85. A High Pressure Hexagonal Form of MgSiO₃

By Naoto KAWAI,*' Masaharu TACHIMORI,*' and Eiji ITO**' (Comm. by Tei-ichi ITO, M. J. A., June 11, 1974)

The high-pressure and high-temperature state of MgSiO₃ has been studied in a spherical pressure vessel made up of two stages.¹⁾ Chemically pure clinoenstatite is synthesised and charged into the vessel together with a platinum heater and Pt-Pt13%Rh thermocouple as shown in Fig. 1.

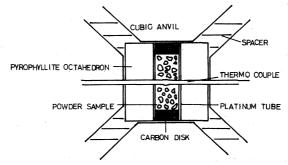


Fig. 1. Furnace assembly for quenching runs.

After the sample is compressed slowly up to the pressure higher than the metallic transition point of GaP (0.5 Mb), the electric current is driven through the heater, till the specimen temperature becomes 1000° C. Then, the P-T condition is kept constant for 10 hours. When the current is cut off, the sample is quenched, so that the specimen may be taken out of the vessel safely under the atmospheric pressure.

The quenched specimen is colourless aggregate of polycrystalline powder whose X-ray diffraction lines are given in Fig. 2. There appear more than 10 extra peakes in addition to those characteristic of γ -Mg₂SiO₄³⁾ and stishovite. They can be indexed on the basis of a hexagonal lattice as in the case of MgGeO₃ produced at 30 Kb by Ringwood and Seabrook⁴⁾ in 1962 (X-ray data are given in Table I).

Recently we have found⁵⁾ that clinoenstatite (MgSiO₃) breakes up at about 200 Kb into stishovite and β -Mg₂SiO₄, the latter being transformed further into γ -Mg₂SiO₄. The transformation is accompanied

**) Institute for Thermal Spring Research, Okayama University, Misasa, Tottori.

^{*)} Department of Material Physics, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka.

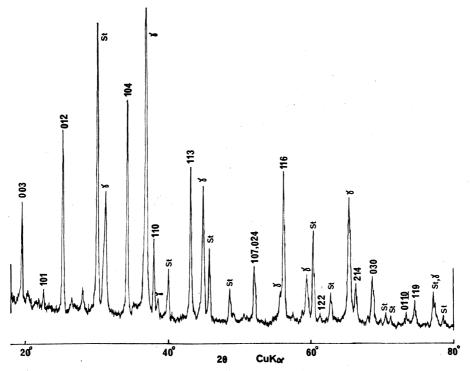


Fig. 2. Powder X-ray diffraction chart of the quenched sample.

h	k	1	$\mathbf{d}_{\mathrm{obs}}$	dcale	Intensity
0	0	3	4.512 A	4.519 A	50
1	0	1	3.919	3.919	10
0	1	2	3.501	3.504	80
1	0	4	2.609	2.611	100
1	1	0	2.364	2.364	30
1	1	3	2.094	2.094	70
1	0	7	1.7521	1.7506	} 30
0	2	4	1.7521	1.7522	} 30
1	1	6	1.6329	1.6332	70
1	2	2	1.5087	1.5086	<5
2	1	4	1.4076	1.4076	20
0	3	0	1.3647	1.3647	20
0	1	10	1.2867	1.2869	5
1	1	9	1.2703	1.2702	10

Table I. Powder date for hexagonal MgSiO₃

Hexagonal: $a = 4.727 \pm 0.001$ Å, $c = 13.556 \pm 0.002$ Å, V = 262.3 ± 0.5Å³, Z 6, $\rho_{calc} = 3.81$ g/cm³

by the contraction of volume of about 15%. The hexagonal $MgSiO_3$ obtained by us is 2% greater in density than the mixture of γ -Mg₂SiO₄

and stishovite above mentioned.

 γ -Mg₂SiO₄ and stishovite, as we have found in the X-ray chart, coexisting with the hexagonal MgSiO₃ show that the reaction in our experiment for the new phase has been incomplete. The hexagonal metasilicate has not been found in nature. However, that it has been produced and is stable under a pressure less than 0.5 Mb would indicate its possible existence in the earth's mantle.

References

- 1) Kawai, N., M. Togaya, and A. Onodera: Proc. Japan Acad., 49, 623 (1973).
- Onodera, A., N. Kawai, K. Ishizaki, and Ian L. Spain: Solid State Commun., 14, 803 (1974).
- 3) Ito, E., Y. Matsui, K. Suito, and N. Kawai: Phys. Earth Planet. Inter. (in press).
- 4) Ringwood, A. E., and M. Seabrook: J. Geophys. Res., 67, 1960 (1962).
- 5) Ito, E., T. Matsumoto, K. Suito, and N. Kawai: Proc. Japan Acad., 48, 412 (1972).