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Abstract

Genetic variation is expressed by the presence of polymorphisms in compared genomes of individuals that can be transferred 
to next generations. The aim of this work was to reveal genome dynamics by predicting polymorphisms among the genomes 
of three individuals of the highly inbred B10 cucumber (Cucumis sativus L.) line. In this study, bioinformatic comparative 
genomics was used to uncover cucumber genome dynamics (also called real-time evolution). We obtained a new genome 
draft assembly from long single molecule real-time (SMRT) sequencing reads and used short paired-end read data from 
three individuals to analyse the polymorphisms. Using this approach, we uncovered differentiation aspects in the genomes of 
the inbred B10 line. The newly assembled genome sequence (B10v3) has the highest contiguity and quality characteristics 
among the currently available cucumber genome draft sequences. Standard and newly designed approaches were used to 
predict single nucleotide and structural variants that were unique among the three individual genomes. Some of the variant 
predictions spanned protein-coding genes and their promoters, and some were in the neighbourhood of annotated interspersed 
repetitive elements, indicating that the highly inbred homozygous plants remained genetically dynamic. This is the first bio-
informatic comparative genomics study of a single highly inbred plant line. For this project, we developed a polymorphism 
prediction method with optimized precision parameters, which allowed the effective detection of small nucleotide variants 
(SNVs). This methodology could significantly improve bioinformatic pipelines for comparative genomics and thus has great 
practical potential in genomic metadata handling.
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Introduction

The scope of this study was to sequence and assemble the 
nuclear genome of the highly inbred cucumber (Cucumis 

sativus L.) B10 Borszczagowski line, annotate the gene 
structure, assign functions to the genes, and characterize 
the genetic variations among three individual plants of the 
B10 line. Demonstration of individual variability at such a 
high level of homozygosity (inbred) will reveal the genome 
dynamics (also called real-time evolution) and help to con-
firm the continuous character of evolution. The obtained 
results allowed us to conclude that plant populations have 
internal systems that allow them to adapt and survive in 
changing environmental conditions. It is extremely impor-
tant to have a very good genome reference sequence because 
resequencing the lines and aligning them to the reference 
sequence enables the study of natural evolutionary changes 
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as well as changes caused by breeding processes. Our aim 
was to estimate the nature of genomic variation in the real-
time evolutionary process. Genomic variations range in 
size from single base pairs to large chromosomal events, 
and such variations are common in single organisms and in 
population development. Comparative genomics can reveal 
detailed genetic variations in the form of small nucleotide 
variants (SNVs), larger structural rearrangements as struc-
tural variants (SVs), and copy number variations (CNVs). 
Although there is no clear terminology that is accepted by 
the research community, SNVs are considered to include 
single nucleotide polymorphisms (SNPs), multiple nucleo-
tide polymorphisms (MNPs) that are variants in a nucleo-
tide sequence, and insertions/deletions (InDels) of up to 50 
nucleotides.

The development of next-generation sequencing (NGS) 
technologies and computational algorithms that can deal 
with genomic data makes precise variant predictions pos-
sible. Rapid genomic advances together with decreasing 
costs of NGS provide genuine opportunities to characterise 
genomes by whole-genome sequencing (WGS) of a wide 
set of genomes (Gudbjartsson et  al. 2015; Zhang et  al. 
2015), individual genomes (Chen et al. 2012), and even the 
genomes of single cells (Macaulay and Voet 2014). Nev-
ertheless, the length and quality of NGS reads produced 
by these technologies still require improvement (Schatz 
et al. 2010). Second-generation reads have a low error rate 
(< 0.01%) but are too short to overcome many problems 
posed by long repetitive elements in genomes. Third-gener-
ation sequencing technologies can produce single molecule 
real-time (SMRT) reads up to 100,000 bp long, but have an 
error rate of at least 0.13 (Goodwin et al. 2016).

Many computational tools for calling SNVs and SVs 
are based on the alignment of WGS short reads to a refer-
ence sequence (resequencing) (Van der Auwera et al. 2013; 
Hwang et al. 2015; Guan and Sung 2016; Kavak et al. 2017). 
Long reads also have been used in the alignments (Chaisson 
et al. 2015; Huddleston et al. 2017; Merker et al. 2018). Con-
sidering the bias in sequencing technologies and limitations 
of the algorithms used for variant detection by resequencing, 
accurate bioinformatic assessments remain a challenge. SNV 
calling requires a good understanding of variant call filtering 
to achieve improved accuracy (Li 2014). However, achiev-
ing high accuracy in variant calling is difficult, especially 
for incomplete draft genomes and/or when limited variant 
data are available.

SNVs and SVs can change the phenotypes of plants 
(Springer et  al. 2009; Saxena et  al. 2014; Zhang et  al. 
2015) and other organisms (McCarroll and Altshuler 2007; 
Stankiewicz and Lupski 2010; Raphael 2012; Carvalho and 
Lupski 2016). In plants, SNP-related research is focused 
on population genotype scanning for diversity estimation 
or for desirable traits for breeding purposes (Varshney 

et al. 2009; Uchida et al. 2011; Lindner et al. 2012; Var-
shney et al. 2014). This is achieved using technologies that 
range from whole-genome shallow to medium resequencing 
to genotyping-by-sequencing. The results can be used for 
high-throughput marker-assisted genotyping, which is use-
ful in plant genetics and breeding (Torkamaneh et al. 2018). 
Accurate computational variant calling has been achieved 
for Arabidopsis thaliana (Ossowski et al. 2010; Cao et al. 
2011), cucumber (Qi et al. 2013), and some other plants 
(Torkamaneh et al. 2018). The development of bioinfor-
matic methods for accurate WGS at an individual level will 
strongly facilitate plant genetics research and provide valu-
able background data for large-scale genomic studies.

Cucumber is a model plant for sex determination and 
is considered valuable for omics research (Pawełkowicz 
et al. 2016, 2019). The cucumber genome is estimated to 
be 367 Mb long (Arumuganathan and Earle 1991), which 
is small compared with other model crops such as maize 
(2300 Mb) (Schnable et al. 2009) and soybean (1115 Mb) 
(Schmutz et al. 2010). Three cucumber genome drafts are 
available: Chinese line 9930 (GenBank: GCA_000004075.2) 
(Huang et al. 2009); American Gy14 (http://wengl ab.horti 
cultu re.wisc.edu/) (Cavagnaro et  al. 2010); and North 
European B10 line B10v1 (GenBank: GCA_000224045.1), 
which we sequenced previously (PCC Genomics http://csgen 
ome.sggw.pl). B10 is a highly inbred monoecious acces-
sion of ‘Borszczagowski’, an old field cultivar from Poland, 
from which many breeding lines have been derived through 
mutagenesis, in vitro regeneration, and transgenesis.

In the present study, we performed an initial bioin-
formatic assessment of the genome dynamics in the B10 
line. The aim of the study was twofold: (1) to enhance 
genomic sequence information by SMRT read assembly 
and to detect polymorphisms among three individuals B10 
plants that were inbred separately for over 20 generations, 
and (2) to study the SNV rate, genomic features, and event 
distribution on the B10 chromosomes. Additionally, we 
designed a novel analytic SNV calling method that we 
called reciprocal reference variant calling (RRVC) and an 
additional false positive filter that we called the reference 
sample variant filter (RSVF). Initial test of their effective-
ness was carried out. We assembled a highly improved 
genome draft, B10v3 (GenBank: LKUO00000000) from 
PacBio SMRT reads, which has longer scaffolds and con-
tiguity of contigs as well as better quality gene annotations 
than the previous drafts. The genome dynamics data across 
generations of the B10 line also are presented. Three 
individual B10 genomes were sequenced using Illumina 
paired-end technology and were scanned for genomic vari-
ations using bioinformatics tools. We designed a calling 
method with improved precision rather than sensitivity 
that uses WGS to produce consensus data from three indi-
vidual plants in a way that can contribute to more accurate 
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variant recognition. This is the first study to measure 
genome dynamics at the level of a single breeding line 
and with no access to polymorphism databases specific to 
the target genome.

Materials and methods

Plant material cultivation, genomic DNA 
preparation, sequencing, and read pre‑processing

For PacBio sequencing, cucumber plants from the B10 
line were cultivated in a greenhouse during the summer 
2014 under a controlled photoperiod of 16-h/8-h day/
night. Material for Illumina sequencing and comparative 
genomics was cultivated in a polytunnel during the sum-
mer 2014 with no controlled photoperiod. For both cultiva-
tion systems, young leaves were collected, frozen in liquid 
nitrogen, and stored at − 74 °C. For PacBio sequencing, 
the leaves were harvested from many plants and pooled. 
For Illumina sequencing, tissue was collected from three 
individual plants (P1, P2, and P3). DNA was extracted 
from 1 g of tissue using a DNeasy Plant Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s proto-
col. The amount and purity of the DNA were determined 
using a NanoDrop 2000 spectrophotometer and by electro-
phoresis quality check on a 1% agarose gel. Long SMRT 
read sequencing was performed using the PacBio RS II 
system in two phases: P5C3 chemistry and P6C4 chemis-
try. Paired-end read sequencing was performed using the 
Illumina HiSeq system set to 100 bp long reads paired in 
300-bp inserts for P1, P2, and P3. These plants had a last 
common ancestor plant 21 (P1, P2) or 22 (P3) generations 
ago (Fig. 1). After sequencing, the short read data were 
trimmed of adapters and low-quality bases using Trimmo-
matic v0.35 (Bolger et al. 2014) to leave reads no shorter 
than 50 bp in length. Before and after trimming, the read 

base quality was checked with FastQC (http://www.bioin 
forma tics.babra ham.ac.uk/proje cts/fastq c/).

Genome reference sequence assembly 
and correction

A genome sequence draft was assembled from all the 
obtained PacBio reads using the PBcR pipeline with Cel-
era Assembler v8.3rc2 (Berlin et al. 2015), which is suited 
to long SMRT reads (Fig. 2, step A). After assembly, the 
contigs were corrected and quality filtered by long reads 
genome alignment using PacBio Pbalign v3.0 (https ://githu 
b.com/Pacifi cBio scien ces/pbali gn/blob/maste r/doc/howto 
.rst) for the SMRT read alignment and the variant calling 
algorithm Quiver v2.1.0 (https ://githu b.com/Pacifi cBio scien 
ces/Genom icCon sensu s) for the correction. For the raw draft 
correction, only the newest 27 × P6C4 PacBio reads were 
used as input data (Fig. 2, step B). The output draft sequence 
(B10v2) underwent an NCBI foreign contamination screen-
ing process to filter out contigs with mitochondrial, plas-
tidial, and other foreign elements, and was then submitted 
to GenBank (GCA_001483825.2). The B10v2 sequence 
was corrected using the short Illumina reads from P1. The 
BBnorm Ecc Linux shell script from the BBTools v35.82 
suite (https ://jgi.doe.gov/data-and-tools /bbtoo ls/bb-tools 
-user-guide /) was used to correct the quality of the P1 Illu-
mina reads by k-mer distribution count-based modification. 
The P1 processed reads were aligned to the genome draft 
sequence using Bowtie2 v2.2.9 (Langmead and Salzberg 
2012). Samblaster v0.1.24 (Faust and Hall 2014) was used 
to deduplicate aligned read pairs. The obtained alignment 
results were input to Pilon v1.20 (Walker et al. 2014) to 
correct the contig sequences. The genome draft sequence 
corrected using the P1 data was considered the final version 
of the genome draft sequence (B10v3) and was used as the 
reference genome for the subsequent analyses (Fig. 2, step 
C).

Corrected contigs also were mapped to the cucum-
ber chromosomes using the marker primer pairs from the 
most recent cucumber consensus map (Yang et al. 2013) 
to compare the mapping with previous findings (Wóycicki 
et  al. 2011) about rearrangements between investigated 
B10 cucumber line and the cucumber 9930 line refer-
ence genome. First, we excluded all duplicated sequence 
pairs from the accessible map data file. Then we aligned 
the remaining marker primer pairs to the genome B10v3 
sequence using BWA software v0.7.13 (Li and Durbin 
2010). Primer pairs with mapping quality < 40 (Phred) 
were rejected. The marker positions on the chromosomes 
and the primer pair B10v3 contig alignment position were 
used to detect discrepancies in sequence consecutiveness 
between the two genomes. The occurrences of large intra-
chromosomal translocations and inter-chromosomal genome 

Fig. 1  Pedigree tree of the three cucumber plants from the B10 line 
(P1, P2, P3) used in this study

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/PacificBiosciences/pbalign/blob/master/doc/howto.rst
https://github.com/PacificBiosciences/pbalign/blob/master/doc/howto.rst
https://github.com/PacificBiosciences/pbalign/blob/master/doc/howto.rst
https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/PacificBiosciences/GenomicConsensus
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/


180 Molecular Genetics and Genomics (2020) 295:177–193

1 3

rearrangements were counted. The marker information was 
used to determine inter-chromosomal rearrangements when 
more than two different chromosome sequences were found 
on one B10v3 contig. Intra-chromosomal rearrangements 
were determined when the consecutiveness of specific chro-
mosome sequences was deranged on a contig. The results 
obtained using the rearrangement counting method based on 

map markers are highly dependent on map density, which 
does not allow the precise measurement of the sizes of large 
events between two lines. The mapped contigs were used to 
compare the genomic distributions of some genomic fea-
tures. The density of predicted variants, genes, interspersed 
repetitive elements (IREs), and repeats was assessed by 
counting the start positions of every feature and event in 

Fig. 2  Genome draft assembly, 
variant calling, and analysis 
pathway. The box arrows 
indicate the order of opera-
tions. B10 cucumber line plant 
samples and derived sequence 
information are colour-coded: 
blue (Plant 1), green (Plant 2), 
and red (Plant 3). Dark grey 
indicates a pooled DNA sample 
from many B10 line plants, 
sequenced by SMRT technol-
ogy. Long thick horizontal line 
represents the genome reference 
sequence. Thin, short lines rep-
resent short reads after Illumina 
sequencing aligned to the refer-
ence sequence. Vertical dotted 
lines crossing the reference line 
represent the aligned read set 
of each raw variant called in a 
certain location. Analysis of the 
raw variant calling results was 
performed in three subsequent 
steps: reference sample variant 
filtering, reciprocal reference 
variant calling, and standard 
variant calling. Black arrows 
represent the location of final 
variant call results to raw vari-
ant call results. FP, filtered-out 
false positives; SNV, unique 
variant called for the specific 
plant sample (colour figure 
online)
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200-kb genomic sequence consecutive bins and drawing 
graphical representations of their relative positions in a 
whole chromosome context. Additionally, maximum weight 
match scaffolding of B10v3 contigs was performed with 
ScaffMatch v0.9 (http://alan.cs.gsu.edu/NGS/?q=conte nt/
scaff match ) using BAC end sequences from the B10 cucum-
ber BAC library characterised by Gutman et al. (2008).

We compared the B10v3 draft genome with the three 
currently accessible cucumber genomes: Gy14 cucum-
ber line genomic draft v1.0 (Gy14) sequence (down-
loaded from http://wengl ab.horti cultu re.wisc.edu/), 
9930 reference genome sequence (9930) for cucumber 
(GenBank: GCA_000004075.2), and B10v1 (GenBank: 
GCA_000224045.1). We applied Perl scripts to com-
pare contigs after modifying the other cucumber genome 
sequences by splitting them wherever ‘N’ occurred in the 
sequences. Draft sequence quality assessment was per-
formed by evaluating the gene structure assembly using the 
Benchmarking Universal Single-Copy Orthologs (BUSCO) 
program v3, locating near-universal single-copy orthologues 
for plants (Simão et al. 2015). B10v2 contigs and B10v3 
scaffolds also were assessed for quality parameters with 
BUSCO by comparing them with the final B10v3 Illumina-
corrected contigs. The B10 line genome sequence length 
and single copy sequence length were estimated using the 
information about 31-mer frequency distribution in Illumina 
read sets from individual plant genomes (https ://bioin forma 
tics.uconn .edu/genom e-size-estim ation -tutor ial/).

Genome annotation

The B10v3 genome draft was annotated using a variety 
of bioinformatics tools. CpG islands were detected using 
CpGcluster (Hackenberg et al. 2006). Barrnap v0.7 (http://
www.vicbi oinfo rmati cs.com/softw are.barrn ap.shtml ) was 
used to predict rRNA genes, and ARAGORN v1.2.26 (Las-
lett and Canback 2004) was used to predict tRNA genes. 
Other non-coding RNAs, namely, small nuclear (sn) RNAs, 
small nucleolar (sno) RNAs, ribozymes, and miscellane-
ous (misc) RNAs were annotated using Infernal v1.1.2 
(Nawrocki and Eddy 2013) and the Rfam database (Naw-
rocki et al. 2015). RepeatMasker v4.7.0 (http://www.repea 
tmask er.org/) was used to annotate repetitive elements in 
the genome, including single sequence repeats (SSRs), low 
copy repeats (LCRs), and IREs. Two types of IRE databases 
were used as input: (a) RepeatMasker-implemented data-
bases built from the Dfam consensus HMM database release 
20170127 (http://www.dfam-conse nsus.org) and RepBase 
release 20170127 (http://www.girin st.org/); and (b) the data-
base of consensus models of putative repetitive elements 
for B10v3, created using RepeatModeler v1.0.4 (http://repea 
tmask er.org/Repea tMode ler/). For both RepeatMasker and 

RepeatModeler we used Rmblastn v2.6.0 + (Camacho et al. 
2009) for the alignments.

The gene structural annotation of B10v3 was performed 
in two steps: the main transcriptome-based method and the 
ab initio unsupervised learning approach. For the transcrip-
tome-based annotation, Illumina paired-end RNA-seq data 
from 150 transcriptome samples of different organs: leaves, 
fruits, shoot apex, and floral buds (four developmental 
stages: 1–2 mm, 3–5 mm, 6–8 mm and 9 mm), extracted 
from 21 different cucumber lines were applied. The tran-
scriptome data were obtained from the Polish Consortium 
of Cucumber Genome Sequencing (http://csgen ome.sggw.
pl/en-us/). Illumina adapters, poor quality regions, and 
sequences matching cucumber rRNAs were removed from 
RNA-seq reads using BBDuk2 software from BBTools suite 
v36.32 (http://jgi.doe.gov/data-and-tools /bbtoo ls). FastQC 
(http://www.bioin forma tics.babra ham.ac.uk/proje cts/fastq 
c/) was used to assess the short read quality before and after 
read correction. De novo RNA-seq assembly was performed 
using Trinity v2.3.2 (Grabherr et al. 2011) for strand-specific 
libraries, and rnaSPAdes v3.9.0 (http://cab.spbu.ru/softw are/
rnasp ades/) for non-strand-specific libraries. Expression of 
the assembled transcripts was estimated separately for each 
sample using Salmon v0.7.2 (Patro et al. 2017). Only tran-
scripts with an expression value of at least 1 transcript per 
million were kept for further analysis. Assembled transcripts 
were used to annotate the genome using PASA v2.1.0 (Haas 
et al. 2003). Only spliced alignments that met the follow-
ing criteria were used for annotation: minimum 75% of 
the assembled transcript aligned to the genome, minimum 
95% alignment identity, perfect match required for three 
nucleotides flanking the splice boundaries, minimum intron 
length of 20 bp, and maximum intron length of 10,000 bp. 
TransDecoder v3.0.1 (Haas et al. 2013) was used to predict 
coding regions within transcripts annotated by PASA. For 
each transcript, only the single best open reading frame was 
retained, considering the length of the coding region and 
Blastp/PFAM homology information.

For the complementary unsupervised learning annotation, 
we used Braker v1.1 pipeline, wrapping GeneMark-ES Suite 
v4.3.2, and Augustus v3.2.3 algorithms (Hoff et al. 2016). 
Repetitive elements and rRNA and tRNA genes detected 
using the main transcriptome-based approach and (secondly) 
annotated by us as IREs in B10v3 were masked. GeneMark 
was trained with pooled RNA-seq data from four tissues 
(leaves, fruits, shoot apex, and floral buds) and two devel-
opmental stages (1–2 mm and 3–5 mm) of the B10 line, 
and mapped using TopHat2 v2.1.1 (Kim et al. 2013). The 
unsupervised learning approach was used to extract gene 
structures unannotated by the transcriptome-based method. 
All annotated genomic structures were compared using Bed-
tools v2.26.0 (Quinlan 2014). The final structural annotation 
was compared with the annotated genomes of A. thaliana 

http://alan.cs.gsu.edu/NGS/?q=content/scaffmatch
http://alan.cs.gsu.edu/NGS/?q=content/scaffmatch
http://wenglab.horticulture.wisc.edu/
https://bioinformatics.uconn.edu/genome-size-estimation-tutorial/
https://bioinformatics.uconn.edu/genome-size-estimation-tutorial/
http://www.vicbioinformatics.com/software.barrnap.shtml
http://www.vicbioinformatics.com/software.barrnap.shtml
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://www.dfam-consensus.org
http://www.girinst.org/
http://repeatmasker.org/RepeatModeler/
http://repeatmasker.org/RepeatModeler/
http://csgenome.sggw.pl/en-us/
http://csgenome.sggw.pl/en-us/
http://jgi.doe.gov/data-and-tools/bbtools
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cab.spbu.ru/software/rnaspades/
http://cab.spbu.ru/software/rnaspades/
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(GenBank: GCF_000001735.4) and melon (Cucumis melo) 
(GenBank: GCF_000313045.1) by determining the over-
all genome protein length ratio. The translated protein 
sequences from the three genomes were aligned by Blastp 
2.6.0 + (Camacho et al. 2009).

Symbols, descriptions, orthology groups, plant gene 
ontology (GO) slim terms, and functional domains were 
assigned to the genes using eggNOG-mapper v1.0.3 
(Huerta-Cepas et al. 2016, 2017) and InterProScan v5.30-
69.0 (Jones et al. 2014). After defining the protein-coding 
genes in B10v3, they were compared with the annotated 
protein-coding genes in the published cucumber genome 
drafts (9930, Gy14, and B10v1).

Variant calling, comparative genomics, and SNV call 
verification

To define the dynamics of the B10 genome in terms of poly-
morphisms, we generated unique SNV, SV, and CNV pre-
dictions for each plant sample. Pre-processed plant sample 
read sets were quality-corrected using the BFC tool r181 (Li 
2015a). The reads from each plant were aligned to B10v3 
using BWA v0.7.13 (Fig. 2, step D) (Li and Durbin 2010). 
The alignment output was deduplicated using Samblaster 
v0.1.24 (Faust and Hall 2014).

To call CNVs, we used CNVnator v0.3.2 (Abyzov et al. 
2011) and to call SVs we used FermiKit r178 (Li 2015b), 
both with default settings. We used two separate pipelines to 
call SNVs and produce consensus results of variability: Free-
Bayes v1.1.0-3-g961e5f3 (https ://arxiv .org/abs/1207.3907) 
(https ://githu b.com/ekg/freeb ayes) and DeepVariant v0.4.1 
(https ://githu b.com/googl e/deepv arian t). Outputs for each 
variant calling software were stored in VCF, GFF, or BED 
file format. Comparisons and manipulations of the variant 
data files were performed using Bedtools v2.26.0 (Quin-
lan 2014) and Bcftools v1.4-6-g5349659 (http://samto ols.
githu b.io/bcfto ols/). The two SNV calling programs were 
selected because of their strong algorithm diversification and 
improved chance of obtaining accurate results.

On the basis of the Li 2014 study (Li 2014), we applied 
the following filters to the results of FreeBayes to increase 
the accuracy of this pipeline: low-complexity region exclu-
sion, maximum read depth, unbiased double strand cover-
age, quality filter of minimum variant quality 30 (Phred), 
and minimum read depth > 30. Mdust script (https ://githu 
b.com/lh3/mdust ) was used to detect repetitive sequences as 
an input for the low-complexity filtering. For DeepVariant, 
the raw results that passed the two built-in quality filters 
were used for further analysis. Separate read sets for each 
plant sample were used for SNV calling with the exception 
of the P2 and P3 read alignments in the FreeBayes pipeline, 
which had a stronger discriminative potential when many 
samples were used. Both calling pipelines also estimated 

the genotype for every predicted SNV. Calls that were 
assigned a homozygous reference genotype or no genotype 
was specified were filtered out from each result set before 
subsequent analysis. The final outputs from the two pipe-
lines were used to generate a consensus result by select-
ing SNV calls that were common to both pipelines for each 
plant sample (Fig. 2, step E). By comparing the P2 and P3 
called variant sets, calls were extracted that were unique 
for each plant (Fig. 2, step H). If P2 and/or P3 read-derived 
SNV calls had an equivalent in the P1-derived result, it was 
considered a false positive (FP) because all variant calling 
results from the P1 read alignment to B10v3 were assumed 
to be an overall method bias effect. In this way, we applied 
the reference sample variant filter, RSVF (Fig. 2, step F). 
Next, RRVC was performed and common P2 and P3 calls 
were extracted to determine polymorphisms unique to the P1 
genome (Fig. 2, step G). First, all heterozygous calls com-
mon to P2 and P3 were removed because B10v3, being a 
flattened diploid genome representation of one allele from 
two possible alleles, limits the prediction to homozygous 
calls. This step can significantly increase the specificity of 
the method at the cost of sensitivity.

Genes, exons, and up to 1000-bp long upstream sequences 
from the start codon of the predicted genes (upstream pro-
moters) and 500-bp long downstream sequences from the 
stop codon (downstream promoters) were checked for over-
lap with the positions of the SNVs, SVs, CNVs, and IREs. 
All IRE predictions with no additional filters were included 
in comparison. To differentiate between exonic sequence 
derived from primary transcriptome-based approach and 
IRE we applied a filter for IRE sequences to be no more 
than 5% diverged from matching consensus sequence used 
for IRE annotation. The CNV and SV locations also were 
compared with the IRE locations to predict active transpos-
able elements (TEs). TEs were specified if their location 
on a genome sequence intersected with that of a rearrange-
ment or if at least one of the ends was ≤ 10 bp from the 
rearrangement.

From the set of identified unique plant SNVs, 34 ran-
domly selected calls were processed for validation by 
PCR amplification and Sanger sequencing. Primers for the 
PCR amplifications were designed based on the B10v3 
reference sequence. For every selected SNV location, 
Sanger sequencing was performed for the DNA sequence 
unique to the plant with the predicted SNV and for the 
corresponding DNA sequence from one of the other plant 
samples. If the unique plant sequence was recognised as 
modified following the SNV prediction and the other plant 
sequence matched the reference sequence, the SNV predic-
tion was validated. Precision (positive predictive value, 
PPV) for each plant SNV set was calculated as a frac-
tion of true positives (TPs) among all the results verified: 
PPV = TP ÷ (FP + TP). After PPV estimation, the mutation 

https://arxiv.org/abs/1207.3907
https://github.com/ekg/freebayes
https://github.com/google/deepvariant
http://samtools.github.io/bcftools/
http://samtools.github.io/bcftools/
https://github.com/lh3/mdust
https://github.com/lh3/mdust
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rate per base per generation was assessed for each plant 
using the newly calculated B10 line genome length esti-
mation and the PPV parameter for result normalisation.

Results

Sequencing and read alignment

PacBio sequencing was performed in two phases using 
P3C5 and P4C6 chemistry. The P3C5 read set was an aver-
age of 3119-bp long (maximum length, 35,190 bp) with 
approximately 42.8-fold genome depth (42.8 ×) coverage. 
The P4C6 read set was an average of 6733-bp long (maxi-
mum length, 45,973 bp) with 27 × coverage (Table S1). 
The Illumina read data had 40.79 × coverage for P1, 
37 × for P2, and 36 × for P3. Adapter and low-quality base 
trimming filtered out about 4% of the reads in every set. 
The mean quality assessment in the Phred scale of the read 
sets from each sample was 28 for the raw read sets and 33 
after the reads were corrected.

Read correction did not affect the overall read numbers, 
but it reduced the occurrences of unique k-mers in the read 
sets to approximately 48% with BBtools and 12% with 
BFC tools. For the raw genome draft sequence correction 
with P1 short reads, 91.52% of the reads were aligned to 
the genome draft, with at least one read coverage spanning 
about 96% of the B10v2 draft sequence. Aligned reads 
covered an average depth of 40 × for B10v3 bases, and 
59.78% of all reads were properly paired after alignment.

For variant calling, 93.50%, 92.35%, and 93.71% 
of the aligned reads contained 90.85%, 89.73%, and 
91.23% properly paired reads of the P1, P2, and P3 sam-
ples, respectively, and 91%, 92%, and 91%, of the B10v3 
sequence had at least 1 × coverage of aligned reads of 
P1, P2, and P3, respectively. Aligned P1 reads covered 
an average depth of 40 × for B10v3 bases, and close to 
36 × for the aligned reads of both P2 and P3.

Genome reference sequence assembly

The obtained raw assembly draft (from PacBio P3C5 and 
P4C6 reads) was 343.58-Mb long and contained 8096 con-
tigs with a maximum length of 12.66 Mb and 842-kb N50 
parameter. After the first read correction, none of the main 
parameters of the new B10v2 assembly differed from those 
of the raw assembly, except the total contig length increased 
slightly to 343.85 Mb. Screening of B10v2 identified 61 con-
tigs that were contaminated with foreign sequences (detected 
by BLAST searches of the NCBI database). Illumina read 
correction of the P1 sample resulted in the final B10v3 
draft, which was 342.29-Mb long (93.27% of the genome 

length) and contained 8035 contigs with a maximum length 
of 12.67 Mb and 858 kb N50 parameter. Statistics for the 
contigs at the three stages, raw genome draft, B10v2 (long 
read corrected draft), and B10v3 (Illumina-corrected draft), 
are presented in Table 1. 

The completeness assessment with BUSCO software, 
which evaluated near-universal single-copy orthologue 

Table 1  Statistics for the contigs in the raw draft, SMRT-corrected 
(B10v2) draft, and Illumina-corrected B10v3 reference draft

Raw genome draft B10v2 B10v3

No. contig sequences 8096 8096 8035

Total nucleotides in contigs 
(Mb)

343.58 343.85 342.29

Genome coverage (%) 92 92 93

Max contig length (Mb) 12.66 12.66 12.67

N50 contig length (kb) 842 842 858

L50 56 56 55

Fig. 3  Completeness assessments using BUSCO v3 of the three 
assessable cucumber genome drafts and the Illumina-corrected 
B10v3 reference draft 9930, cucumber reference genome; Gy14, 
cucumber line genomic draft v1.0; B10v1, published B10 genome 
draft; B10v3, current B10 genome draft short read corrected

Table 2  Statistics for the contigs in the three accessible cucumber 
genome drafts

a B10v1 is the first B10 line genome assembly
b B10v3 is the Illumina-corrected B10 cucumber line reference 
genome draft

9930 Gy14 B10v1a B10v3b

No. sequences 11,366 13,604 16,454 8035

Total bases (Mb) 195.7 192.3 193.2 342.29

Genome coverage (%) 53 52 52 93

N50 length (kb) 42.3 37.6 23.2 858

L50 1290 1476 2417 55
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structures present in the B10v3 genome, draft detected 
91.7% complete and 1.9% fragmented gene sequences. This 
result was better than those obtained for the Gy14, 9930, 
and B10v1 sequences (Fig. 3, Table 2). The B10v3 scaffold 
completeness check gave a worse result (91.3%) than for the 
contigs. We also compared B10v3 with B10v2 which had 
not been short read corrected, and observed identical gene 
completeness metrics for both sequences. Our results also 
showed that short read assemblies of 9930 and Gy14 were of 
relatively high quality, and differed in completeness metrics 
from B10v3 by only 2% and 3.7%, respectively.

We mapped 119 contigs (1.48%) from a single copy 
sequence of 196.6 Mb of the B10v3 genome, which made up 
57.4% of the reference length (53.6% of the 367-Mb cucum-
ber genome length), onto the seven cucumber chromosomes. 
Chromosome 3 had 25.3% of the mapped contigs, and the 
remaining chromosomes had from 4.4% to 19.9% of the total 
mapped contig length. Out of the 1656 unique marker primer 
pairs available, 1480 (89.3%) aligned uniquely to B10v3 
contigs. A primer alignment quality threshold of 40 (Phred) 
eliminated the occurrence of primer pairs that aligned with 
high quality more than once to the reference sequence. 
About 200 primer pairs were rejected because of low map-
ping quality, which may indicate sequence diversification 
between the genomes. For 24 pairs only one primer was 
mapped with sufficient quality. None of the filtered primer 
pair alignments was split between two contigs, which con-
firmed solid Chinese map transition to the B10v3 genome. 
By comparing marker mapping chromosome positions on 
B10v3 contigs and the 9930 draft sequence, we found 25 
inter-chromosomal events (Fig. 4a) and 415 intra-chromo-
somal large rearrangements (Fig. 4b). Most intra-chromo-
somal events were complex, comprising more than one rear-
rangement. This is consistent with previous findings about 
diversified intra-species chromosome sequences between 

North European and Asian cucumber genomes (Wóycicki 
et al. 2011). By analysing k-mer distribution from three 
Illumina read sets, the B10 line haploid genome length was 
estimated to be 413.6 Mb and a single copy sequence of the 
genome was estimated to be about 196 Mb.

Annotation of the genome draft reference sequence

We identified 141,992 SSRs, 39,510 LCRs, and 29,791 CpG 
islands in the B10v3 draft sequence. IRE prediction identi-
fied 238,779 called structures covering 49.31% of the B10v3 
total length. A total of 142,303 sequences were of known 
TE classes: 41,280 DNA TEs, 3567 rolling-circles, 73,855 
long terminal repeats, 23,557 long interspersed nuclear ele-
ments, and 37 short interspersed nuclear elements; 96,476 
TE sequences were of unknown class (Table 3).

The transcriptome-based gene structure predicted 21,714 
genes with an average of 8.48 exons per transcript. The 
unsupervised learning method assessment resulted in 23,673 
genes with an average of 5.41 exons per transcript. A total 

A B

Fig. 4  Chromosomal distribution of inter-chromosomal (a) and intra-
chromosomal (b) events detected between B10 (B10v3) and 9930 
cucumber lines by mapping B10 contigs on 9930 chromosomes. One 

event was counted more than once depending on the number of chro-
mosomes involved

Table 3  Coverage of interspersed repetitive elements (IREs) and 
transposable element (TE) classes related to the length of the B10v3 
draft genome sequence

Transposable element 
class

No. interspersed ele-
ments

Percentage 
of genome 
length

DNA TEs 41,280 4%

LINE 23,557 5%

LTR 73,855 21%

Rolling circle 3567 1%

SINE 37 0.00%

Other 7 0.00%

Unknown 96,476 19%
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of 18,116 gene structures from the unsupervised learning 
method spanned the same regions as 18,573 structures from 
the transcriptome-based method. Therefore, the additional 
unsupervised learning prediction identified 5557 addi-
tional structures with 5676 allelic variants and an average 
of 1.79 exons per transcript. Altogether, 27,271 genes were 
predicted with an average of 7.09 exons per transcript for 
all the genes. The longest gene was about 98 kb, 19 genes 
were ≤ 150 bp, and the average gene length was 4177 bp. In 
B10v3, fewer genes were specified, but they had a higher 
number of exons than the genes in the B10v1 draft sequence 
of Wóycicki et al. (2011). Although the overall number of 
predicted genes was smaller (by approximately 2500) in the 
B10v3 reference genome draft then in B10v1, 665 additional 
genes were annotated.

In addition, 23 miRNAs, 191 snoRNAs, 111 snRNAs, 
2543 rRNAs (of which 56 were mitochondrial rRNAs), 
and 1835 tRNAs were annotated in B10v3. A total of 5610 
(approximately 20%) and 197 of the transcribed genes were 
annotated as long intervening non-coding (linc) RNAs 
and miscRNAs, respectively. These numbers are likely to 
be higher if both a larger variety of RNA-seq samples is 
used for the annotation and software specifically designed 
for element prediction are used. Nevertheless, our annota-
tions can be used to explore long non-coding RNAs that 
may be involved in key biological processes in plants (Liu 
et  al. 2012; Zaynab et  al. 2018). Of the 21,661 protein 
coding genes, 83% had an InterProScan match and 76% 
were assigned to COGs (clusters of orthologous groups) 
by eggNOG-mapper (Table 4). Among the InterProScan 
and eggNOG predictions, 568 and 2368, respectively, had 
hypothetical, putative or expressed function descriptions 
or no description at all. This is significantly less than the 
approximately 8000 genes that were annotated as hypotheti-
cal function in the B10v1 draft (Wóycicki et al. 2011). GO 
slim terms were assigned to 11,441 genes from the tran-
scriptome-based method and 1464 from the complementary 
unsupervised learning method, giving a total of 12,905 GO 
slim annotated genes (Table 4, Figures S1–S3). In B10v1, 
approximately 450 fewer genes had GO terms assigned, 
indicating the GO annotations were similar in both genome 
drafts. In the other two genome drafts, 23,248 and 21,491 
protein-coding genes were predicted in the 9930 line (Li 

et al. 2011) and in Gy14 (https ://phyto zome.jgi.doe.gov/
pz/porta l.html#!info?alias =Org_Csati vus), respectively. 
Herein we predicted 1578 less protein-coding genes than 
in the 9930 line, but the number of exons per transcript 
was 1.78 higher in B10 line. Next, we assessed the protein 
length ratio between our final B10v3 annotations and those 
of A. thaliana and C. melo. Blastp searches detected 19,356 
proteins from our annotations that matched proteins in the 
other two genomes. We selected the top matches for com-
parison. Approximately 69% of the matched B10 line protein 
sequences had length ratios to 1.0 with the corresponding 
proteins in the other two genomes. Approximately 10% of 
the annotated proteins from B10v3 were longer and 18% 
were shorter than the corresponding proteins in the other 
genomes (Fig. 5).

A comparison of the B10v3 gene annotations with IRE 
locations detected 9638 genes, 374 exons, and 16,061 
promoters that appeared to have at least one IRE in their 
sequence (Table 5). Exons of genes annotated using the 
supervised learning method did not have overlapping IREs 
because IREs were masked before annotation. Many IRE 
sequences overlapped with more than one exon location.

Genomic variant analysis and mapping

The DeepVariant and FreeBayes pipelines produced 42, 20, 
and 33 SNV consensus calls for the P1, P2, and P3 samples, 

Table 4  Numbers of annotated genes in the B10v3 reference genome

TB, transcriptome-based method; UL, unsupervised learning method; COG, clusters of orthologous groups; GO, gene ontology

Gene prediction 
method

Genes predicted Genes with COG 
assigned

Genes with COG func-
tion described

Genes with COG 
gene assigned

InterProScan 
match

Genes with GO 
slim annotation

TB 16,104 15,456 14,240 2919 14,102 11,441

UL 5557 987 806 125 3777 1464

Total 21,661 16,443 15,046 3034 17,879 12,905

Fig. 5  Distribution of the protein length ratios between the predicted 
proteins in B10v3 and the top matches in the Arabidopsis thaliana 
and melon (Cucumis melo) genomes

https://phytozome.jgi.doe.gov/pz/portal.html#!info%3falias%3dOrg_Csativus
https://phytozome.jgi.doe.gov/pz/portal.html#!info%3falias%3dOrg_Csativus
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respectively (Table S2). Each pipeline produced at least 200 
times more separate calls than the final consensus result. 
The DeepVariant calls were much higher than the FreeBayes 
calls, which reflects the many yet unchallenged methodo-
logical uncertainties in calling SNVs (Table S3). All com-
mon results were consistent between the pipelines, although 
one call of SNP by one method was called as InDel by the 
other. After further analysis, we defined it as InDel because 
the DeepVariant results are generally more accurate. The P1 
call set contained a significantly higher InDel to SNP ratio 
(1.12) than the P2 and P3 sets. The P3 call set had no InDels. 
Eight SNV calls were allocated in genes, six were found in 
the exons of different genes, and two were in the promoter 
region (Table 6). Five, four, and one SNV calls were found 

in functional loci in P1, P2, and P3, respectively. Two of the 
genes were assigned hypothetical function. The gene with a 
SNP called in the upstream promoter region was annotated 
as thioredoxin-like fold glutathione S-transferase and a gene 
with a SNP called in an exon was annotated as putative hom-
ologue of carbon catabolite repressor protein 4. Two ribo-
somal subunits, one lincRNA, and two genes with unknown 
function had an SNV predicted in exons (Table S4). Approx-
imately twice as many called SNPs were G:C → A:T transi-
tions rather than A:T → G:C transitions, and the majority of 
them were outside genes and their promoters.

The SV prediction resulted in 61 SV calls, of which 54 
(89%) were translocations, five were deletions, and two 
were insertions. Most of the SV predictions were for the P3 

Table 5  Numbers of predicted 
genomic structural features that 
overlapped with interspersed 
elements in the cucumber 
B10v3 genome assembly

a Upstream promoter region, up to 1000-bp long sequence from the start codon of a predicted gene
b Downstream promoter region, 500-bp long sequence from the stop codon of the gene

Genes Exons Promoters Upstream 
promoter 
 regionsa

Downstream 
promoter 
 regionsb

No. of features overlapped with IREs 9638 374 16,061 11,492 11,422

No. of IRE overlapped with features 30,789 487 33,141 18,586 18,326

No. of classified TE overlapped with features 2872 46 3580 1833 2004

Table 6  Numbers of called 
single nucleotide variants 
(SNVs) by type and presence in 
genes of P1, P2, and P3

a Numbers in brackets are the number of heterozygous genotypes assigned to SNV calls

Total  SNVsa SNPs InDels MNPs SNPs in InDels in

Exons Promoters Exons Promoters

P1 42 17 19 6 2 0 2 0

P2 20 (17) 15 2 3 0 2 1 0

P3 33 (29) 30 0 3 1 0 0 0

Total 95 (46) 62 21 12 3 2 3 0

Table 7  Numbers of predicted copy number variations (CNVs) and structural variants (SVs) unique to each of three plant samples, and numbers 
of these rearrangements that intersect with gene structures

More than one structural rearrangement (CNV) can occur in features such as genes or exons but it is counted once, even if there are many CNVs 
within a single feature. Therefore, there might be fewer exons with CNVs than CNVs in exons because some exons have more than one CNV. A 
CNV also may occur in two different features as features can be found on both forward and reverse DNA strands

CNVs predicted Genes with 
CNVs

CNVs in genes Exons with 
CNVs

CNVs in exons Promoters with 
CNVs

CNVs in 
promoters

Plant 1 258 115 60 367 60 123 61

Plant 2 240 141 75 477 75 155 78

Plant 3 128 52 35 186 35 52 33

SVs predicted Genes with 
SVs

SVs in genes Exons with 
SVs

SVs in exons Promoters with 
SVs

SVs in 
promoters

Plant 1 14 6 8 9 7 3 3

Plant 2 17 6 5 3 1 4 4

Plant 3 30 10 10 34 9 8 7



187Molecular Genetics and Genomics (2020) 295:177–193 

1 3

sample (n = 30). About 38% of the SV calls were within gene 
structures, and approximately 28% intersected with exons. 
Close to 23% were found in promoter sequences (Table 7). 
CNV prediction resulted in 626 events, of which 60% were 
deletions and the remainder were duplications. Nearly half 
as many unique CNVs were predicted for the P3 sample. 
Approximately 27% of CNV locations intersected with 
genes, exons, or promoters, and many CNVs spanned more 
than one genomic feature (Table 7).

By assessing IRE surroundings for any predicted rear-
rangements such as CNVs and SVs, we detected all the CNVs 
that were up to 10 bp away or that intersected with IRE loca-
tions. Most of these IREs were not assigned to any known 
TE class (Table 8). The IREs that were in close proximity to 
rearrangements affected six predicted gene structures: four 
in the P1 sample and two in the P2 sample. None of these 
predicted IREs were within an exon or an assigned TE class.

All predicted genomic features and events were posi-
tioned on chromosomes relatively to the mapped contig posi-
tions (Table S5). Approximately 23% of predicted events, 
57% of all IREs (12% of known class TEs), and 84% of 
genes were positioned on the chromosomes. Most variants 
were not assigned to chromosomes and repetitive regions 
of the genome were difficult to assign precisely to chro-
mosomes by sequence alignment. This indicates that most 
genomic sequence dynamic activity was in repetitive regions 
of the B10 line genome. The chromosomal distribution of 
genomic features showed that most of the gene dense regions 
overlapped with TE dense regions; however, some regions 
(up to about 1-Mb long), even regions that were densely 
populated with genes, had no classified TE or repetitive ele-
ments (Fig. 6).

A total of 34 SNV predictions were selected randomly for 
PCR amplification and Sanger sequencing verification as fol-
lows: 16 (nine SNPs and seven InDels), 10 (eight SNPs and 
two InDels), and eight SNPs from P1, P2, and P3 samples, 
respectively (Table S6). The PCRs for 10 calls (six SNPs 
and four InDels) resulted in no product. Sanger sequencing 
for one SNP called in P3 could not be read precisely, and 
primers could not be designed for two calls. In the verified 
sample subset, 12 out of 23 SNVs were validated; two in P1 

and three in P2 were FPs. None of the predictions was vali-
dated in P3. Thus, a precision of 0.44, 0.8, and 0.52 for SNPs, 
InDels, and the entire variant set, respectively, was obtained. 
Precision estimations for the sample subset were 0.78, 0.63, 
and 0.0 for P1, P2, and P3, respectively (Table 9). The nega-
tive results for the P3 sample suggests that the P3 reads may 
be of lower quality than the reads from the other samples, 
but this requires advanced scrutiny by, for example, k-mer 
read set analysis. By normalising SNV calling numbers with 
a precision parameter, an average mutation rate per genera-
tion per base of 1.74 × 10−9 was obtained for the three plants.

Discussion

Long SMRT sequencing in genomics projects has contrib-
uted to an overall rise in the quality of research. In January 
2016, three plant genomes assembled solely using PacBio 
technology were published in GenBank (Osipowski et al. 
2016), compared with 40 current assemblies. New and devel-
oping bioinformatic methods can overcome more sequenc-
ing errors than previous techniques and SMRT sequencing 
offers high genome contiguity, which will be particularly 
beneficial when the cost of such sequencing falls. Neverthe-
less, the use of higher quality short read data for compara-
tive genomics is currently unavoidable because of the much 
lower costs and already established bioinformatic pipelines.

Efficient and precise WGS-based variant prediction 
is used widely in well studied genomes, but its effective-
ness for lesser known genome sequences is unclear. Some 
plant research using solely bioinformatics tools has been 
carried out recently at the population scale, supported by 
comprehensive variant databases (Torkamaneh et al. 2017). 
However, because of a lack of information about genomic 
variation, tuning pipelines for variant prediction remains a 
challenge for most organisms. Prediction inaccuracies can 
lead to results deficiencies, and this together with strong 
beliefs in the reliability of bioinformatic results have become 
important matters of scientific debate in plant research 
(Torkamaneh et al. 2018). Moreover, for certain species, 
different intra-species genotypes might be sequenced with 

Table 8  Numbers of predicted 
copy number variations (CNVs) 
and structural variants (SVs) 
unique to each of three plant 
samples, and numbers of 
rearrangements up to 10 bp 
from or intersecting with 
interspersed repetitive elements 
(IREs)

a TE classified, IREs assigned to Class I or Class II transposable elements (TEs)

CNVs IREs TE  classifieda

P1 239 1086 83

P2 231 1107 87

P3 120 640 60

SVs IREs TE  classifieda

P1 10 8 0

P2 1 2 1

P3 3 3 1
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varying quality, depending on the interests and capabilities 
of a research group. This poses additional challenges in 
terms of pooling efforts for more precise genome research 
and collaborating on the development of universal and inte-
grated species-specific genome databases. Overcoming such 
obstacles is crucial for plant-specific genomic research.

The multidimensional integration of data can result in 
optimal quality and contiguity of genome drafts and contrib-
ute to correctly designed variant calling pipelines. Achieving 
this is essential for accurate bioinformatics-based polymor-
phism prediction as well as for developing efficient breed-
ing strategies. Many crop genomic projects were designed 
to combine genomic techniques and WGS data to achieve 
reproducible and accurate bioinformatic variant calling for 
deep phenomics analysis (D’Agostino and Tripodi 2017). 
Additionally, plant accession association studies require 
highly accurace variant calling, and contribute to such stud-
ies by database creation (Goodwin et al. 2016; D’Agostino 
and Tripodi 2017; Torkamaneh et al. 2018). It also is feasible 
to use WGS data and advanced bioinformatics in smaller 
genomic projects to improve accuracy.

Genome dynamics

A newly SMRT read-assembled genome draft sequence and 
three Illumina genomic read sets from individual plants that 
are 21–22 generations distant from the common ancestor 
were used in this study. This allowed us to assess genome 
dynamics such as genomic feature and event distribution 
and their inter-occurrence. We designed a specific approach 
to predict unique SNVs among individual genomes, with 
the focus on accuracy. This approach to measuring variation 
between individual plants of an inbred crop line is new and 
could be used for other organisms with available genome 
draft reference sequences. Specifically, we investigated 
whether genomic variation could be called within a highly 
inbred B10 cucumber line, and determined the character-
istics of genome dynamics such as the inter-occurrence of 
genes and variants as well as TEs. Theoretically, the phylo-
genetic relationship of an individual plant and the configura-
tion of an individual genome of a highly inbred line might 

translate to more accurate variant predictions. However, the 
state of the genome draft sequence, read sequence errors, 
and the lack of comprehensive support for polymorphism 
data are challenges that need to be taken into account and 
overcome with reliable results (Li 2014). Our approach 
addressed these challenges by the systematic enhancement 
of raw read-derived data. Sequence correction of both the 
genome reference draft and the read sets should positively 
influence the accuracy of analysis (Li 2015a). The corrected 
genome draft gave significantly better results for the P1 reads 
set after correction than before in terms of the consistency of 
the read pairs, suggesting the importance of such correction 
after SMRT assembly.

We assembled a genome reference sequence of signifi-
cantly better contiguity and quality than the previously pub-
lished cucumber genome sequences (Huang et al. 2009; Cav-
agnaro et al. 2010; Wóycicki et al. 2011; Li et al. 2011). The 
B10v3 sequence helped to broaden the previous studies by 
including some unassembled coding and non-coding regions 
in the published assemblies. The B10v3 contigs contiguity 
was approximately 44% higher than that of the other cucum-
ber genome sequences. The genome k-mer analysis indicated 
that the B10 genome was 46.7 Mb longer than the cucum-
ber genome measured cytogenetically (Arumuganathan and 
Earle 1991), but further analysis is required to confirm this. 
From the B10v3 scaffold quality check, we concluded that 
the BAC end sequence information previously used for scaf-
folding was not sufficient to significantly enhance the B10v3 
contiguity results. Illumina mate pair read-based scaffolding 
and B10 line-specific genetic maps could vastly improve all 
aspects of the present B10v3 draft. Genome quality compari-
sons showed that short read correction in SMRT assembly 
quality enhancement was less important in coding regions, 
but it may be more useful during genome-wide variant call-
ing. Comparison with other cucumber line assemblies sug-
gests that finalisation of a genomic annotation (100% com-
pleteness) would require very detailed contiguity work and 
many more resources than is required for 90% annotation 
completeness.

IRE occurrence results are in line with general TE class 
occurrences in other eukaryotes genomes (Grzebelus 2018). 
The results of the two annotations are consistent with find-
ings that genome drafts with good contiguity have less well-
predicted structures but their genes have a higher average 
exon number (Denton et al. 2014). After filtering out small 
predicted genes, our results are consistent with recent results 
for the upgraded C. melo genome (Ruggieri et al. 2018) and 
confirms that high-quality Cucurbitaceae genome sequences 
tend to have more predicted genes. Our study clearly showed 
that with extended contiguity, a lower number of annotated 
genes are expected with an increased number of exons per 
gene. We have clear evidence that increasing contig contigu-
ity through assembly can help to update protein sequences 

Fig. 6  Graphical representation of genomic feature and event dis-
tribution in chromosomes by mapping B10 cucumber line contigs 
using Yang et al. (2013) markers. Density was assessed by counting 
the start positions of each feature and event in 200-kb consecutive 
bins. Features are: genes, repetitive (LCRs and SSRs), and transpos-
able elements class I (TE I) and II (TE II). Events are: copy num-
ber variants (CNVs), structural variants (SVs), and single nucleotide 
variants (SNVs). Information specific to the individual plant sample 
colour coded: blue (P1), green (P2), and red (P3). Genomic features 
are coloured blue because they were annotated on the B10v3 genome 
reference sequence corrected by P1-derived short read data. In an 
unmapped section only contigs containing genes are included (colour 
figure online)

◂
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that were shortened in previous assembly annotations. As a 
model plant, A. thaliana can be presumed to have a high-
quality predicted protein set. The C. melo genome also has 
been studied extensively. The annotated protein sets from 
both of these plants were used as benchmarks for our anno-
tation. We recognised from the length ratio distribution that 
improvements can still be made in the annotation of pro-
teins that had predicted sequences that were shorter than 
their orthologs in A. thaliana and C. melo. However, our 
annotations did produce many longer protein sequences, 
which indicates that this and forthcoming B10v3 annota-
tions could significantly improve the protein sequence qual-
ity in the Cucurbitaceae genomics field. The numbers of 
classified TEs detected in exons and promoters (Table 5) 
indicate some dynamics within coding and regulating ele-
ments of genes. Number of IREs detected in exons might 
seem too high but most of the detected IREs were matches to 
unknown consensus sequences generated by RepeatModeler 
approach highly rising sensitivity of the annotation method. 
Number of classified TEs overlapped with exons seems to be 
in line with general findings (Nekrutenko and Li 2001). In 
promoter regions, the number of predicted IREs that over-
lapped upstream sequences was similar to the number that 
overlapped downstream sequences, even though they were 
twice as short. This indicates there were more IREs in the 
downstream promoter regions.

The SNP transition ratio was similar to that from A. 

thaliana studies and was hypothesised to be caused by the 
deamination of methylated cytosines and ultraviolet light-
induced mutagenesis (Ossowski et al. 2010; Cao et al. 2011). 
Comparison of the TE and gene structure positions indicated 
that TE dynamics were high in non-genic regions, but that 
relatively low activity was expected from IREs in genes. The 
chromosomal distribution of genomic features indicates the 
existence of highly conserved genomic regions that may be 
of crucial biological importance for the plant (or for B10 
line phenotypic identity). However, singular rearrangements 
were predicted in some of these regions. This is the first time 
the mutation rate has been measured among plant accession 
individuals. It was approximately 3.5 times lower than the 
mutation accumulation in A. thaliana lines that were 30 
generations distant from each other (Ossowski et al. 2010). 
However, it must be noted that the cucumber genome is about 

three times longer than the A. thaliana genome, and that the 
SNV calling method was not optimally sensitive. Therefore, 
the mutation rate in B10 line individuals may be much higher.

In this study, we conducted a genomic comparison of 
several highly inbred line generations at the full genome 
scale. It clearly shows that dynamics between these genomes 
existed. We used a new significantly improved, cucumber 
B10 line genome sequence as the reference and predicted 
the variability of the genome.

Predicted SNV calls were selectively verified. If a genome 
has no database to benchmark a variant calling approach, a 
method that produces positive results is considered success-
ful and can contribute to the development of comprehensive 
databases. Focusing on precision at the cost of sensitivity, 
our method successfully achieved high accuracy for the P1 
sample (0.78). The P1 SNV calling was performed using our 
own methodology, which is very different from the methods 
used for the other two plants (P2 and P3).

For P2 and P3, SNVs were predicted by a standard 
method (Fig. 2) and gave worse results. For P3, the results 
were of much lower quality than those for P1 and P2. This 
may be because the sequencing quality of P3 seemed to be 
low, but the read data require more detailed checking to con-
firm this.

The approximately 30 × coverage per sample used in 
this study to detect variants via read alignment seems to be 
minimal for our goals. However, our novel RRVC approach 
achieved twice that coverage for the P1 sample, which 
helped increase the accuracy of variant calling. Precision 
results for each plant clearly reflected the advantage of 
RRVC. A similar algorithm could be useful for variant call-
ing studies that have a limited sequencing budget. Moreover, 
the RRVC approach allowed us to positively verify most of 
the randomly selected P1 SNVs in a manner that was more 
sensitive to InDel occurrences than the standard methods 
that were used for P2 and P3 variant calling. This was evi-
dent by the much higher ratio of predicted InDels to SNPs 
in the P1 sample than in the other samples. The InDel ratio 
obtained by RRVC for the P1 sample might indicate that 
the approach itself increased InDel calling sensitivity. The 
design of the analytical reference sample variant FP filter 
also increased the overall accuracy (Fig. 2).

Table 9  Numbers of single 
nucleotide variants (SNVs) 
called and verified, and 
precision parameter computed 
after verification for the P1, P2, 
and P3 samples

True positives in brackets

Total SNV 
called

SNV ran-
domly chosen

SNP verified InDel verified SNV verified Precision

P1 42 16 5 (4) 4 (3) 9 (7) 0.78

P2 20 10 7 (4) 1 (1) 8 (5) 0.63

P3 33 8 6 (0) 0 6 (0) 0.00

Total 95 34 18 (8) 5 (4) 23 (12) 0.52
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We concluded that in relatively high-quality genomes 
there are no obstacles to developing our approach further 
and to make sample-specific reference corrections for sub-
sequent comparative analyses. However, this approach may 
be more difficult to implement for highly fragmented genome 
drafts because each correction would significantly alter con-
tig lengths, making it much harder to compare corrected 
genome sequences. The applied method developed for this 
study was more sensitive to InDel detection and more pre-
cise in detecting SNPs than the standard methods because we 
used two sets of DNA with a nominal coverage of 37 × each. 
This methodology allowed the real-time evolution study of a 
frequency index of SNV mutations per nucleotide per genera-
tion for a single plant breeding line, based on a comparative 
analysis of individual genomes of individual plants.

In summary, PacBio SMRT reads proved to be of great 
value in enhancing the overall cucumber B10 line genome 
contiguity and quality (B10v3). We propose that SMRT 
reads are the best future solution for sophisticated compara-
tive genomics of lesser known eukaryotic genomes. Impor-
tantly, our method could significantly improve bioinformatic 
pipelines for comparative genomics and thus has great prac-
tical potential in genomic metadata handling.
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