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A High-() Reconfigurable Planar EBG Cavity
Resonator

Michael J. Hill, Richard W. Ziolkowski, and John Papapolymerou

Abstract—A reconfigurable planar electromagnetic bandgap
(EBG) cavity resonator has been designed, fabricated, and tested.
The resonator, based on a microstrip-coupled cavity constructed
with periodic metallic post side walls, resonates at 10.60 GHz or
8.63 GHz, depending on the state of two rows of switchable post
elements. Fabricated on 0.031” 5880 Duroid, the resonator exhibits
Qs of 448 and 274 for the 10.60-GHz and 8.63-GHz resonances,
respectively. In addition to the reasonably highQs achievable
with this design, the circuit utilizes standard printed circuit
board (PCB) fabrication techniques and is 100% compatible with
commercial PCB processes, enabling low-cost mass production.

|. INTRODUCTION _
LECTROMAGNETIC bandgap (EBG) structures have re- g

ceived much interest recently. Although there is much de i

bate over terminology with respect to these structures [1], EBGs

typically consist of periodic arrangements of metallic or dielegig. 1. Microstrip coupled EBG cavity resonator.
tric elements forming a structure that alters the allowed modes
of electromagnetic propagation [2]. With proper design, an EBS3
structure can be used to define the side walls of a resonant caylt

G cavity walls. The resonant frequency of thE,; cavity

[3]- This EBG cavity can then replace the fully conducting side dde is well approximated by

wall (FCSW) cavity in a microstrip-coupled resonator [4]. There 5 5
are two distinct advantages that this configuration has over the fr = — ] (E) + (l) 1)
FCSW configuration. First, the EBG cavity allows for recon- 2m\/er VAL w
figurability through the switching of one or more of the posts _ ) _
defining the cavity wall. This switching can be mechanical d¥hereL andW are the effective length and width of the cavity.
electrical. Second, the EBG cavity can be constructed using/yPically, the coupling slots are located approximatéld
printed circuit board (PCB) techniques in an inexpensive DuroftPm the edge of the cavity (SP of Fig. 1) and are designed ac-
substrate. This eliminates the costly machining required to pi@@rding to the procedure outlined in [4]. For efficient coupling
duce a FCSW cavity, reduces the difficulties associated with tiethe microstrip lines, an electric short circuit should exist at the
bonding of the feed circuit and cavity lid to the machined FCS\enter of the coupling slot. In a single frequency resonator, this
cavity structure, and allows for inexpensive mass productionis often produced with an open-circuited stub that extexts
beyond the slot center (S of Fig. 1). For a reconfigurable res-
Il. CIRCUIT DESIGN AND TOPOLOGY onator that operates at two or more frequencies, a shorting via

must be used in place of the quarter wave open-circuited stub to

The reconfigurable EBG resona@or i_s based on _the _mic_rpStEPovide the short at the coupling slot at all resonant frequencies.
coupled EBG resonator [3] shown in Fig. 1. This circuit utilize In order to provide reconfigurability, special switchable

?NodTag?et'c colupllng sIoFst|nttr]he ground tplangt O;afm'CJ%St; ost elements are introduced at two of the cavity side walls.

eedline to couple energy Into the resonant cavity defined by ?/ turning these posts “on” the effective width of the cavity
is reduced, thereby increasing the resonant frequency of the
circuit (see Fig. 2). In the circuit presented here, one row on
each side of the cavity was created with switchable elements,
but more than one row could be “switched” and would allow
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Fig. 5. Measured and simulated results.

TABLE 1l
SIMULATED AND MEASURED RESULTS
Switch state Resonant Freq. Unloaded Q
On - simulated 10.67 GHz 445
Fig. 4. HFSS cavity field plot (half cavity), switch-off case. On — measured 10.60 GHz 448
Off — simulated 8.36 GHz 260
Off — measured 8.63 GHz 274

of the cavity, the blocking effect of the post is essentially re-

moved (see Fig. 4). When assembled, the ground plane of the

top board does not extend over the annular rings, thus preventiiiggulation mesh. To ensure an accurate result, multiple simula-
the top board from closing the annular ring gap. In the curretiens were run; the results were compared to each other and to
configuration the switching action is mechanical, but an elegimulations performed using the HFSS eigenmode solver. The

tronic or MEMS switch version could be implemented. quality factor was then calculated using (2)—(4), [4]
The cavity circuit was constructed on 0.031” thick Rogers
Duroid 5880 (¢, = 2.2). This material was chosen because Qronded :ﬁ )
of its low-loss tangenttan § = 0.0009). The feed board was A
fabricated on Rogers Duroi&D10 (¢, = 10.8), although other Qoxternal =1071521W@B)/201 .y (3)
materials could be used with appropriate adjustment of the feed -1 _ -1 -1
QU _Qloaded external® (4)

line widths. Using the methods outlined in [3] and [4], the design

parameters shown in Table | (refer to Fig. 1) were chosen. Th . .
EBG used utilized four rows of vias (including the switchableeThe simulated and measured results for the switch-on and

row) to define the cavity walls (see Fig. 1). switch?off cases are shov_vn in I_:ig. 5. Table Il summarizes the
numerical results of the simulations and measurements. Gener-
ally, the measured and simulated results agree well (0.67% dif-
ference in resonant frequency for the switch-on case and 3.1%
The reconfigurable resonator structure was simulated usidifference for the switch-off case). There is some discrepancy
Ansoft’'s high-frequency structure simulator (HFSS). Simuldetween the measured and simulated results for the resonant
tions were run for the switch-on and switch-off cases. In bofrequency of the switch-off case. The resonant frequency of the
cases, the coupling slots were adjusted to provide low-caviwitch-off case can be affected by the capacitance between the
coupling. This enabled the unloaded quality fadt@y;) to be top of the post and the cavity lid. This capacitance is a func-
extracted from the simulation data. Because the simul@ted tion of the annular ring design and construction. Although this
must be extracted using low-coupling data, the results can dagpacitance is included in the full-wave simulations, the vias
impacted by both the dynamic range of the simulations and thvere modeled as octagonal rather than cylindrical posts. This

I1l. SIMULATION AND MEASUREMENT



HILL etal: A HIGH-@Q RECONFIGURABLE PLANAR EBG CAVITY RESONATOR 257

IV. CONCLUSION

Areconfigurable high?, planar resonator has been designed,
fabricated, and tested. Because the resonator utilizes planar con-
struction and microstrip feeds, it is easy to integrate with other
planar circuits. Additionally, the resonator is compatible with
standard printed circuit board printing techniques. This, coupled
with the ability to reconfigure the resonant frequency, makes the
circuit well suited for use in mass produced, cost-sensitive mi-
crowave devices.

Fig. 6. Improved switch element, off state. Future work will enhance the current design. Because the
cavity @ is highly dependent on the cavity board thickness [3],
allowed reasonable-sized simulation meshes, but may havesimulations have shown that future designs with thicker cavity
troduced some inaccuracy in the modeling, and, therefore, maybstrates will result in resonators withis above 500. Work
have contributed to the discrepancy between simulated and mgilalso focus on implementing an electronically-controllable
sured results. Additionally, it is likely that inaccuracies in thewitching element, as well as implementing the “cap” of Fig. 6.
manual drilling of the vias introduced some error. Professional fabrication will be utilized to enhance fabrication

From this data, it is clear that the switch-off case exhibitsccuracy and the correlation between simulation and measure-
significantly lower() than the switch-on case. This was invesment. Using these resonators, reconfigurable controlled ripple
tigated and it was found that the annular nonconducting rirfi¢gers will be designed and tested.
forming the switchable element was introducing additional
metal losses in the cavity lid. To circumvent this problem,
the structure of Fig. 6 was simulated. This structure allows ACKNOWLEDGMENT
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been fabricated. Because the topology of this “cap” is similar
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