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ABSTRACT: We measure the mechanical resonances of an
as-grown suspended carbon nanotube, detected via electrical
mixing in the device. A sequence of modes extending to 39 GHz
is observed with a quality factor of 35 000 in the highest mode.
This unprecedentedly high combination corresponds to a
thermal excited state probability below 10−8 and a relaxation
time of 140 ns with microsecond relaxation times for lower
modes. The effect of electron tunneling on the mechanical
resonance is found to depend on frequency as the tunneling
time becomes comparable to the vibration period.
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N anomechanical resonators allow the motion of massive
objects to be studied in the quantum regime.1−5 For

quantum behavior to become apparent, a resonator must be
cooled with high probability into its ground state, which
requires a temperature T < hf res/kB, where f res is the resonance
frequency and h and kB are, respectively, Planck’s and
Boltzmann’s constants. At the same time, a high quality factor
Q is required for a long-lived quantum state. In resonators
fabricated by top-down etching,6 making a device small to
increase f res leads to large surface losses and low Q. These
requirements can be reconciled in carbon nanotubes where
surface damage is eliminated by growing the nanotube in
the final fabrication step.7,8 In this Letter, we present a nanotube
electromechanical resonator with a harmonic spectrum of
modes extending to f res = 39 GHz with Q > 10 000, an
unprecedently high combination.5 Driving the resonances with
an on-chip metallic gate creates a measurable signal even at the
highest frequencies. Dilution refrigeration to 100 mK implies an
excited-state occupation probability of less than 10−8.
The ground state of a mechanical resonator has previously

been accessed both by active cooling via sideband coupling to
an electromagnetic cavity3−5 and passively through dilution
refrigeration.2 This allowed Fock states of the resonator to
be generated through coupling to a superconducting qubit,
although the short relaxation time (6 ns) prevented creation
of more complex quantum states.2 Carbon nanotube
resonators9−11 have shown very high Q factors7,8 below 1.1
GHz. Higher resonances have been identified in transport
spectroscopy.12,13

The device studied (Figure 1a) consists of a trench 900 nm
wide etched into a layer of plasma-enhanced chemical vapor
deposited SiO2. Five W finger gates are defined beneath the
trench, and W/Pt contacts 40 nm thick are deposited on either
side; finally, a nanotube is grown by chemical vapor deposition

to bridge between the two contacts.7,8 Electrical measurements
were performed in a dilution refrigerator at a mixing chamber
temperature of ∼100 mK with a bias Vsd

DC= 2 mV applied across
the device. As a function of voltage applied to all gates, the
current through the device is close to zero around +0.5 V and
increases on either side of this setting, corresponding to
conduction via electrons and holes (Figure 1b). Regularly
spaced Coulomb blockade peaks show that a quantum dot is
defined in the nanotube with an addition energy measured to
be ∼7 meV. This is somewhat smaller than in other suspended
devices,14−16 but as expected given the slightly larger
dimensions of this device, and is consistent with a quantum
dot formed across the main suspended part of the nanotube.
Mechanical resonances are excited by a microwave voltage

with frequency f and amplitude δVg
0 applied to one of the gates,

and detected in the dc current by the following mixing effect:9

The oscillating part of the gate voltage δVg(t) = δVg
0 cos(2πf t)

drives motion of the nanotube δu(t) = δu0 cos(2πf t + ϕM),
where u(t) is the nanotube’s displacement, δu0 the amplitude of
the motion, ϕM the phase difference between the drive and the
motion, and t time. At the same time, the source−drain voltage
Vsd acquires an oscillating component δVsd(t) = δVsd

0 cos(2πf t +
ϕE) with amplitude δVsd

0 and phase ϕE, induced between the
leads by capacitive coupling. The conductance through the
nanotube G(Vg,u) depends on source−drain and gate voltages
as well as on the displacement (via changes in gate
capacitance7,9,17 or tunnel rates18) and for small drive voltages
can be expanded as G(Vg(t),u(t)) ≈ G0 + (∂G/∂Vg)δVg(t) +
(∂G/∂u)δu(t) with G0 the conductance in the absence of
driving. The time-averaged current through the device is
therefore
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Resonances are evident as sharp steps in I(f), which arise
because on resonance δu0 is large while ϕM changes rapidly as a
function of frequency (since the displacement goes from in-
phase with the driving below resonance to out-of-phase above
resonance.) Numerically differentiating the measured I(f) to
make the signal clearer, the resonances are evident as peaks or
dips in dI/df. A sequence of such resonances was observed at
frequencies up to 39 GHz (see Supporting Information) of
which two elements are shown in Figure 1c,d. The mechanical
nature of these resonances is confirmed by the gate voltage
dependence; larger absolute gate voltages (either positive or
negative) pull the nanotube downward, increasing the tension
and thus the resonance frequency.7,9

Most of the observed resonances fall into a near-harmonic
ladder10 whose strongest element, which we assign as the
fundamental, is at ∼4.4 GHz (Figure 1c). This is made clear by
plotting the normalized resonance frequencies f n/nf1 as a
function of gate voltage, where f n is the frequency of the nth
mode with n = 1 being the fundamental (Figure 2a). A true
harmonic spectrum implies f n/nf1 = 1 for all modes. The
observed frequencies fall close to this value but with significant
deviations which vary irregularly with n and are largest for the
highest modes.
A number of fractional modes were also observed (n = 1/4,

1/2, 3/2), which we attribute to parametric driving of the
integer modes as the nanotube tension is modulated by the gate
voltage.19,20 (These are electrically mixed down to a dc signal
via higher-order current terms not included in eq 1, such as the
current proportional to Vsd

4 .) The evidence for assigning the
∼4.4 GHz resonance as the fundamental, rather than, for
example, the ∼1.1 GHz resonance, is 3-fold. (1) For the same
drive power, this resonance is strongest (see below). (2) With

Figure 1. (a) Schematic of the device and measurement circuit. The nanotube is suspended between W/Pt contacts (dark gray) across a trench in an
SiO2 substrate (light gray). The five W gates are shown in black, with the microwave driving voltage applied to the gate indicated. A bias Vsd is
applied across the device as shown, and the time-averaged current I is measured. (b) Current through the device as a function of dc voltage on all
gates with Vsd = 2 mV. (c,d) Numerically differentiated dI/df as a function of gate voltage and microwave frequency for the fundamental (c) and
ninth (d) modes. The mechanical resonances are evident as V-shaped features. (To make the resonances clearer, data has been normalized by
standard deviation in each row and column.)

Figure 2. (a) Frequency of each measured mode as a function of
voltage on all gates, scaled by mode number and fundemental
frequency. All modes fall near but not exactly on the line fn = nf1
expected for a harmonic sequence. The relative frequency uncertainty
is indicated by an error bar (slightly larger than the data point) on the
leftmost point of the n = 9 series. (b) Highest quality factor measured
for selected modes, derived by fitting dI/df as a function of f using
eq 2. Error bars indicate the uncertainty of the fits. Integer modes are
marked by circles, fractional (parametric) modes by diamonds. (c,d)
Data (points) corresponding to two modes in (b), together with the
fits (lines) from which the Q factors were derived.
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this assignment, nearly all integer modes were observed, but most
fractional modes were not (although the entire frequency range was
scanned). This is as expected if the fractional modes correspond to
weaker parametric resonances, but not otherwise. (3) Consistent
with parametric driving, for nearly all the data in Figure 2a the n =
1/4 and n = 1/2 resonances fall at exact frequency fractions of n =
1, while the n = 3/2 resonance is at an exact frequency fraction of
n = 3. However, the elements of the frequency ladder beginning at
∼4.4 GHz deviate from exact harmonicity, and we therefore exclude
the possibility that these resonances reflect parametric driving or
purely electrical nonlinearities.
One of the attractive features of nanotube resonators is a

large quality factor Q, corresponding to a narrow resonance line
width.7 For each of the observed modes, Q is determined using a
frequency modulation technique.17 While f is modulated at 59 Hz
with depth ∼10 kHz, the current is monitored using a lock-in
amplifier synchronized with the modulation. The magnitude of
the lock-in signal at the modulation frequency, |dI/df |, shows a
peak on resonance, which is numerically fit to obtain Q and f res
using the formula (derived in the Supporting Information)
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This follows from eq 1 under the assumptions that the
nanotube executes simple harmonic motion and that the
frequency dependence comes mainly through the δu0 and ϕM

terms, that is, that there is no nearby electrical resonance as sharp
as the mechanical resonance. Here A and B are peak scaling and
offset, treated as separate fit parameters for each mode.
The fitted Q is shown in Figure 2b for each mode. As seen

from Figure 2c,d, the measured |dI/df | as a function of
frequency is in good agreement with the form predicted by
eq 2. These measurements were made at low powers where the
position and width of the peak do not depend on power, thus
excluding nonlinear effects such as a Duffing instability.7 The
quality factor is found to vary irregularly with frequency in the
range 10 000 < Q < 200 000, presumably reflecting coupling to
different modes of the environment21 (Figure 2b). The
combination of such high Q and f res has not been previously
reported for a mechanical resonator. This data sets a new
record for the product Qf res, which characterizes the force
sensitivity of the device;22 for the n = 6 mode Qf res = 5.1 × 1015

Hz, more than an order of magnitude larger than previously
reported.5

We now consider the origin of these very high resonance
frequencies. Three limits for transverse vibrations have been
identified in which the restoring force arises from residual
tension due to fabrication, from gate voltage-induced tension,
and from bending rigidity.9,23,24 Mechanical resonances are also
possible from longitudinal (stretching) vibrations or the radial
breathing mode.12 Each of these possibilities has its own mode
spectrum and gate voltage dependence. A harmonic spectrum is
consistent only with longitudinal vibrations or with transverse
vibrations dominated by residual tension; however, the
expected longitudinal frequency for a 900 nm length nanotube,
∼30 GHz, is much higher than the measured fundamental
frequency f1.

12 For transverse vibrations, by contrast, the
fundamental frequency can take any value depending on the
residual tension, and so we ascribe the resonances of Figure 1
to such modes.

As can be seen from the inset to Figure 3a, three segments of
the nanotube are suspended; the main section over the trench,
and two short segments on each side between the rim of the
trench and the raised contacts. Each of these can vibrate
independently with its own mode structure. As well as the
mode sequence shown in Figures 1 and 2, we also observe a
resonance at 100 MHz (see Supporting Information) which is
presumably due to the longest suspended segment. However, a
series of tension modes beginning at 4.4 GHz is incompatible
with any lower-frequency resonances in the same segment.
We therefore suggest that the modes of Figure 1 correspond
to vibrations of a short segment on one side of the trench
(Figure 3b). Supporting evidence for this suggestion comes
from the fact that a two-dimensional map of current versus gate
voltage indicates an incipient quantum dot in one of the leads,
whose motion would modulate the overall conductance of the
device (see Supporting Information). In this interpretation and
estimating the nanotube diameter as ∼3 nm, the measured f1 ≈
4.4 GHz and suspended length 100 nm imply a residual
tension23 of ∼6 nN. We note that although the concave
dependence of resonance frequency on Vg seen in Figure 1 is
qualitatively consistent with a tension mode, at low Vg the
frequency decreases more rapidly than the strongest expected
dependence, which is f res ∝ |Vg|

2/3.
The detection of strong mechanical resonances at such high

frequencies is surprising, because within a harmonic series the
net displacement for the same driving power is expected23,25

(for constant Q) to decrease with n−4 except for even n, when

Figure 3. (a) Amplitude of resonance peak for the same driving power
at different mode numbers. The error bars indicate the magnitude of
electrical noise in the measurement. Integer modes are marked by
circles, a fractional mode by a diamond. Inset: top view of device,
showing the nanotube stuck to the rim of the trench, creating three
suspended segments. The adhesion points are visible in the
micrograph as white spots. The gate to which microwaves were
applied is indicated by *. (b) Illustration showing two sets of modes
coexisting in the same nanotube. A 100 MHz mode corresponds to
vibration of the longest segment, while the 4.4 GHz sequence is
attributed to one of the shorter segments. In the inset here, n = 6.
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the net displacement should be zero. Here one power of n−1

arises because the restoring force is larger in higher modes, two
powers arise because the net displacement is smaller (since
different parts of the nanotube move in opposite directions),
and one power arises because constant Q implies a larger
damping coefficient at higher frequency. To explore this
further, in Figure 3a we plot the height of the resonance peaks
versus mode number. For all this data, the applied power at the
device was approximately equal, calibrated based on the
Coulomb peak width (see Supporting Information). Although
there is an overall downward trend for the integer modes, the
peak height does not fall off as n−4 as expected,23,25 instead
varying strongly between modes, uncorrelated with Q factor.
Qualitatively, this irregular variation can arise because the
magnitude of the oscillating source−drain voltage δVsd

0 , and
hence of I, is affected by the electromagnetic modes of the
cryostat. The expected even−odd behavior is partly observed,
in that although three of the five odd-integer modes up to n = 9
gave a measurable signal at this power, only one out of four
even-integer modes did.23,25 Even modes are expected to be
detected if the dc gate coupling is nonuniform across the
vibrating segment, which is likely to be the case if this segment
is on one side of the device.
The large number of measurable modes allow us to explore

the coupling of mechanical motion and electron tunneling at
much higher frequencies than achieved so far.8,11 In similar
devices, a reduced resonance frequency was observed whenever
the quantum dot was tuned close to a Coulomb peak. This was
explained by electron tunneling between the dot and the leads,
which softens the restoring force by screening changes in the
dot’s electrical potential as the distance to nearby conductors
changes.8,11 Such behavior should only be observed if many
tunneling events can occur during a single mechanical oscilla-
tion, that is, f res ≪ Γ, where Γ is the tunnel rate. In our device,
we are able to test this prediction by measuring for the first
time resonance frequencies comparable to Γ. In Figure 4, we
show the excess current ΔI due to the mechanical resonance as
a function of frequency and dc voltage V3 on the central gate,

measured for several modes. The other gates were set so that
Γ ≈ 150 GHz, measured from Coulomb peak width.26,27 The
mechanical resonance is detected mainly as an increase in the
current. As in previous work,8,11 f res is seen to increase in a
series of steps coinciding with Coulomb peaks. Each step arises
from the extra tension induced in the device by the addition of
a single electron, which increases the electrostatic attraction to
the gates. The expected dip in frequency is also observed at the
Coulomb peaks; however, the gate voltage dependence is not
exactly the same between modes. In particular, the dip becomes
less strong at the highest frequencies. This is as expected if
electron tunneling is softening the restoring force; although the
inequality f res ≪ Γ is clearly satisfied at 4.4 GHz (and the
resulting frequency dips are seen in the data), for the highest
modes measured (n = 5, 9) the inequality is not so strong, and
the dips are correspondingly weakened.
The detection of mechanical modes at such high frequencies

is promising for studying mechanical motion in the lowest
quantum states.1−3 Carbon nanotube devices are particularly
attractive in this regard because of their small mass, which leads
to a relatively large zero-point motion.5 The very large Q factors
measured in this work imply long relaxation times, with T1 =
Q/2πf res being 5.8 μs for the n = 1 mode and 140 ns for the n =
9 mode. Since the quantum coherence time for a mechanical
oscillator can be as high as 2T1, our data suggest that a carbon
nanotube may be suitable for creating complex quantum
superpositions of mechanical motion.2

■ ASSOCIATED CONTENT

*S Supporting Information

Supporting Information includes a derivation of eq 2, a large
micrograph of the device, a two-dimensional current versus gate
voltage sweep, full measurements of every resonance, and
information on the power calibration used in Figure 3. This
material is available free of charge via the Internet at http://
pubs.acs.org.

Figure 4. (a−e) Current through the device as a function of V3 and microwave frequency with the average of each column subtracted. The
mechanical resonances show up mainly as a current increase. The resonance frequency is affected by Coulomb blockade in the quantum dot, being
roughly constant in each Coulomb valley and decreasing on each Coulomb peak. For higher modes, the on-peak dips are less pronounced. (f)
Current as a function of gate voltage with microwaves applied at ∼1.5 GHz (well away from any mechanical resonance) with the same power as in
panel a. The Coulomb peak locations are evident and coincide with the resonance frequency dips in panels a−e.
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