the form of a canonical linear program.

For an even q, a similar approach can be used to design

ĥd,q , except that it is necessary to have an even symmetry

around the center tap to enforce the required phase response

properties, i.e., we can write the MILP optimization problem

as

minimize
ĥd,q

⌈βF/2⌉
∑

k=0

|H̄d,q[k]−Hd,q[k]|

subject to|H̄d,q[k]−Hd,q[k]| ≤ ξd,q[k], ∀k ∈ {0, ..., ⌈βF/2⌉},
ĥd,q[i] = ĥd,q[Lq − 1− i], i ∈ {0, ..., Lq − 1},
Lq−1
∑

i=0

ĥd,q[i] = 0. (55)



This approach allows us to obtain directly a quantized

version of the coefficients using a MILP solver, e.g., the

intlinprog tool in Matlab, thus obviating the need to

perform a distinct quantization operation on the coefficients.
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