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The divergence of chimpanzee and bonobo provides one of the few examples of
recent hominid speciation?. Here we describe a fully annotated, high-quality bonobo
genome assembly, which was constructed without guidance from reference genomes
by applying a multiplatform genomics approach. We generate abonobo genome
assembly in which more than 98% of genes are completely annotated and 99% of the
gaps are closed, including the resolution of about half of the segmental duplications
and almost all of the full-length mobile elements. We compare the bonobo genome

to those of other great apes™*~ and identify more than 5,569 fixed structural variants
that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes
that have been lost, changed in structure or expanded in the last few million years of
bonobo evolution. We produce a high-resolution map of incomplete lineage sorting
and estimate that around 5.1% of the human genome is genetically closer to
chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete
lineage sorting if we consider a deeper phylogeny including gorillaand orangutan. We
also show that 26% of the segments of incomplete lineage sorting between human and
chimpanzee or human and bonobo are non-randomly distributed and that genes
within these clustered segments show significant excess of amino acid replacement
compared to therest of the genome.

The bonobo or pygmy chimpanzee (Pan paniscus) and the common
chimpanzee (Pan troglodytes) are among the most-recently diverged
ape species (around 1.7 million years ago)"* Both species represent
the closest living species to humans and, therefore, offer the potential
to pinpoint genetic changes that are also unique to human. The first
bonobo sequence, whichwas generated using short-read whole-genome
sequencing', resulted inagenome assembly (panpanl.1) with more than
108,000 gapsinwhich the vast majority of segmental duplications were
notincorporated and fewstructural variants wereidentified (Supplemen-
tary Table1). As aresult of the lower accuracy of early next-generation
sequencing technology and the fragmentary nature of the original chim-
panzee genome, large fractions of the genomes of great apes could not
be compared and gene models were often incomplete® . In the past few
years, long-read genome-sequencing technologies have considerably
enhanced our ability to generate contiguous, high-quality genomes in

which most genes and common repeat elements are fully annotated®.
Here, we apply amultiplatformapproachto produce a highly contiguous,
accuratebonoboreference genome. Our analysis highlights the extent to
and rapidity at whichhominid genomes can differ and providesinsights
intoincomplete lineage sorting (ILS) and its relevance to gene evolution
and the genetic relationship among living hominids.

Sequence and assembly

We sequenced DNA from a female bonobo (Mhudiblu, P. paniscus) to
74-fold sequence coverage using the long-read PacBio RS Il platform
(Supplementary Tables 2, 3 and Supplementary Fig.1). We generated a
3.0-gigabase assembly (contig N50 of 16.58 megabases (Mb)) (Supple-
mentary Table 4) and constructed achromosomal-level AGP (a golden
path) assembly (Mhudiblu_PPA_v0) using Bionano Genomics optical
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Fig.1|Sequence and assembly of thebonobo genome. a, Schematic of the
Mhudiblu_PPA_vO assembly depicting the centromere location (red rhombus),
FISH probes used to create assembly backbone (black dots), fixed
bonobo-specificinsertions (blue) and deletions (red) (Supplementary Data),
remaining gaps (black horizontal lines) and large-scale inversions (arrows). We
distinguish bonobo-specificinversions (dark orange, PPA) from Pan-specific
inversions (dark green, PTR-PPA). b, FISH validation of the bonobo

mapsandaclone-order framework using fluorescentinsitu hybridization
(FISH) of bacterial artificial chromosomes (BACs)' (Fig.1). The Mhudi-
blu_PPA_v0 assembly assigns 74 Mb of new sequence to chromosomes,
closing 99.5% of the original 108,095 gaps (Supplementary Table 5).
This assembly has been annotated by NCBl and is available in the UCSC
Genome Browser (panPan3, Methods, Supplementary Dataand Extended
DataFig.1). We estimate the sequence accuracy of the bonobo assembly
tobe 99.97-99.99% (Supplementary Table 6 and Supplementary Data).
The overall nucleotide divergence between chimpanzee and bonobo
based on these new long-read assemblies is 0.421+ 0.086% for autosomes
and 0.311+ 0.060% for the X chromosome (Supplementary Table 7).
Using these new assemblies, we genotyped 27 previously sequenced
greatape genomes, which resultedinslight adjustmentsin median effec-
tive population sizes for the great apes (Extended Data Fig. 2).

Gene annotation

We predict 22,366 full-length protein-coding genes and 9,066 noncod-
ing genes using the NCBI Eukaryotic Genome Annotation Pipeline. We
also generated 867,690 full-length bonobo cDNAs (Supplementary
Table 8) and applied the Comparative Annotation Toolkit" to identify
20,478 protein-coding and 36,880 noncoding bonobo gene models;
99.5% of the protein-encoding models show no frameshift errors'
and 38.4% of the protein-coding isoforms are now more complete.
We identify 119 genes that have potential frameshifting insertions
or deletions that disrupt the primary isoform relative to the human
reference (GRCh38) (Supplementary Table 9). Respectively, 206 and
1,576 protein-coding genes are part of gene families that contracted
or expanded in the bonobo genome compared to the human genome
(Supplementary Tables 10, 11). We identify 65 putatively previously
undescribed exons with support from full-length cDNA (Supplemen-
tary Tables12-14), such as the protein-coding exon in ANAPC2, which
is found in the bonobo but not in the chimpanzee sequence (Supple-
mentary Fig. 2). Using other great ape genomes™** and agenome-wide
analysis from 20 bonobo and chimpanzee samples, we identified genes
that showed an excess of amino acid replacement, balancing selection
and potential selective sweeps (Tajima’s D and SweepFinder2)". Most
of the genes that showed selective sweeps in bonobo (D/RC1, GULP1
and ERC2) (Supplementary Tables 15-18) or chimpanzee (KIAA040,
TM4SF4 and FOXP2) (Supplementary Tables19-22) genomes are novel.
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chromosome 2a and 2b fusion and the 2b pericentricinversion (probes: RP11-
519H15inred, RP11-67L14 ingreen, RP11-1146A22 in blue, RP11-350P7 in yellow)
(top left); the chromosome 9 pericentric inversion (probes: RP11-1006E22 in
red, RP11-419G16in green, RP11-876N18 in blue, RP11-791A8 inyellow) (top
right); and theinversion Strand-seq_chr7_inv4a (probes: RP11-118D11lingreen,
WI2-3210F8inred, RP11-351B3 in blue) (bottom).

Mobile elementinsertions

The number of full-length (retrotransposition-competent),
lineage-specificlonginterspersed nuclear element-1(L1) in the bonobo
genome (413 chimpanzee-specific L1 elements (L1Pt)) is similar to thatin
the chimpanzee genome (383 L1Pt) and 15-25% greater than the number
of elements in the human genome (330 human-specific L1 elements
(L1Hs)) (Supplementary Figs. 3-5). An analysis of Alushortinterspersed
nuclear element (SINE) repeats leads to arefined subfamily classification
and we find that the number of bonobo-specific elements (n=1,492) is
nearlyidentical to thatinthe chimpanzee genome (n=1,431). Panline-
ages, therefore, show among the lowest rates of Aluinsertions compared
to the human genome (in which the rate has doubled) and the rhesus
macaque genome (which shows a tenfold increased rate) (Extended Data
Fig.3). Although the bonobo genome shows areduced genetic diversity
of single-nucleotide variants”® compared to the chimpanzee genome,
we find that bonobo SINE-variable number tandem repeat (VNTR)-Alu
(SVA) elements are more copy number polymorphic (45%) (Extended
Data Fig. 3) compared to the chimpanzee genome (35%; P< 6.5 x107*).
By contrast, the chimpanzee-specific endogenous retrovirus (PtERV1)
shows anindistinguishable low rate of polymorphism for PtERV1in both
species (7% for bonobo and 9% for chimpanzee), which suggests rela-
tively little activity since the divergence of Pan (Supplementary Data).

Segmental duplications

We identified 87.4 Mb of segmental duplications (=1 kilobase (kb)
and >90% identity) (Extended Data Fig. 3, Supplementary Figs. 6, 7
and Supplementary Table 23), most of which was previously unas-
sembled. Segmental duplications are interspersed with an excess of
large (=10 kb) intrachromosomal duplications, which is consistent
with the burst of segmental duplications that occurred at the root of
the hominid lineage”. Despite the approximately sixfold improve-
ment, the largestand mostidentical duplications were still notinitially
resolved (around 84 Mb). Using the Segmental Duplication Assembler
algorithm™", we successfully resolved an additional 56 Mb (Supple-
mentary Table 24) and used these data to identify recent gene family
expansions (Extended Data Fig. 4 and Supplementary Tables 25-31).
We show, for example, that the eukaryotic translationinitiation factor 4
subunit A3 (EIF4A3) gene family has expanded inboth chimpanzee and
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Fig.2|EIF4A3 gene family expansion and sequence resolution. a, Multiple
sequence alignment shows E/F4A3amino acid differences between the human,
Mhudiblu_PPA and chimpanzee assembled paralogues, and sequences of other
greatapes. A polymorphic18-bp motif VNTRislocated atthe 5’ UTR of
nonhuman primate E/F4A3 and accounts for most of the differences between
variousisoforms. A phylogenetic treeis built from neutral sequences of E/IF4A3
paralogues using Bayesian phylogenetic inference. This analysisis conducted

bonobo genomes. Thereis evidence that five out of the six paralogues
are expressed and encode a full-length open-reading frame (Fig.2 and
Extended DataFig. 5). We estimate that the initial E/F4A3gene duplica-
tionoccurredinthe ancestral lineage approximately 2.9 million years
ago. Itthensubsequently expanded and experienced gene conversion
eventsindependently in the chimpanzee and bonobo lineages, creating
five and six copies of the E/IF4A3 gene family, respectively. Notably, some
of the gene conversion signals correspond to a set of specific amino
acid changes in the basic ancestral structure that are now common to
only chimpanzee and bonobo (Fig. 2 and Extended Data Fig. 5).

Structural variation and gene disruption

As part of the assembly curation, we validated nine larger inversions
thatdistinguish humanand bonobo karyotypes, created a FISH-based
chromosomal backbone (Fig. 1) and used single-cell DNA template
strand sequencing (Strand-seq) to assign orphan contigs to chromo-
somes (36 Mb) (Mhudiblu_PPA_v1) (Supplementary Tables 32-38). We
identify 17 fixed inversions that differentiate bonobo from chimpan-
zee, of which1lare bonobo-specific (Supplementary Table 39) and 22
regions that probably represent bonobo inversion polymorphisms
(Supplementary Table 40). Moreover, we assign 38 fixed inversions that
occurred in the common Pan ancestor (Supplementary Table 39). We
annotated and validated the breakpointintervals of each tested inver-
sion (Supplementary Table 41) and found segmental duplications or
longinterspersed nuclear elements at the breakpoints of inversionsin
82% and 86% of cases, respectively (Supplementary Table 40). We also
compared thebonobo genome to the human, chimpanzee and gorilla
genomestoidentify deletions and insertions (>50 base pairs (bp)). We
classify 15,786 insertions and 7,082 deletions as bonobo-specific and
genotyped these in a population of great ape samples™*? to identify
3,604 fixed insertions and 1,965 fixed deletions, of which only a small
fraction (2.66% or 148 out of 5,569) intersect with genic functional
elements (Supplementary Tables 42-45).

Bonobo-specific events that delete ENCODE regulatory elements?
(n=381), forexample, are enriched in membrane-associated genes with
extracellular domains whereas chimpanzee-specific events (n=187) are
associated with cadherin-related genes (Supplementary Table 46). Dele-
tions (n=1,040) shared between the chimpanzee and bonobo genomes
show an enrichment of the loss of putative regulatory elements asso-
ciated with post-synaptic genes (3.32 enrichment; P=1.2x107) and

using BEAST2 software. Numbers on eachmajor node denote estimated
divergence time.Ma, millionyears ago. The blue error bar on each node
indicates the 95% confidenceinterval of the age estimation. Bayesian posterior
probabilities are reported using asterisks for nodes with posterior probability
>99%.b, FISH on metaphase chromosomes and interphase nuclei with human
probe WI2-3271P14 confirms an EIF4A3 subtelomeric expansion of chromosome
17inbonobo and chimpanzeerelative to human, gorillaand orangutan.

pleckstrin homology-like domains (6.15 enrichment; P=1.20 x10°°).
We validate 110 events that disrupt protein-coding genes by generating
high-fidelity genomic sequencing for each of the great ape reference
genomes and restricting to those events that could be genotyped in
a population of genomes (Supplementary Data). As expected, many
fixed gene-loss events occurred in genes that are tolerant to mutation,
redundant duplicated genes or genesin which the event simply altered
the structure of the protein. For example, we validate a 25.7-kb gene
loss of one of the keratin-associated genes (KRTAP19-6) associated with
hair production in the ancestral lineage of chimpanzee and bonobo
(Supplementary Fig. 8). In the bonobo lineage, we identify five fixed
structural variants that affect protein-coding genes (Supplementary
Table 47), but only two of which completely ablate the gene. For exam-
ple, LYPDS8, which encodes a secreted protein that prevents invasion
of the colonic epithelium by Gram-negative bacteria, has been com-
pletely deleted by a24.3-kb bonobo-specific deletion. Similarly, SAMD9
(SAMD family member 9) is a fixed gene loss in bonobo as aresult of a
41.46-kb bonobo-specific deletion. The other three bonobo-specific
fixed structural variant events in protein-coding regions all maintain
the open-reading frame, including a49-amino acid deletion of ADARI,
which encodes a protein thatis critical for RNA editing and isimplicated
in human disease?** (Extended Data Fig. 6).

A comparison of ILS in hominids

The higher quality and more contiguous nature of the bonobo genome
provide anopportunity to generate a higher-resolution ILS map. Incom-
parisonto the originalbonobo assembly in which only around 800 Mb
(27%) could be analysed, itis now possible to align approximately 76% of
thegenomein afour-way ape genome alignment (2,357 Mb within 10-kb
windows) (Supplementary Table 48) owing to long-read genome assem-
blies™. We performed a genome-wide phylogenetic window-based
analysis to systematically identify regions that are inconsistent with
the species tree and classified these as human-bonobo and human-
chimpanzeeILS topologies (Fig. 3). We predict that 5.07% of the human
genomeis genetically closer to chimpanzee or bonobo (Table1);2.52%
of the human genome is more closely related to the bonobo genome
(human-bonobo ILS segments) than the chimpanzee genome whereas
2.55% of the human genome is more closely related to the chimpanzee
genome (human-chimpanzee ILS) than the bonobo genome (Fig. 3a).
This proportion of ILS nearly doubles previous estimates (3.3%)*
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Fig.3|Hominid ILS. a, Awhole-genome LS cladogram analysis (left) for
bonobo-human (red) and chimpanzee-human (blue) and aschematic map
(right) of clustered ILS segments (500-bp resolution) specifically for
chromosomes 3,4 and 7. Thelighter density plot represents the clustered ILS
events mapping tointragenic regions, whereas the vertical lines represent the
subset that overlap with protein-coding exons. b, Distribution of distances
betweenILS segments (inter-ILS) (500-bp resolution) compared witha
simulated (null) expectation (from 400,000 simulations) reveals abimodal
patternwith asubset (26%) thatis clustered and significantly non-randomly
distributed. A two-sample Wilcoxon rank-sum test was used to calculate the
PvalueinR.c,ILS exons show asignificant excess of amino acid replacement

(Supplementary Table1). Consistent with previous observations', the
largest ILS segments are biased (around 1.8-fold) to intergenic regions,
depleted for genes (>35%) and are particularly enriched in L1 content.
Notably, the distribution of ILS segmentsis highly non-random based
on simulation experiments. We specifically measured the distance
between ILS segments (see below) and identified a subset (around
26%) of sites that are significantly more clustered than expected by
chance (Fig. 3b).

We focused specifically on protein-coding exons based onthe human
RefSeq annotation® and identified 1,446 exons that mapped to ILS
topologies (713 exons to ahuman-bonobo topology and 733 exons toa
human-chimpanzee topology) (Supplementary Table 49). Asawhole,
genes corresponding to these ILS exons are significantly enriched in
both glycoprotein function (P=1.30 x 10™ for human-bonobo and
P=5.60 x 107" for human-chimpanzee) and calcium-binding epider-
mal growth factor (EGF) domain function (P=4.40 x10™for human-
bonobo and P=9.40 x 107 for human-chimpanzee) (Supplementary
Table 50). We considered multiple occurrences in the same gene and
identified 84 genes with at least two exons under ILS (Supplementary
Table 51) with some enrichment in photoreceptor activity (P=1.6 x10™*)
(Supplementary Table 51and Supplementary Fig. 9) as well as EGF-like
(P=1.9 x107°) and transmembrane (P =2.4 x 107%) functions. Overall,
we observe asignificant excess of amino acid replacement (dN/dS) for
all1,446 ILS exons compared to non-ILS exons (P=0.0048 for human-
bonobo, P=0.039 for human-chimpanzee) (Fig. 3¢c), whichis consistent
with either the action of relaxed selection or positive selection. Exons
mappingto the clustered ILS segments show greater dN/dS with respect
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dN/dS

(dN/dS) for both human-bonobo (H-B; red line; P=0.004778) and human-
chimpanzee (H-C; blueline; P=0.03924) ILS. In particular, exons mapping to
theILS clustered segments (b) show the most significant excess of aminoacid
replacements dN/dS (dotted purpleline; P=0.001015) compared to the
genome-wide null distribution (grey density plot). This shiftis not observed for
thenon-clustered ILS segments (NCILS; dotted black line; P=0.3161).
Significance was analysed using the one-sample Student’s t-testinR. The
silhouette of the chimpanzeeinais created by T. Michael Keesey and Tony
Hisgett (http://phylopic.org/;imageisunder a Creative Commons Attribution
3.0Unportedlicence); silhouettes of bonobo and gorillaare from http://
phylopic.org/underaPublic Domain Dedication1.0 licence.

toexonsinthe non-clustered ILS segments, which suggests that these
clustered ILS segments are contributing disproportionately to acceler-
ated amino acid evolution in the hominid genome.

We extended the ILS analysis (Supplementary Data) across 15 mil-
lion years of hominid evolution through the inclusion of genome
data from orangutan and gorilla. As expected, ILS estimates for the
human genome increase to more than 36.5% (Extended Data Fig. 7
and Supplementary Table 52) similar to (albeit still greater than) pre-
vious estimates***. We measured the inter-ILS distance and observed
a consistent non-random pattern of clustered ILS for these deeper
topologies with more ancient ILS showing an even greater propor-
tion of clustered sites (Extended Data Fig. 7). Once again, we observe
asignificantly increased mean dN/dS in clustered human-chimpanzee
and human-bonobo topologies (P<2.2 X107, mean =0.366) as well as
clustered orangutan-human and orangutan-gorilla-human topolo-
gies (P<2.2x107, mean = 0.316) compared to the null distribution
(Supplementary Fig.10). A Gene Ontology analysis® of the genes that
intersect these combined data confirm not only the most significant
signals for immunity (for example, glycoprotein (P=1.3 x107%) and
immunoglobulin-like fold/FN3 (P=2.4 x107%%)), but also genes related to
EGFsignalling (P=1.6 x10), solute transporter function (for example,
transmembrane region (P=1.3 x107%)) and, specifically, calcium trans-
port (P=3.7x1078) (Supplementary Table 53). AlthoughILS regions, in
general, show diversity patterns of single-nucleotide polymorphisms
thatare consistent with balancingselection, itis noteworthy thatboth
clustered and non-clustered ILS exons show a significant excess of
polymorphic gene-disruptive events that are consistent with the action
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Table 1| Hominid genome-wide ILS estimates

Window size Number of ILS segments Percentage of ILS Total Genomic properties

(G.(B,H).C) (G (H.CLB) (G(B.H.C) (G(HC.B) "S° ~6C° Intergenic/intragenic ~ Al  L*  Exon’
20 kb 218 218 0.19 0.19 0.38 377 179 6.37 31.44 0.49
10 kb 1143 1138 0.49 0.48 0.97 38.39 173 7.35 2708 047
5kb 4,314 4,373 0.91 0.92 1.83 38.95 1.64 7.85 2467 0.58
2kb 18,218 18,334 1.52 1.53 3.05 39.58 1.49 8.71 21.51 0.72
1kb 46,584 46,938 2.06 2.07 413 40.06 1.37 9.8 19.85 0.8
500 bp 102,197 103,338 2.52 2.55 5.07 40.54 1.33 .24 18.66 0.75
Genome average 40.89 121 1017 17.42 117

B, bonobo; C, chimpanzee; G, gorilla; H, human. (G, (B, H), C)) and (G, ((H, C), B)) represent two different ILS topologies. Intergenic/intragenic indicates the intergenic to intragenic ratio.
“Content is shown as a percentage; the GC, Alu, L1and exon contents are based on the GRCh38 genome.

of relaxed as well as balancing selection (Supplementary Fig. 11). An
examination of these gene-rich clustered ILS regions reveals a com-
plex pattern of diverse ILS topologies that suggests deep coalescence
operating across specific regions of the human genome as has pre-
viously been reported for the major histocompatibility complex'?
(Extended DataFig. 8).

Discussion

High-quality hominid genomes areacritical resource for understanding
the genetic differences that make us human as well as the diversifica-
tionof the Panlineage over the past two million years of evolution. The
bonoborepresentsthelast of the great ape genomes to be sequenced
using long-read sequencing technology. Its sequence will facilitate
more systematic genetic comparisons between human, chimpanzee,
gorillaand orangutan without the limitations of technological differ-
ences in sequencing and assembly of the original reference* ", Asa
result, we now predict thatagreater fraction (around 5.1%) of the human
genome is genetically closer to chimpanzee or bonobo compared to
previous studies (3.3%)". We estimate that more than 36.5% of the homi-
nidgenomeshowsILS if we consider a deeper phylogeny thatincludes
gorillaand orangutan. Notably, 26% of the ILS regions are clustered and
exons that underlie these clustered ILS signals show elevated rates of
amino acid replacement. These findings support a previous study in
gorilla that showed a subtler correlation in which genes with higher
dN/dS values are enriched in ILS segments?. In that study, however,
the authors explained the observation as a result of stronger purify-
ing selection in non-ILS sites or background selection that reduced
the effective population size and, as a result, led a depletion of ILS.
Our genome-wide exon analyses specifically show that only a subset
of clustered ILS exons are driving this effect and that these genes are
enriched in glycoprotein and EGF-like calcium signalling functions
owing to the action of either relaxed selection or positive selection of
genes in these pathways (Supplementary Data).
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Methods

We sequenced and assembled the genome of a single female bonobo
(Mhudiblu, also known as Mhudibluy, who was obtained from the
San Diego Zoo, ISIS 601152, born 15 April 2001 and who was later
transferred to the Wuppertal Zoo in Germany where she was referred
to as Muhdeblu) using long-read PacBio RS Il sequencing chemistry
and the Falcon genome assembler. The assembly was error-corrected
using Quiver?, Pilon?® and an in-house FreeBayes-based” insertion
or deletion correction pipeline optimized to improve continuous
long-read assemblies™. We also generated Illumina whole-genome
sequencing (WGS) data using the lllumina TruSeq PCR-Free library
preparationkit. Genome assembly contigs were ordered and oriented
into scaffolds using Bionano optical maps (Supplementary Table 54
and Supplementary Data) (HybridScaffolds suite, Bionano Genomics
Saphyr platform) and four-colour FISH of 324 BAC clones. Cell lines
from chimpanzee, bonobo, gorilla and orangutan were obtained
from Coriell (S006007) or froma collection developed by M. Rocchi;
no approval from ethics committees were required for use of these
established lines. We assigned each contig and scaffold into unique
groups corresponding to individual chromosomal homologues
using SaaRclust***' while applying Strand-seq to detect inversions,
assign orphan contigand orient contigs®**, To estimate genome-wide
sequence accuracy, we applied Merqury** using Illlumina WGS data.
We also generated abonobo large-insert BAC library (VMRC74) and
selected atrandom 17 clones for complete PacBio insert sequencing™.
The Comparative Annotation Toolkit (CAT)" was used for genome
annotation using human GENCODE v.33 and RNA-sequencing data.
We also generated more than 860,000 full-length non-chimeric tran-
scripts from full-length isoform sequencing (Iso-Seq) data generated
frominduced pluripotent stem cell and derived neuronal progenitor
celllines® from bonobo sample AG05253 and we searched for gene
structures split over multiple contigs (Supplementary Table 55).
Repeat content of the assembled genome was analysed using
RepeatMasker (RepeatMasker-Open-4.1.0) and the Dfam3 repeat
library. We assigned lineage-specific Alu and full-length long inter-
spersed nuclear element, SVA_D and PtERV elements to subfamilies
by applying COSEG (http://www.repeatmasker.org/COSEGDown-
load.html) to determine the lineage-specific subfamily composition.
For cross-species analysis of mobile element insertions (MEIs), we
performed liftOver on the basis of the chains built from the Cactus
whole-genome alignments generated during CAT annotation. For
cross-assembly analyses of bonobo MElinsertions and a specific sub-
setof other analyses (Supplementary Data), we used Bowtie 2 to map
MEI flanking sequences between genomes. We estimated the duplica-
tion content in the bonobo assembly, applying the whole-genome
analysis comparison method* and targeted collapsed duplications
for assembly using Segmental Duplication Assembler®. Insertions
and deletions were detected inbonobo, chimpanzee and gorilla using
PBSV, Sniffles® and Smartie-sv** and genotyped using Paragraph®
against a panel of 27 lllumina WGS genomes. We searched for evi-
dence of ILS among the chimpanzee, gorilla and human lineages
applying Prank (v.140110) to construct multiple sequence alignments
and using ete3 module to identify segments and exons under ILS
(Supplementary Table 56). For consistency, NCBIreference genome
nomenclature has been used throughout the manuscript and corre-
sponds to the following UCSC IDs (NCBI/UCSC): panpanl.l/panPan2,
Mhudiblu_PPA_vO/panPan3, Clint_PTRv2/panTro6, Kamilah_GGO_vO/
gorGoré, Susie_PABv2/ponAbe3 and GRCh38/hg38 (details of the
methods used are provided in the Supplementary Data).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The Mhudiblu_PPA_vO (GCA_013052645.1), Mhudiblu_PPA vl
(GCA _013052645.2) and Mhudiblu_PPA v2 (GCA_013052645.3) assem-
blies are deposited in the NCBI under BioProject accession number
PRJNA526933. The raw PacBio continuous long-read, Strand-seq,
lllumina and Iso-Seq data of bonobo are deposited in the NCBI under
SRA accession number SRP188441. The Bionano map of bonobo
Mhudiblu is deposited in the NCBI under BioProject accession num-
ber PRJNA526933. The raw PacBio HiFi data of bonobo Mhudiblu and
gorillaKamilah are deposited in the NCBlunder SRA accession number
SRP301932 under BioProjectaccessionnumber PRJNA691628. The BACs
usedinthisstudyarelisted in Supplementary Table 57in the NCBIwith
BioProject accession PRINA634395.
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Extended DataFig.2|Pairwise sequentially Markovian coalescent analysis
and estimates of the effective populationsize predating the divergencein
Homo and Pan. a-c, Pairwise sequentially Markovian coalescent (PSMC) plots
based onan analysis of llumina WGS genomes of 10 bonobos (a; red), 10
chimpanzees (b; green) and 7 gorillas (c; blue). The y axis represents the
effective population size (N,) (x10*) inferred by the PSMC and the x axis
representsthetimeinyears. N, valuesand time are scaled with generation time
g=25yearsand amutation rate of u=1.2x10® per bp per generation'®. d, Values
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inboxes refer to median and 95% confidence interval N, (x10*) values inferred
through PSMC analysis considering bonobo (red boxes) and chimpanzee
(purple). We extracted size estimates from time intervals between 4 and

7 millionyears ago for the Homo, Pan N.and been1and 2.5 million years ago for
the P. paniscus, P. troglodytes N,, considering g =0.5x10~° mutations (bp x year)
and ageneration time of 25 years. Values using u=1x10"° mutations (bp x year)
arereportedin Supplementary Data.
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Extended DataFig. 3 |Sequence and assembly of thebonobo genome and
bonobo genomerepeatstructure. a, Thesize (xaxisisshownonalogscale)
andrepeat content of gaps filled in the new bonobo assembly compared with
the panpanl.lassembly'. Gaps composed of more than 50% repeat content for
any particular class of repeat are coloured. b, Distance from filled gaps to the
nearest segmental duplication (xaxis) versus the counts of highly repetitive
(>95%, green) and less repetitive (<95%, orange) filled gapsin 100 base-pair bins
(yaxis). Anadditional 2,600 and 1,755 filled gaps map directly within segmental
duplicationsites with <95% and >95% repeat content, respectively.c,
Polymorphismrates for lineage-specific MEIs. Alu, SVA, L1IPtand PTERV1
insertions that do not ‘lift over’ between chimpanzee and bonobo reference
genomes were identified and genotyped for deletions using data from 10
bonobosand 10 chimpanzees. Light-coloured bars and percentages represent
the fraction of instances of the MEI type that display support for
polymorphism; dark-coloured bars represent the fraction of fixed insertions in

these populations. PTERV1displays asignificantly less polymorphic fraction
thanAlu(P=2.6 x107*, chimpanzee; P=6.9 107, bonobo; x* test, Bonferroni
correction), SVA (P=3.8x107"; P=1.9x10"%?) or LIPt (P=2.2x107%; P=1.3x107%),
reflecting its lack of activity since the divergence of Pan.SVA is the only MEI
typewithagreater polymorphismrateinbonobo.d, A COSEG network of
bonobo-specific Alusubfamilies indicating the relative number of elements
(size of the node) and number of mutations (line thickness) that distinguish
subfamilies. e, Acomparison of the retrotransposition rate per million years
based onlineage-specific Aluinsertions from aselect panel of primate
genomes. f-h, The percentage identity distribution (f) and length distribution
(g) of segmental duplications (=90% identify, >1 kb and no unplaced contigs)
areshownaswellasthe patternof the largest and mostidentical (=10 kb and
>98%) intrachromosomal (blue) and interchromosomal (red) segmental
duplications (h) inthe bonobo genome.
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Extended DataFig. 4 | Pan-specific duplications and bonobo-specific
deletions. a, Pan-specific duplication of the CLN3locus and bonobo-specific
deletion of IGFL1. HiFiread depth and whole-genome shotgun detection of
bonobo, chimpanzee, orangutan, gorillaand humanindividuals relative to
GRCh38 detect these events (top), which are validated by interphase FISH of
each species using fosmid clones spanning the region (bottom). b, Pan-specific
duplication of the E/F3Clocus and bonobo-specific deletion of SAMD9. HiFi
read depth and whole-genome shotgun detection of bonobo, chimpanzee,
orangutan, gorillaand humanindividuals relative to GRCh38 detect these
events (top), which are validated by interphase FISH of each species using

fosmid clones spanning the region (bottom). Genomes were included from the
followingindividuals (from top to bottom): bonobo (Pan_paniscus_A915_
Kosana, A927 Salonga, A922_Catherine, A917_Dzeeta, A918_Hermien, A924 _
Chipita, A926_Natalie, A928_Kumbuka, A914_Hortense, A919_Desmond, A925_
Bono); chimpanzee (Pan_troglodytes_troglodytes_A958_Doris, A957 Vaillant,
A960_Clara, Pan_troglodytes_verus_Clint); orangutan (Pongo_abelii_A950_
Babu, Pongo_pygmaeus_A944_Napoleon); gorilla (Gorilla_gorilla_gorilla_
KB4986_Katie); human (AFR_Aari_ ETAROOS5_F,AMR_Nahua_Mex20_M,EA_
Mongola_HGDP01228_M, SA_Kalash_HGDP00328_M, WEA _FinlandFIN_
HG00360_M).
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Extended DataFig. 5| EIF4A3 and EIF3Cgene family expansionand
sequenceresolution. a, Acomparison of E/[F4A3 copy number among great
apesbased onasequence-read-depthanalysis confirms a variable copy
number expansion in the bonobo and chimpanzee lineages (9-33 diploid
copies). This recent duplication was not fully resolved initially in the bonobo
reference genome (Mhudiblu_PPA_vO0) because high-identity duplicated
sequences were collapsed. b, Bonobo Iso-Seq full-length transcript reads map
with higheridentity to four of the paralogues compared to Mhudiblu_PPA_vO.
c, Contigs thatencompass E/IF4A3 expansions and 100 kb of the flanking
regions were assembled using bonobo and chimpanzee PacBio HiFidata. The
12-kb genomic sequence of human E/F4A3 mapped onto the assembled contigs.
Six tandem copies of EIF4A3 spanning 310 kbin bonobo and five tandem copies
spanning 262 kbin chimpanzee arerecovered. Schematics show structural
differencesin E/F4A3in primate genomes. Grey, black and striped arrows show
differentalignmentblocks acrossthe samples. Asolid line connecting
alignmentblocksindicatesaninsertion event.d, Paralogues are expressed and
show evidence of gene conversioninbothbonobo and chimpanzee lineages.
Analysis of bonobo Iso-Seq data confirms that five of the six E/IF4A3 copies are
expressed and maintain an open-reading frame (heat map indicates the
number of Iso-Seq transcripts supporting each copy; minimap2-axsplice -G
3000-f1000 --sam-hit-only --secondary=no--eqx-K100M -t 20 --cs -2 | samtools
view -F 260). GENECONV software shows significant signals (P< 0.05 after
multiple-test correction) of gene conversion for 16 out of 67 kb of the

paralogouslocus (grey bars) using multiple sequence alignment was
performed using MAFFT version 7.453 (command: mafft -adjustdirection
[input.fasta] > [output.msa_fasta]; GENECONV version 1.81a)). Asubset of gene
conversion eventsoverlap with sites of amino acids that are specific to the Pan
lineage. Trianglesindicate the sites of amino acid change in each of the primate
genomes compared to GRCh38. Different colours mark different changes:
purple marks phenylalanine to leucine; yellow marks arginine to cysteine; red
marks serine to arginine; teal marks tyrosine to serine. Same phylogenetic tree
fromFig.2isreshapedtoshow theinferred evolutionary relationshipsamong
the paralogues. Nodes with >99% Bayesian posterior probabilities are
indicated by asterisks; otherwise the actual number isshown. e, A phylogenetic
tree was constructed from 16-kb noncoding E/F3C paralogues using Bayesian
phylogeneticinference. This analysis was conducted using BEAST2 software.
Numbersinbold on each major node denote estimated divergence time. The
other numbers (not bold) indicate posterior probabilities. The blue error bar
oneachnodeindicatesthe 95% confidence interval of the age estimation.
Bootstrap supportsare reported using asterisks for nodes with posterior
probability >99%.f, Gene models for transcribed locibased onIso-Seq data
(top). Human EIF3Cand EIF3CL are compared to predicted open-reading frames
forbonobo paralogues and Liftoff gene predictions for chimpanzee,
orangutan and gorilla paralogues from contigs assembled from HiFireads
(bottom).
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Extended DataFig. 6 | Bonobostructural variants and gene deletions. a,
Size distribution of fixed (left) and polymorphic (right) structural variant (SV)
insertions and deletions inthe bonobo genome for structural variants of
50-1,000 bp (top) or >1,000 bp (bottom) inlength. Events are deemed to be
specific tothebonobo lineage based on copy number genotyping against a
panel of 27 ape genomes and a threshold of F; > 0.8 to define fixed eventsin
bonobo.Modes are observed corresponding to full-length L1 (6 kb) and Alu
(300 bp) mobile elements and are predominantly insertions reflecting the
homoplasy-free nature of this class of mutation. b, A small fixed deletion
predictsa49 amino acid deletionin ADAR1inthe bonobo lineage. RefSeq
ADARI structure is shown (top) compared with the Iso-Seq coverage of gorilla,

human, chimpanzee and bonobo (middle). The proteinalignment (bottom)
showsthatanin-frame deletionis created. c, A24.3-kb fixed deletion resultsin
the complete loss of LYPD8inbonobo. Gene structure, duplication and repeat
annotations are shownwithrespect to gorilla, human, chimpanzee and bonobo
genomes. Alineage-specificduplicationadjacent to LYPD8is presentin the
gorillagenome (large grey triangles).d, A 41.5-kb fixed deletion mediated by
directly orientated L1 repeats ablates SAMD9leaving only SAMDO9L in the
bonobolineage. e, Short-read whole-genome shotgun detection genotyping
shows that LYPD8was lostinthe bonobo lineage. f, Short-read whole-genome
shotgun detection genotyping shows SAMD9was lostin the bonobo lineage.
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Extended DataFig.7|Hominid ILS. The distance between adjacentILS
segments (inter-ILS) (500-bp resolution) was calculated and the distribution
was compared to asimulated expectation based on arandomdistribution. The
analysis reveals abimodal (and possibly anemerging trimodal) patternin
whichadistinctsubset of ILS segments are clustered (thatis, clustered ILS
sites). Four different topologies were considered. a, A (orangutan, (((bonobo,
chimpanzee), gorilla), human)) ILS topology in which 31.58% of inter-ILS is
clusteredisshown.b, A (orangutan, ((bonobo, chimpanzee), (gorilla, human)))

chr4:107822563-110015766

ILS topology in which 33.5%is clustered is shown. ¢, A (orangutan, ((bonobo,
human), chimpanzee), gorilla)) ILS topology in which 8.14% is clustered is
shown.d, A (orangutan, ((bonobo, (chimpanzee, human)), gorilla)) ILS
topology inwhich 9.89% of sitesis clustered is shown. e, Anexample of a cluster
of human-bonobo (red triangles) and human-chimpanzee (blue triangles) ILS
corresponding toagroup of genes. A four-species alignment of one exon from
EGF (exon 5) isshown withanominal signal of positive selection.
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Extended DataFig. 8 |Ideogram ofthe MHCregion withILS annotations.
a, The four mainILS topologies are colour-coded. The four colour lines
representingILS segments are shown above the chromosome coordinate
(GRCh38).The clustered ILS segments are shown above the four colour lines
(black). The MHC region (red bar) corresponds to genomic coordinates on
chromosome 6:28510120-33480577.b, Amagnified view of the MHC region
(chromosome 6:32786501-33103000) depicting clustered ILS nearby HLA
genes. ¢, Nucleotide diversity of bonobo (green) and chimpanzee (blue) is
shownbased on human genomic coordinates (GRCh38, chromosome 6:
25000000-29000000). The mean (dashed line) isshown for bonobo

SegDup
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(mean=4.45x107*) and chimpanzee (mean=9.35x10"*). Aregion of reduced
diversity (grey) isshown that corresponds to asegmental duplicationin which
single-nucleotide polymorphisms were excluded due to potential mismapping.
d,Same as cbut merged onto the same scale and highlighting five regions (red
arrows) inwhichdiversityisreduced inbonobo compared to chimpanzee.
Three of these correspond to previously identified regions'; however, they are
notamongthe top 1% of genome candidates showing positive selection by
Tajima’s D and SweepFinder2". The overall diversity of single-nucleotide
polymorphismsisreduced across the regioninbonobo compared to
chimpanzee.
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Software and code

Policy information about availability of computer code

Data collection Pacific Bioscience Sequel Il Instrument Control SW (v7.1 or v8.0) and Leica Application Suite X (v3.7).

Data analysis We applied Falcon (git id 53444482, dgordon branch available on 2017.06.13) to assemble the bonobo genome from SMRT sequence reads.
The assembly was error-corrected using Quiver (version 0.7.6) and then further error-corrected using Pilon (version 1.21). The contigs were
placed into scaffolds using the HybridScaffolds suite (pipeline version 4573) from the BioNano Genomics. Access software (pipeline version
4573, and RefAligner version 7376). To assign each contig/scaffold into unique groups corresponding to individual chromosomal homologues
we used SaaRclust (github daewoooo branch available on Mar 3, 2019, version 0.99). We aligned available Strand-seq data to the Mhudiblu
assembly (vO) using the BWA aligner (version 0.7.17-r1188) with default parameters for paired-end mapping. Subsequently, we used
sambamba (version 0.6.8) in order to mark duplicated reads and SAMtools (version 1.9) to sort and index the final BAM file for each Strand-
seq library. Segmental Duplication Assembler (SDA) (github mrvollger branch available on Mar 31, 2020) was used to identify and unpack
collapsed SDs in the bonobo assembly. Repeat content of the assembled genome was analyzed using RepeatMasker (RepeatMasker-
Open-4.1.0) and the Dfam3 repeat library. We assigned lineage-specific Alu and full-length LINE, SVA_D and PTERV elements to subfamilies by
applying COSEG (www.repeatmasker.org/COSEGDownload.html) to determine the lineage specific subfamily composition. Genome
annotation was performed using the Comparative Annotation Toolkit (CAT) v2.1. Insertions and deletions were detected in bonobo,
chimpanzee and gorilla using PBSV (version 2.2.0), Sniffles (version 1.0.10) and Smartie-sv (github zeeev branch available on Mar 8, 2018) and
genotyped using Paragraph (version 2.4a) against a panel of 27 lllumina WGS genomes. We searched for evidence of ILS among the
chimpanzee, gorilla and human lineages applying Prank (v.140110) to construct multiple sequence alignments and using ete3 module to
identify segments under ILS. All statistics analyses were performed in R (3.5.3). We applied minimiro (github mrvollger branch available on
Aug 4, 2020) for plotting synteny. Splign (NCBI updated on 02/23/15) was used for gene annotation. QV analyses were run with Merqury
(version 1.0). Custom codes used in this study are available at GitHub (https://github.com/EichlerLab and https://github.com/MaoYafei).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We sequenced and assembled a new bonobo reference genome using a multiplatform approach. The genome is more contiguous
and accurate allowing more comprehensive sequence alignement. We discovered new species specific structural variants including
gene family expansions and deletions in the ape lineage. We provide a more complete view of incomplete lineage sorting and its non-
random clustering during ape genome evolution.

Research sample We sequence a bonobo (Pygmy chimpanzee) immortalised cell line (Carbone #601152). The source of the cells was an EBV
transformed lymphoblast cell line from a single female bonobo, Mhudiblu. Pygmy chimpanzee was chosen because of its importance
for inferring species specific changes in both human and chimpanzee lineages. Together with chimpanzee, bonobos represent the
closest great apes to human genome. The sample we sequenced is representative of Pan paniscus.

Sampling strategy No sample size calculation was performed. We were searching for genomics and transcriptomics similarities/differences between
Pan paniscus and other great ape genomes. For this purpose, deep whole genome long-read sequencing with the Pacific Biosciences
Sequel Il platform was performed and variants were then genotyped on a population of samples to confirm fixed or polymorphic

status.

Data collection Sequencing data for assembly were collected using Pacific Bioscience Sequel Il Instrument Control SW (v7.1 or v8.0); while
cytogenetics data were generated using a Leica fluorescence microscope and Leica Application Suite X (v3.7).

Timing and spatial scale  No Timing or spatial scale was applied

Data exclusions No data were specifically excluded

Reproducibility Computational experiments are deterministic and are, therefore, reproducible. Despite this expected reproducibility, computational
experiments were performed multiple times with different parameters and followed up with experimental validation. All attempts at
replication were successful.

Randomization No randomization was performed, being a single genome sequenced and assembled.

Blinding No blinding was requested, being a single genome sequenced and assembled.

Did the study involve field work? || Yes X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods

Involved in the study
Antibodies

Eukaryotic cell lines

Clinical data

NXXXXOX s
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Eukaryotic cell lines

Palaeontology and archaeology

Human research participants

n/a | Involved in the study

X[ ] chip-seq
X[ ] Flow cytometry

XI|[ ] MRI-based neuroimaging

Animals and other organisms

Dual use research of concern

Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Mhudiblu (SAMN11123633), PPA Lb502 (SAMN01920504), chimpanzee (Pan troglodytes; Clint; SO06007), gorilla (Gorilla
gorilla; GGO9), Orangutan (Pongo abelii; Susie; PRO1109) and human normal donor (with signed personal consent). All the
origin of the great apes individuals we tested are reported at this link: https://www.biologiaevolutiva.org/greatape/
samples.html and are available upon request according to CITES restrictions.

Mhudiblu (SAMN11123633) immortalized by EBV transformed lymphoblast cell line (Carbone #601152), was originally
isolated from a single female bonobo (Pan paniscus), Mhudiblu (a.k.a. Mhudibluy, ISIS 601152, born April 2001 at San Diego
Zoo or Muhdeblu when she was transferred to the Wuppertal Zoo in Germany).

PPA Lb502 (SAMNO01920504), immortalized by EBV transformed lymphoblast cell line was obtained from a captive born
animal and donated by Prof. Mariano Rocchi, University of Bari (Italy). GGO9 fibroblast cell lines were donated by Prof.
Mariano Rocchi, University of Bari (Italy).

Chimpanzee (Pan troglodytes; Clint; SO06007) fibroblast cells were originally obtained from a male Western chimpanzee
named Clint (now deceased) at the Yerkes National Primate Research Center (Atlanta, GA) and immortalized with EBV.
Orangutan (Pongo abelii; Susie; PR01109) fibroblast cells were originally obtained from a female Sumatran orangutan named
Susie (now deceased) at the Gladys Porter Zoo (Brownsville, TX), immortalized with EBV, and stored at the Coriell Institute for
Medical Research (Camden, NJ).

Mhudiblu was sequenced with Illumina whole-genome sequencing to confirm species and karyotyped. The other cell lines
were authenticated via standard karyotype analysis.

All the cell lines tested negative for Mycoplasma

None
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