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Understanding how proteins and their complex interaction networks convert the genomic information into a dynamic living organism

is a fundamental challenge in biological sciences. As an important step towards understanding the systems biology of a complex

eukaryote, we cataloged 63% of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000

redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was

achieved by combining sample diversity, multidimensional biochemical fractionation and analysis-driven experimentation feedback

loops, whereby data collection is guided by statistical analysis of prior data. We show that high-quality proteomics data provide

crucial information to amend genome annotation and to confirm many predicted gene models. We also present experimentally

identified proteotypic peptides matching B50% of D. melanogaster gene models. This library of proteotypic peptides should enable

fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.

Understanding how, when and where genomic information is trans-
lated into proteins and how these molecules interact remains the
primary challenge in systems biology. Despite the important concep-
tual and technical contributions of genome sequencing projects, the
generation of accurate and complete models of physiological processes
from genomic information alone seems unrealistic. In contrast to
transcriptomics approaches that can measure the expression of all
elements of a system, current proteomics technologies are incapable of
analyzing complete proteomes, even of species with relatively simple
genomes. Moreover, owing to a lack of experimental data and the
limited accuracy of current gene prediction methods, uncertainty
surrounds the validity of a substantial percentage of the protein
sequences and their processed forms predicted from the genome
alone1,2. These considerations underscore the importance of generat-
ing definitive proteomic catalogs for the functional analysis of
biological systems.

We describe an extensive high-quality catalog of D. melanogaster
proteins, based on 498,000 redundant and 72,281 distinct, fully tryptic
peptide identifications (known and low cumulative false discovery rate
of 1.37%) corresponding to 9,124 distinct proteins, or B63% of the
predicted fruitfly gene models. This level of proteome coverage, which
to our knowledge has not been achieved for any other complex

eukaryote, was achieved by maximizing sample diversity through
analysis of different cell types and developmental states, applying
multiple fractionation techniques to reduce sample complexity and a
novel iterative feedback strategy that integrates the current results
through detailed statistical analyses into the design of the next set of
proteomics experiments.

We demonstrate the usefulness of this resource by confirming
and correcting predicted fruitfly gene models and identifying a
novel short gene. Furthermore, our data set identified a set of
proteotypic peptides (PTPs) that matches to 6,980 proteins. PTPs
are experimentally observed peptides that contain sufficient informa-
tion to unambiguously identify a specific protein3. This unique
PTP library forms the basis for developing a high-throughput, low-
redundancy proteome screening approach based on targeted mass
spectrometry. The accumulated data set will be made publicly avail-
able through PeptideAtlas4.

RESULTS

An improved strategy to catalog proteomes

Although current transcriptomics technologies readily measure the
expression level of all genes and splice variants in parallel, the
generation of a comprehensive proteome catalog is much more
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demanding. Both the broad dynamic range of protein expression,
spanning six to ten orders of magnitude5, and the enormous complex-
ity of protein extracts derived from biological samples represent
serious obstacles. Therefore, the development of a suitable strategy
to generate a comprehensive proteome catalog remains of high
importance6. We started to catalog the D. melanogaster proteome
using a tandem mass spectrometry (MS/MS)-based shotgun approach
(Fig. 1 and Supplementary Table 1 online). For an initial set of
12 experiments, we prepared protein extracts from exponentially
growing D. melanogaster S2 cells following an elaborate multidimen-
sional fractionation scheme (Supplementary Fig. 1, Supplementary
Table 2 and Supplementary Results online) and identified a total of
5,795 proteins. To assess whether additional experiments could sub-
stantially increase the number of identified proteins, we plotted the
total number of distinct protein identifications as a function of the
number of overall high-quality peptide identifications for these 12
experiments (red dots, Fig. 2) and performed several Monte Carlo
simulations. These simulations indicated (i) that a random shotgun
approach is highly redundant and (ii) that more experimental trials

could still identify additional proteins, in return, requiring an ever-
increasing amount of effort (all simulated curves are saturation type
curves) (Fig. 2 and Supplementary Results). Similar saturation
curves were observed for 4,455 proteins identified in the Kc167
D. melanogaster cell line and 3,955 proteins identified from yw
third-instar larvae. Despite an increase in overall protein identifica-
tions, the three data sets showed a very substantial overlap, indicating
that increasing sample diversification alone will not be sufficient to
overcome the inherent redundancy of a shotgun approach. Therefore,
a different strategy is needed that is capable of adding new protein
identifications at a stage when a very substantial part of the proteome
has already been identified.

Our approach to address this need, which we call analysis-driven
experimentation (ADE), is an iterative feedback strategy that cycles
between experimentation, thorough bioinformatics and statistical
analysis, and redirected experimentation. This enables us to optimize
experimental conditions and specifically target parts of a proteome
that are under-represented in prior data sets. To accomplish this,
several physicochemical and functional protein parameters (including

Figure 2 Count of distinct protein identifications as a function of overall

high-quality peptide identifications and results of several Monte Carlo

simulations. The red dots show the increase of distinct protein

identifications for one specific order of 12 S2 cell line experiments,

whereas the gray dots show this increase for 100 random permutations

of the experiment order (Supplementary Results). Results of Monte Carlo

simulations based on the assumption that the number of identifications

of each protein in n identification trials are multinomially distributed with

parameters n, and p1,.,p16743 with pi ¼ probability of identification of

protein i. (i) Blue curve: the probability of identifying a protein is the same

for all proteins (p1:y: p16743 ¼ 1). For the purple and green curves the
probabilities are based on the overall empirical frequencies of protein

identifications in the 12 experiments (hi ¼ no. of identifications of protein i

in all S2 experiments, h1,.,hk 4 0 for k ¼ 5,795 proteins seen). The

probabilities for proteins not identified by the 12 experiments were

calculated based on either assuming an overall number of identifications (ii)

of 1 for each of these proteins (green curve, hk+1:y: h16743 ¼ 1) or (iii) of

0 (purple curve, hk+1:y: h16743 ¼ 0) (Supplementary Results). In the case of the green curve, all proteins can be identified, but this needs many more

identification trials than for the blue curve. The simulations (purple curve) increase the evidence that at least a subset of those proteins, which was not

identified in the 12 experiments, has P 4 0 of being identified.

Figure 1 Description of the directed shotgun proteomics workflow.

1. Proteins were extracted from different tissues, cell lines and various

developmental stages, enabling us to detect proteins of low abundance

and with restricted expression during fruitfly development. 2. The inherent

complexity of protein extracts was reduced using a combination of

approaches, including subcellular fractionation and further biochemical

separation of proteins and peptides by, for example, strong cation exchange

chromatography (SCX) or free-flow electrophoresis in conjunction with the
selective isolation of cysteine-containing peptides by the isotope coded

affinity tag (ICAT)24 technology (see Supplementary Results for details).

3. The samples are analyzed by reversed-phase chromatography-MS/MS in

an automated fashion under standardized conditions. 4. The uninterpreted

collision-induced dissociation (CID) spectra are searched against a standard

D. melanogaster protein database using the TurboSequest algorithm.

5,6. Statistical filtering using PeptideProphet (P 4 0.9) is used for data

validation. The validated peptides are then integrated into the PeptideAtlas4.

For data storage and initial data mining, we used an open source integrated

database system called SBEAMS (systems biology experiment analysis

management system)4. 7. ADE feedback strategy (see text): A detailed

statistical analysis of the current data set allows one to identify areas of the

proteome that are under-represented by current experimentation, and that can subsequently be targeted with an adapted experimentation protocol (steps

1,2). Repetitive cycling through this workflow (red arrows) will eventually lead to the annotation of a ‘complete’ proteome catalog. 8. Each cycle delivers new

data that are used for genome annotation and for the extension of PTP libraries. ADE, analysis-driven experimentation.
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length, isoelectric point, favored codon fre-
quency (FCF) as a measure for protein
abundance7, transmembrane domains and
signal peptides) were computed for all dis-
tinct proteins. Next, the distribution of these
parameters among experimentally identified
proteins was compared to that for all proteins
to identify biases of our shotgun approach
(Supplementary Fig. 2 and Supplementary
Results online). Statistical analysis revealed
a significant under-representation of short
proteins and basic proteins (Fig. 3) in the
data set (P o 10–10). Next, experiments were
designed to specifically target the determined
classes of both under- and over-represented
proteins (Fig. 3a–f and Supplementary
Results). Using this targeted approach, we
could enrich for under-represented short pro-
teins by using gel filtration (Fig. 3b,c) and
identify additional acidic proteins (which are
over-represented) by using protein free-flow
electrophoresis experiments in the pH range
4–7 (Fig. 3e–f ). For the significantly under-
represented low-abundance proteins (Fig. 4a)
and unstable proteins (Fig. 4b) (P o 10–10),
which are less amenable to specific targeting
by current experimentation, new experimen-
tal strategies have to be designed.

The improvement of proteome coverage
through focusing on parts that are under-
or over-represented, especially at a stage
where several thousand proteins have already
been identified, establishes the validity of the
ADE concept. ADE will thus be an essential
component in our further analyses of the
D. melanogaster proteome (see Discussion),
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Figure 3 Benefits of the ADE strategy visualized

by combined protein parameter histograms and

difference histograms. (a) Comparison of length

distribution of proteins identified in five Kc167

cell line experiments versus all proteins

(Supplementary Fig. 2; under-represented areas

are shown in yellow, over-represented areas in

green). The numbers indicate how many proteins
are under- or over-represented, respectively.

(b) 1,194 proteins identified by gel-filtration

experiments versus 4,455 proteins identified

in five previous experiments. (c) Protein length

class association of newly identified proteins

(purple box) by the gel filtration experiment.

The values indicate absolute numbers of added

identifications. (d) Comparison of isoelectric point

(pI) distribution of 7,998 proteins identified

from various experiments versus all proteins.

(e) 1,960 larval proteins identified by free-flow

electrophoresis pH 4–7 versus all proteins.

(f) Isoelectric point class association of newly

identified larval proteins (purple box) by the

protein free-flow electrophoresis experiment

compared to the proteins identified by the

undirected larval experiments (3,955).

The values indicate absolute numbers of

added identifications.
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and we expect it to be a very efficient strategy for minimizing the high
levels of redundancy in similar shotgun proteomics projects.

Bioinformatic analysis of the proteome catalog

Using sample diversity and diverse biochemical fractionation schemes
in combination with the iterative ADE feedback strategy, we present
what is, to our knowledge, the largest high-quality shotgun proteomics
data set to date. Forty-three experiments from four developmental
stages (embryo, larva, pupa, adult) and two cell lines (Kc167, S2) of
D. melanogaster provided evidence for the expression of 9,124 proteins
(Supplementary Table 2 online), which are encoded by 8,672 distinct
gene models (62.9% of all gene models). From B10 million MS/MS
sequencing attempts acquired in close to 1,700 liquid chromato-
graphy (LC)-MS/MS runs, almost 500,000 redundant and 72,281
distinct peptide sequences could be assigned with a PeptideProphet
probability value of at least 0.9 (ref. 8) (Supplementary Results).
On average, eight peptides were identified per protein. This data
set is publicly available through PeptideAtlas4 (http://www.mop.
unizh.ch/peptideatlas) and FlyBase (http://www.flybase.org/). The
PeptideAtlas information for the identified proteins includes the
genome sequence coordinates of the corresponding peptides, along
with experimental information.

To assess whether our approach identified low-abundance proteins,
we compared FCF parameter distributions of the experimentally
observed proteins versus those of all proteins7. Despite a clear bias

toward identifying proteins with higher FCF values, the data set
comprises a substantial portion of low-abundance proteins
(Fig. 4a): 351 of the 1,000 proteins with the lowest FCF values,
compared to 725 of the 1,000 proteins with the highest FCF values,
have been identified. In addition, the protein instability histogram of
experimentally seen versus all proteins shows that we predominantly
identify stable proteins (Fig. 4b). Furthermore, of the 9,124 experi-
mentally identified proteins, 1,833 (20.1%) have one or more trans-
membrane domains (predicted using TMHMM2.0)9, and 1,020
(11.2%) are secreted proteins (predicted using SignalP3.0)10. These
values are close to the 22.5% transmembrane and 12.4% secreted
proteins predicted for the entire set of 16,743 distinct protein
sequences. Thus, when combined with adequate multidimensional
fractionation strategies, a shotgun approach can identify a very
substantial percentage of low-abundance, membrane and secreted
proteins, which represents a major advance compared to two-
dimensional gel-based approaches.

A first-pass analysis of functional protein domains using the Pfam
classification (Supplementary Table 3a,b online) revealed that B67%
of all distinguishable fly proteins and 75% of the experimentally
identified proteins contain a Pfam domain, indicating that we
preferentially identified proteins with described functional domains.
Under-represented Pfam domain families primarily include domains
found in transcription factors and plasma membrane proteins. This
finding correlates with the above-reported under-representation of
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Figure 4 Additional biases among the experimentally identified proteins. (a,b) Distributions of protein parameters of experimentally identified proteins

(9,124) versus all proteins (16,743) for FCF (a) and protein instability (b) based on dipeptide composition. Low FCF values indicate low-abundance proteins.

Proteins with instability scores (440) are typically unstable (ExPASy, ProtParam tool). Under-represented areas are shown in yellow, over-represented areas

in green. The numbers indicate how many proteins are under- or over-represented, respectively. (c,d) Gene Ontology (GO) comparison of gene models

according to the average length of their encoded proteins. Gene models having at least one GO assignment (GO+) in the database are represented by black

bars; gene models lacking a GO assignment (GO–) are represented by red bars. Comparison of the GO distributions of all gene models in the database

(13,792) (c) versus the distribution of GO classes of the experimentally observed 8,672 gene models (d) reveal a statistically highly significant under-
representation of GO– gene models encoding for proteins in the length classes below 500 aa (Supplementary Table 3f and Supplementary Fig. 2).
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basic proteins and of proteins with transmembrane domains. Con-
versely, we see an over-representation of domains found in enzymes
and cytoplasmic proteins.

Gene Ontology (GO) analysis enables one to group gene sets into
coherent functional classes, allowing interpretation of results in a
biological context11. We performed a GO analysis on a reduced set of
GO categories (GO-slim) on all predicted D. melanogaster gene
models and the experimentally identified gene models (Supplemen-
tary Table 3c–e online). The experimentally identified gene models
were over-represented in the ‘known’ GO categories (GO+), confirm-
ing the results of the Pfam analysis. Conversely, under-represented
gene model annotations included molecular function categories
such as receptor activity, ion channel activity and transcription
factor activity.

Finally, we performed a statistical analysis of the gene models
according to average protein length and GO classification using a
w2 test. All gene models were subdivided into those with (GO+) or
without a GO annotation (GO–) and their length distribution was

compared with that of all experimentally identified gene models. This
comparison was performed within defined-length classes, thereby
making it independent of the shotgun-induced length bias. It revealed
a statistically significant (P-values ranging from 2 � 10E-34 to 3 �
10E-2) under-representation of GO– gene models encoding proteins
in the length classes of o500 amino acids (aa; Fig. 4c,d and
Supplementary Table 3f online). As the shotgun approach itself
should be unbiased for the presence or absence of GO annotations
within a given length class, we suggest that the strong under-
representation of the GO– class in the observed gene models likely
indicates a substantial proportion of them to be a result of incorrect
gene predictions.

Proteomics-based genome annotation

The proteomics data set described here provides experimental con-
firmation for many of the computer-predicted protein sequences.
Furthermore, the data set contains additional information in the
form of high-quality uninterpreted spectra12 that can be used to

Figure 5 Identification of new genes/exons

using proteomics data. (a) (i) Peptide-based

identification (orange-boxed sequence) of a novel

ORF of 87 aa that is highly conserved from

plants to human. (ii) The D. melanogaster

homolog of the human UFM1 maps within a

stretch of 1,592 base pairs between the genes

CG33455 (translational stop) and CG33456
(translation initiation). The exact positions of the

promoters (arrows) are unknown. The map is not

drawn to scale. (b) (i) Overprediction of splice

sites in a very large exon (42,600 aa in length)

leads to a frameshift and consequently to the

premature stop of the predicted protein sequence

(CG14897). The remaining part of this exon

contained a favorable translation initiation site,

and an ORF of 1,298 aa was assigned to a

distinct gene model (CG14896). Both ORFs have

been identified by various peptides. (ii) Our

cross-comparative database searches identified

six distinct peptides (orange boxes) that flank the

last exon of the first gene model (CG14897).

Closer inspection of the genomic locus revealed

that this large exon not only includes the three

novel peptides but also interconnects the two

predicted ORFs fusing them to a single gene

model. The longest protein sequence derived
from this fused gene has a length of 3,441 aa

and is not only anticipated by the Genescan

algorithm but has also been computationally

predicted25. (c) (i) Schematic drawing of the

predicted gene CG3689 (a homolog of the nudix

hydrolase family in mouse) of which only one

splice variant is annotated, which is supported by

expressed sequence tags. However, the currently

annotated D. melanogaster protein lacks the

highly conserved C terminus (ii). This stretch of

45 aa is present in homologous proteins of other

insects, nematodes, plants and mammals. The

conservation of the current proteins from the fruitfly compared to other species terminates at the end of coding exon 3. Identification of a peptide that maps

to the 3¢ region of CG3689 uncovered this highly conserved domain in the fruitfly. A predicted splice site within the last coding exon of CG3689 results in a

frameshift of the ORF and consequently perfectly incorporates the missing conserved C-terminal domain into the coding sequence (red arrow). (d) (i)

Figure 4d documents a peptide that partially overlaps with the fifth coding exon present in both protein isoforms encoded by the gene CG8322. A blastp

search using this peptide identified a complete match in protein LD21334p that was identified in a high-throughput EST sequencing project26. LD21334p

itself appeared to be almost identical to CG8322, differing only in the fifth exon. This exon is extended at both its 5¢ and 3¢ ends and includes in the case
of LD21334p the entire peptide sequence. We therefore conclude that CG8322 encodes two different proteins rather than one. m, translational start codons;

*, translational stop codons. The original gene models are taken from FlyBase. Identified peptides are represented as orange boxes. Identified peptide

sequences are boxed. Identical as well as conserved amino acid residues are highlighted in gray.
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identify novel genes or exons. To identify so-far-unannotated protein
sequences, we performed cross-comparative database searches for
seven representative large experiments (Supplementary Table 2 and
Supplementary Results), which identify peptides that suggest the
presence of an open reading-frame (ORF) in what was predicted to be
a noncoding region (Supplementary Table 4 online). Two classes of
novel coding regions could be identified. The first group uncovered
novel genes, an example of which is depicted in Figure 5a. Database
searches established this previously unannotated ORF as the fruitfly
homolog of the human ubiquitin-fold modifier-1-precursor (UFM1),
the product of which is ligated to target proteins in a manner similar
to ubiquitin13. It belongs to a growing family of conserved, very short
ubiquitin-like proteins, which regulate a wide range of cellular func-
tions, including cell-cycle progression, DNA repair and apoptosis.

The second group of peptides map to genomic regions of previously
annotated genes. Although all coding regions implied by these pep-
tides were missed in previous annotations due to erroneous or
incomplete splice-site predictions, these novel coding regions do not
uniformly define alternatively spliced isoforms, but instead constitute
three subclasses. Incorrect or incomplete splice-site predictions may
lead to a gene fusion (Fig. 5b), identification of missed splice variants
(Fig. 5c) or extensions of existing exons (Fig. 5d).

These examples illustrate the shortcomings of current gene predic-
tion algorithms and underscore the importance and usefulness of a
comprehensive proteome catalog for genome annotation. Extrapolat-
ing from the pilot study results, we expect that the whole proteomic
data set will contribute considerably to the annotation of the
D. melanogaster genome. However, as for the gene models described
above, this will require manual validation, confirmation and inclusion
into FlyBase. This protracted, manual process is in progress in
collaboration with professional FlyBase curators, and validated cor-
rected or new gene models will be added to the public domain.

PTP library for targeted, low-redundancy proteome analysis

The shotgun approach has become widely used, especially for com-
parative and quantitative proteomics experiments14–16. However,
besides the many advantages of this approach, such as high through-

put, minimized sample handling and identification of low-abundance
proteins, there are two inherent problems. First, the loss of associa-
tion between a protein and the peptides generated after tryptic
digestion poses substantial computational challenges to assign peptide
sequences back to their cognate protein(s)12. Second, the shotgun
strategy is not designed to selectively collect information for specific
proteins. Although present in a sample, a protein may remain
undetected owing to undersampling effects in the mass spectrometer3.
One way to circumvent this problem is to reduce sample complexity.
However, considering the dynamic range of proteins in a sample, a
more suitable method would be to selectively detect specific proteins.
A promising concept that addresses these two main shortcomings of
the shotgun method relies on so-called PTPs. Within a single experi-
ment, information on multiple proteins can be selectively retrieved
and where appropriate, protein levels can be determined by absolute
means (Fig. 6). Our experiments have uncovered PTPs for 6,980
D. melanogaster proteins derived from 450% of the current gene
models. These PTPs, which are 6–55 aa long and generated by tryptic
digestion, are in the measurable range of most mass spectrometers.
To generate the list of experimentally observed PTPs, all 321,297
unique in silico fully tryptic peptides were aligned with the 72,281
distinct peptides identified by MS/MS. This generated 37,279 observed
PTPs (Supplementary Table 5 online). The number of observed
PTPs per protein ranged from 1 to a total of 127 PTPs (on average
five PTPs per protein). Of the latter, identified for the retinoid-
and fatty acid–binding glycoprotein CG11064-PA, a subset was
preferentially identified.

Our D. melanogaster PTP library will enable researchers to selec-
tively analyze and quantify a high percentage of fruitfly proteins in
non-gel-based comparative proteomics experiments without the need
for further technology development (Fig. 6).

DISCUSSION

We used a directed, large-scale shotgun proteomics approach to
generate a high-quality data set that enabled identification and
confirmation of 460% of all fruitfly gene models. Elements essential
to achieving this coverage were (i) the selection of diverse biological
samples spanning the main developmental stages of D. melanogaster,
(ii) a combination of multiple fractionation techniques at the cellular,

Differential labeling using isobaric or isotopic tags

Selective identification and quantification
of PTPs by mass spectrometry

Extract proteins

Digest proteins into peptides

Combine samples and separate
the mixture into distinct fractions

State A State B

Chemically synthesized
PTPs

Figure 6 Outline of a typical PTP experiment. Proteins of two samples to be

compared (for example, flies or cell lines) are extracted and digested with

trypsin. The samples are differentially labeled using isotopic or isobaric tags

and then combined. The resulting peptide mixture is subsequently spiked

with PTPs of known amount that are tagged with a third label. The known

amount of PTPs allows for an absolute quantification of the proteins in a

complex mixture. The mixture is further separated into subfractions and

every fraction is selectively scored for the presence of specific PTPs
(proteins) by mass spectrometry. Quantification of these PTPs is achieved by

the determination of isotope ratios. The PTPs required for such experiments

are generated by chemical synthesis or expressed in bacteria as an array of

PTPs that can be released from the polypeptide chain by a tryptic digest.

The PTPs that are specific for the proteins of interest are selected from the

PTP library: Most of the D. melanogaster proteins can be identified using at

least one unique tryptic peptide. However, not all sequences are suited for

proteomic approaches, and thus a library of PTPs needs to be defined within

the total pool of unique sequences by computational or in most cases by

experimental means. Critical constraints for their definition are the enzyme

selected for proteolytic cleavage, the dynamic range of the used mass

spectrometer as well as the absence of post-translational modifications on

the mature peptide. This last criterion is of great importance because post-

translational modifications are often reversible (dynamic) and thus again

introduce ambiguity into the system.
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protein and peptide levels to reduce sample complexity and (iii) a
feedback strategy that uses statistical analysis to integrate all results
into design of subsequent proteomic experiments. Whereas brute-
force, undirected, repeat analyses lead to saturation at a relatively low
level, the directed analysis of complementary samples substantially
increases proteome coverage. Although the ADE strategy is capable of
precisely indicating under-represented or missed protein classes,
subsequent experiments will cover only part of the targeted protein
fraction. The pool of missed proteins will become smaller with time,
but likewise, the yield of new peptides and proteins per experiment
will decrease. This alternating feedback process of thorough data
analysis and experimental redesign promises to enable extensive
proteome coverage much faster than undirected approaches. The
endpoint of full proteome coverage is difficult to define. Whereas in
an average comparative gene expression experiment involving
D. melanogaster the expression of roughly one-third of the gene
models17 can be detected, genome tiling arrays detected transcription
from 93% of all annotated genes18 in a set of diverse samples. It
remains to be established whether the undetected genes are expressed
at levels below the threshold of detection or whether they represent
incorrect predictions. Although the fruitfly proteome catalog is not yet
complete, it already contains sufficient information to address some of
these issues. We demonstrated the usefulness of proteomics for
confirming and improving genome annotation. Proteomics-based
confirmation of many hypothetical proteins, amendment of existing
gene models and identification of new genes are likely to lead to the
development of improved gene prediction algorithms and eventually
to an accurate and complete list of gene models.

The directed shotgun proteomics approach holds great promise for
pharmaceutical applications: B20% of the identified proteins are
transmembrane proteins and B10% are secreted. Both protein classes
constitute the predominant targets for drug discovery. In particular,
focusing analysis on PTPs enables selective targeting and quantification
of proteins in very complex samples such as human serum. PTPs confer
greater reliability on these protein identifications and, by enabling rapid
screening of biological samples for biomarkers19, hold immense
potential for diagnostics. Sharing proteomics data sets and developing
sophisticated algorithms for PTP prediction3,20 will increase and
eventually complete these libraries. This will open the field for global
profiling of proteomes for which a platform has already been designed.

Our data set also provides an excellent resource for method devel-
opment, to explore the temporal and spatial expression of proteins,
and to identify overlaps and differences with large scale gene expression
studies. Specific experiments to detect the type and exact position of
post-translational modifications, such as sites of glycosylation21 or
phosphorylation15,22, will supplement the continuously growing pro-
teome catalog. Similar proteome annotation projects will supplement
genome annotation, affect technology development and be fundamen-
tal to realizing the goals of the emerging field of systems biology.

METHODS
Mass spectrometry. Nanoflow-LC-MS/MS was performed by coupling an

UltiMate high-performance liquid chromatography (HPLC) system (LC-Pack-

ings/Dionex) in-line with a Probot (LC-Packings/Dionex) autosampler system

and an LTQ ion trap (Thermo Electron). Samples were automatically injected

into a 10-ml sample loop and loaded onto an analytical column (9 cm � 75 mm;

packed in-house with Magic C18 AQ beads 5 mm, 100 Å (Microm)). Peptide

mixtures were delivered to the analytical column at a flow rate of 300 nl/min of

buffer A (5% acetonitrile, 0.2% formic acid) for 25 min and then eluted using a

gradient of acetonitrile (10–45%; 0.5%/min) in 0.2% formic acid. Peptide ions

were detected in a survey scan from 400 to 2,000 a.m.u. (1–2 mscans) followed

by 3–6 data-dependent MS/MS scans (3 mscans each, isolation width 2 a.m.u.,

dynamic exclusion list 250, dynamic exclusion time 240 s) in an automated

fashion. Alternatively, in a few cases an LTQ-FT or LCQ mass spectrometer was

used (Supplementary Table 2). The analytical column was regenerated for

20 min with buffer A at 300 nl/min before loading the next sample. Alternative

measurements: nanoflow-LC-MS/MS was performed by coupling an Agilent

1100 HPLC (Agilent Technologies), operated as described23, to a 7-Tesla LTQ-

FT mass spectrometer (Thermo) or an LTQ ion trap (Thermo Electron). For

peptide LC, trapping columns (1 cm � 100 mm) and analytical columns (15 cm

� 50 mm) were packed in-house with ReproSil-Pur C18- AQ, 3 mm (Dr. Maisch

GmbH). Peptide mixtures were delivered at 3 ml/min on the trapping column

for desalting. After flow-splitting down to B150 nl/min, peptides were

transferred to the analytical column and eluted in a gradient of acetonitrile

(1%/min) in 0.1 M acetic acid. The eluate was sprayed via emitter tips (New

Objective), butt-connected to the analytical column. Mass spectrometers were

operated in data-dependent mode, automatically switching between MS and

MS/MS acquisition for the three most abundant peaks in a given MS spectrum.

In the LTQ-FT, full-scan MS spectra were acquired in the Fourier transform–

ion cyclotron resonance (FT-ICR) at a target value of 5 � 106 with a resolution

of 20,000. The three most intense ions were then isolated for accurate mass

measurements by an FT-ICR–selected ion monitoring scan, which consisted of

10-Da mass range, at a resolution of 50,000. These ions were then fragmented

in the linear ion trap. In the LTQ, MS scans were recorded in centroid mode at

a target value of 30,000. Peptides were fragmented when the signal exceeded

2 � 104 counts by filling the ion trap at a target value of 10,000 with a

maximum ion time of 100 ms.

Pfam analysis. The set of 16,743 distinct D. melanogaster protein sequences

from the Berkeley Drosophila Genome Project BDGP3.2 database (Supple-

mentary Table 1) was searched against the Pfam database of Hidden Markov

Models (release 20, May 2006, 8,296 protein family models) using the HMMER

software package (hmmer2.3.2, http://hmmer.janelia.org/). We carried out a

stringent analysis and relied on the individual domain family gathering

thresholds, as recommended in the HMMER user manual. Result files were

parsed and the respective number of hits per Pfam domain were recorded for all

proteins and for the subset of 9,124 experimentally identified proteins.

Hypergeometric tests (Fisher’s exact test) were used to assess the statistical

significance of the over- or under-representation of certain Pfam domain

families among the experimentally identified proteins compared to all distinct

proteins. Only Pfam domains that have ten or more hits among all proteins

(348 Pfam domain families) and that score P o 0.01 are shown in Supple-

mentary Table 3. The expected number of false positives for this analysis in

random data would be 3.5 (348 Pfam domain families with ten or more hits

among all proteins, multiplied with the P value cutoff of 0.01). This indicates

that 3–4 of the 62 Pfam families (listed in Supplementary Table 3a,b) could be

in this list just by chance, as a result of multiple testing.

GO-slim analysis. GO-slim terms for the categories Cellular Component,

Molecular Function, and Biological Process were mapped to all gene models

(BDGP 3.2, 13,792 gene models) and to the 8,672 experimentally identified

gene models using the GO Term mapper tool (http://go.princeton.edu/cgi-bin/

GOTermMapper). This tool uses the map2slim.pl script (Chris Mungall,

BDGP) to bin the submitted gene lists to a static set of broader, high-level

parent generic GO-slim terms. The counts of the respective categories among

all gene models and the experimentally identified gene models were calculated.

Similar to the Pfam analysis, the statistical significance of an under- or over-

representation of a certain GO-slim category was assessed with a hyper-

geometric test (Fisher’s exact test, Supplementary Table 3). The expected

number of false positives for this analysis in random data would be B1.2 (119

GO-slim categories, multiplied with the P value cutoff of 0.01), indicating that

one out of the significantly over- or under-represented categories could be

among the significant categories just by chance. The entire list of the GO-slim

categories (including those that are not statistically significant) is shown in

Supplementary Table 3c,e.

Cross-comparative searches for genome annotation. A representative

subset of B1.3 Mio. MS/MS spectra (13% of total) were searched both

against our standard protein database (BDGP release 3.2) and against a
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six frame–translated genome sequence database (BDGP release 4.2), generating

two TurboSequest outputs for every spectrum. In principle, the sequence of a

peptide that is identified with a high PeptideProphet probability score in the

genomic database search, but a low score in the protein database (P o 0.5)

search could represent an interesting hit. These hits could be explained if the

respective protein sequence entry is missing in the protein database, either

through erroneous or incomplete gene prediction, or if an entire protein

category (e.g., small ORFs) is not included in the database.

Generation of the D. melanogaster PTP library. The large amount of

experimental data allowed us to generate a comprehensive PTP library for

roughly 50% of all D. melanogaster gene models (Supplementary Table 5, or

publicly available through PeptideAtlas), comprising only experimentally con-

firmed and statistically validated peptides (PeptideProphet P 4 0.9). For

D. melanogaster, we have calculated a total number of 321,297 candidate

(putative) PTPs, assuming a complete cleavage by trypsin and setting a length

constraint for the peptides of 6–55 aa, reflecting the experimentally determined

dynamic range of the tandem mass spectrometer (unique peptide assignments

including missed cleavage sites were excluded from the list). To generate the list

of experimentally confirmed PTPs, the complete set of candidate PTPs was

aligned with the 72,281 distinct peptides that have been identified by MS/MS.

This resulted in a total of 37,279 observed PTPs (Supplementary Table 5). The

number of PTPs per protein ranged from 1 to a total of 127 PTPs of which

usually a subset was preferentially identified.

Note: Supplementary information is available on the Nature Biotechnology website.
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