
Received April 8, 2020, accepted April 24, 2020, date of publication April 30, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991606

A High-Resolution and Low-Frequency Acoustic
Beamforming Based on Bayesian Inference and
Non-Synchronous Measurements

NING CHU 1, YUE NING1, LIANG YU2, QIAN HUANG1, AND DAZHUAN WU 1,3
1Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
3State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding authors: Ning Chu (chuning@zju.edu.cn) and Liang Yu (liang.yu@sjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701440 and Grant 11704248, in part
by the State Key Laboratory of Mechanical System and Vibration under Grant MSV202001, in part by the Science and Technology on
Sonar Laboratory under Grant 6142109KF201901, in part by the Science and Technology on Underwater Test and Control Laboratory,
State Key Laboratory of Compressor Technology under Grant SKL-YSL201812 and Grant SKL-YSJ201903, and in part by the National
Program on Key Research Project of China under Grant 2016YFF0203300.

ABSTRACT Beamforming is a powerful technique to achieve acoustic imaging in far-field. However, its
spatial resolution is strongly blurred by the point spread function (PSF) of phased microphone array. Due
to the limitation of array aperture and microphone density, the PSF is far from Dirac delta function, so that
it is difficult to obtain a high-resolution beamforming image at low-frequencies (e.g.500-1500Hz). This
paper proposes a Bayesian inference method based on Non-synchronous Array Measurements (Bi-NAM)
so as to refine the PSF and break through the beamforming limitation for low-frequency source imaging.
Firstly, by sequentially moving prototype array at different positions, the non-synchronous measurements
can get a sizeable synthetic aperture and high density of microphones. The synthetic cross-spectrum
matrix (CSM) can significantly improve the beamforming performance. To confine the approximation error
of synthetic CSM and the uncertainty of forward model, as well as the noise interference, a Bayesian
inference based on joint maximum a posterior (JMAP) is proposed to solve an ill-posed inverse problem. A
Student-t prior is employed to enforce the sparse property of acoustic strength distribution. The background
noise can be adaptively modeled by the Student-t distribution, which is related to some of the typical
symmetric distributions. Then the hyper-parameters in JMAP inference are efficiently estimated by the
Bayesian hierarchical framework. Through experimental data, the proposed Bi-NAM approach is confirmed
to achieve high-resolution acoustic imaging at 1000Hz and 800Hz, respectively, even under the Laplace
noise interference.

INDEX TERMS Acoustic imaging, Bayesian inference, beamforming, cross-spectrum matrix, joint maxi-
mum a posterior, non-synchronous measurements, point spread function, student-t prior.

I. INTRODUCTION

Acoustic source imaging has widespread applications such as
city-noise mapping, industry noise monitoring and mechan-
ical fault diagnosis, etc. The spatial position and strength
distribution can be visualized by back-projecting the acoustic
pressure measurements of phased microphone array. In the
far-field, the Conventional BeamForming (CBF) is a fast and
robust method to get an intensity map of acoustic distribu-
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tion [1]–[4]. However, the spatial resolution of the CBF map
is strongly blurred by the spatial impulse response or point
spread function (PSF) of phased microphone array [5], [6].
Due to the limitation of array aperture and microphone den-
sity, the PSF is far from an ideal impulse response, which
should be as sharp and abrupt as the Dirac delta function.
In this sense, the CBF map can be regarded as a convolution
result of the PSF (modeled by a convolution kernel) and
a ground-truth image of source intensity. In fact, the PSF
spectrum can be expressed as a spatial low-frequency filter.
As for the small aperture-array and low-frequency sources,
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the cut-off frequency of PSF spectrum becomes so narrow
that it sacrifices both high and low frequency information
of the acoustic source. Meanwhile, the spatial shape of PSF
distribution becomes so fat and smooth that it not only makes
the CBF map quite ambiguous due to the convolution effect,
but also causes the PSF spatially-shifted, which cannot be
easily modeled by a single convolution kernel for different
source positions.
To improve the spatial resolution of the CBF at low fre-

quencies, the fundamental approach is to clean up the PSF
influence ormake the PSF close toDirac delta function. There
are at least two ways to follow.
One way is the soft-calibration-based method, which can

attenuate the blurred effect of the PSF directly from the
CBF map without changing the topology of the microphone
array. In this way, soft-calibration methods can be generally
classified into three categories: (1) Spatial filtering meth-
ods [2]–[7], such as adaptive beamforming based on the Min-
imum Variance Distortionless Response (MVDR), and the
eigenvalue decomposition of Cross-Spectral Matrix (CSM)
based on the MUltiple SIgnal Classification (MUSIC). (2)
Deconvolution-based methods [8]–[10] such as CLEAN-SC
based on the sparsity constraint, the Deconvolution Approach
for the Mapping of Acoustic Sources (DAMAS) and its
extensions. (3) Regularization-based methods [11]–[23] such
as Tikhonov regularization for denoising, Total Variation
(TV) regularization for artifact flaw removal, compressive
sensing (CS) beamforming for high-resolution, and Bayesian
inference approaches for super-resolution. Though the fil-
tering methods can efficiently improve the CBF resolution,
the selections of filter parameters need the knowledge of
the acoustic source and noise interference. Deconvolution
methods can get a high spatial resolution without knowing
the source priors. Still, the deconvolution is prone to cause
artifact flaws if the PSF is not known, and sometimes it is
sensitive to strong background noise and not fast to converge.
By adding the sparsity constraints, the sparse regularization
methods are capable of obtaining much higher resolution and
fewer artifacts than the deconvolution in the case of strong
noise interference. But regularization parameters should be
tuned carefully. Sometimes they are not adaptive to scenario
changes or non-Gaussian background noise.
The other way is the non-synchronous measurement beam-

forming method, which can get a large aperture of the syn-
thetic array and high density of microphones, and make
the PSF more ideal than that of the prototype array. Non-
synchronous measurements can be implemented in two steps.
Firstly, a series of multi-angle observations can be obtained
by sequentially moving the prototype array at the different
positions and scanning the same source plane. But due to
the non-synchronous measurements, the phase relationships
between consecutive snapshots from different array positions
are missing, and it results in the missing items at the syn-
thetic cross-spectral matrix (CSM), as Yu et al. [24] pointed
out. In other words, in this large dimension of synthetic
CSM, its diagonal blocks consist of small-size CSMs of

prototype arraymeasurements at different array positions, but
other non-diagonal blocks are the missing items. Therefore,
in the second step, the synthetic CSM can be completed to
improve the beamforming performance. This synthetic CSM
completion problem can be solved by using the property of
the low-rank matrix and the continuity of the acoustic fields.
However, even if the acoustic sources are ideal and stationary
monopoles, it is inevitably introducing interpolation errors
during the filling completion of synthetic CSM.

Most of these drawbacks can be overcome by Bayesian
inference methods [15], [20], [25]. It can adaptively estimate
both unknown random variables and unknown model param-
eters by applying the Bayes’ rule in updating the probabil-
ity law, in which, a posterior probability can be obtained
from the likelihood and prior models. And the likelihood
can be derived from the forward model using measured
data. The prior models can be assigned according to prior
information on the unknowns. The priors serve to promote
useful regularizations on ill-posed inverse problems caused
by non-synchronous measurements. For example, the priors
on acoustic sources can introduce valuable information such
as sparsity property of monopole source distribution, so that
the optimal estimation can be derived from many possible
solutions due to ill-posed inversion. Moreover, to describe
the forward model uncertainty, both the model approximation
error and array noise interference can be modeled by a proper
probability density function, so that the likelihood probability
function can be derived to build up a mathematical bridge
from priors to posteriors. Finally, hyper-parameters (includ-
ing source strength, prior model parameters, likelihoodmodel
parameters, and related hidden variables) can be estimated
alternatively under the Bayesian optimization criteria such as
Maximum A Posterior (MAP), minimum Kullback-Leibler
(KL) divergence, etc. Though Bayesian inference methods
can breakthrough the CBF limitation, it still requires tremen-
dous calculation for optimization and convergence.

The contributions in this paper are (1) to propose Bayesian
inference method based on Non-synchronous microphone
Array Measurements (Bi-NAM) in order to refine the PSF
and achieve high-resolution imaging at low-frequencies; (2)
to develop Student-t distribution as sparsity-enforcing prior
so as to promote the spatial resolution. Meanwhile, the back-
ground noise is also modeled by Student-t distribution which
can be adaptively fit for Gaussian and non-Gaussian noise
interference such as Cauchy or Laplace noise. (3) to imple-
ment the Joint Maximum A Posterior (JMAP) based on
alternate iteration optimization in the Bayesian hierarchical
framework so as to efficiently solve an ill-posed inverse
problem.

This paper is organized as follows. The forward model
based on non-synchronous measurements is presented in
section II. The proposed Bayesian inference is described
in section III. Section IV provides experimental results at
low-frequency localization to validate the proposed method.
Finally, section V summarizes this paper and gives further
prospects.
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FIGURE 1. Propagation model of stationary monopole source in far-field.

II. FORWARD MODEL OF NON-SYNCHRONOUS

MEASUREMENTS

A. NON-SYNCHRONOUS MEASUREMENTS

This paper mainly considers the 2D imaging of acoustic
sources. For a static and stationary source in the far-field
in Fig. 1, the acoustic pressure distribution at the observed
position vector Ex and time t can be given as:

(
1

c2
∂2

∂t2
− ∇2

)
p (Ex, t) = s (Ex, t) (1)

where p (Ex, t) denotes distribution function of acoustic pres-
sure in the far-field and s (Ex, t) denotes source distribution
function in the planar plane. c is acoustic propagation speed in
the uniform media, normally c = 340m/s in air. ∂2(·)

∂(·)2 denotes
the second partial derivative. According to the superposition
principle of the acoustic field, the measured acoustic pressure
at an arbitrary position can be expressed as follows:

p (Ex, t) =
∫ +∞

−∞

∫

Vy

s
(
Ey, t ′

)
G
(
Ex, t|Ey, t ′

)
dVydt

′ (2)

where dVy denotes the volume infinitesimal at the source
position Ey. And G

(
Ex, t|Ey, t ′

)
is the Green function defined

in (3), which reflects acoustic field response from the source
position Ey and time t ′ to observed position Ex and time t .

g (Ex | Ey) = 1

4π |Ex − Ey|exp
−j 2π fc |Ex−Ey| = 1

4π |Er|exp
−jk|Er| (3)

where f denotes acoustic frequency and k = 2π f
c

denotes the
number of waves. exp(·) denotes exponential function based
on Euler’s number. |·| denotes the module of a vector. j is the
imaginary unit. |Er| = |Ex − Ey| denotes the distance between
source and observer, as shown in Fig. 1. And |t ′ − t| =
|Ex−Ey|
c

is also considered by G (Ex|Ey) for a static and stationary
source. So that the propagation model can be expressed in the
frequency domain as:

p (Ex, f ) = g (Ex|Ey) s (Ey, f ) (4)

A continuous propagation model is expressed in (4). When
the microphone array is used to observe the acoustic signals,
a discrete propagation model is derived from the continuous
model. Assume that the source plane is divided into N grids,

There areK incoherent monopole sources in the source plane,
satisfying K ≪ N . An array composed of M (K < M ≪ N )
microphones is moved onto Z positions on the array plane,
which is parallel to the source plane. The time-domain sam-
pling is transformed to the frequency-domain analysis, and
snapshots are used to make wide-band signal separated into
many narrow-bands under the assumption of Gaussian wide-
sense stationary process, then measured pressures P{z} =
(p{z}

1 , · · · , p
{z}
m , · · · , p

{z}
M )

T ∈ CM×1 of the z-th array position
(z = 1, · · · ,Z ) at a frequency f corresponding to the l-th
(l = 1, · · · ,L) snapshot can be expressed as:

P
{z}
l (f ) = G∗{z}S∗

l (f ) + E
{z}
l (f ) (5)

where S∗
l = (s∗1, · · · , s∗k , · · · , s∗K )

T ∈ CK×1 denotes acoustic
pressures of K uncorrelated monopole sources in the fre-
quency domain. The symbol (·)T denotes matrix transpose.

E
{z}
l = (e{z}1 , · · · , e

{z}
m , · · · , e

{z}
M )

T ∈ CM×1 denotes model
uncertainty, including noise interference and model approxi-
mation. G∗ {z} ∈ CM×K is the Green function matrix, whose
element g (Ex|Ey) is expressed in (3), reflecting the propagation
response from sources to microphones. According to (3),
the propagation vector g{z}

m,k from the k-th source to the m-th
microphone is derived as:

g
∗{z}
m,k = exp−j 2π fc rm,k

4πrm,k
(6)

where rm,k is the distance between k-th source and the m-th
microphone.

However, it is a non-linear system of equations in (5), since
source signals and source positions are both unknown. To
transform (5) into a linear system, the classical approach is
to discretize the acoustic source plane into a large number of
identical grids, and each grid is regarded as a possible position
for the acoustic source, as shown in Fig. 1.

To obtain the CBF result at the z-th position, a discrete
forward model can be derived from (5) as:

P
{z}
l (f ) = G{z}Sl(f ) + E

{z}
l (f ) (7)

where Sl = (s1, · · · , sn, · · · , sN )T ∈ CN×1 denotes the
acoustic pressures of each grid. Here discrete source Sl is
supposed to contain physical source S∗

l . Correspondingly,
G{z} = (g{z}

1 , · · · , g
{z}
n , · · · , g

{z}
N ) ∈ CM×N is discrete Green

function matrix, whose element g{z}
m,n is discrete propagation

vector, derived from (6) as:

g{z}
m,n = exp−j 2π fc rm,n

4πrm,n
(8)

where rmn denotes the distance between the n-th grid and the
m-th microphone. Then beamforming output at the n-th grid
of the z-th array position is given as:

yn(f ) = (g{z}
n )H R̂

{z}
CSM (f )g{z}

n∥∥∥g{z}
n

∥∥∥
4

2

, n = 1, · · · ,N (9)
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FIGURE 2. Item missing CSM R̂
③

CSM (left) and full CSM R̂CSM (right)
completed by FISTA.

where R̂
{z}
CSM (f ) is the estimatedM×M CSM of the measured

pressure P{z}
l (f ) in (7). ‖·‖l denotes l-norm, and (·)H denotes

the complex conjugate transpose. It is noted that R{z}
CSM (f ) is

defined as the expectation of the inner product of acoustic
pressure vectors in (10). Assume that the measured signals
are stochastically stationary, thus R{z}

CSM (f ) can be estimated
by averaging the snapshot blocks over time as:





R
{z}
CSM (f ) = E

[
P

{z}
l (f )

(
P

{z}
l (f )

)H]

R̂
{z}
CSM (f ) ≈ 1

L

∑L

l=1

[
P

{z}
l (f )

(
P

{z}
l (f )

)H] (10)

where E [·] denotes mathematical expectation. In the follow-
ing, we omit f for the simplicity of math symbols.

For non-synchronous measurements, the final goal is to
achieve the same results as the simultaneousmeasurements of
Z sets of arrays at Z positions. Therefore, the critical problem
boils down to a matrix completion from the item-missing
CSM R̂

③

CSM ∈ CMZ×MZ composed by R̂
{z}
CSM ∈ CM×M to the

full CSM R̂CSM ∈ CMZ×MZ , as shown in Fig. 2.
The matrix completion problem can be solved by the

Fast Iterative Shrinkage Thresholding Algorithm (FISTA),
as introduced in [24]. Based on the completed CSM,
the improved beamforming is derived from (9) as:

yn = gHn R̂CSMgn∥∥gn
∥∥4
2

, n = 1, · · · ,N (11)

where G= [G{1}; . . . ;G{z}; . . .G{Z }]= (g1, . . . , gn, . . . , gN )
∈ CMZ×N is the full discrete propagation matrix. G{z} is
derived from (8).

B. FORWARD MODEL OF POWER PROPAGATION

Based on the assumption of incoherent monopole sources,
the full CSM RCSM can be expressed as:

RCSM = GE
[
Sl (Sl)

H
]
GH + E

[
El (El)

H
]

=
N∑

n=1

xngng
H
n + E

[
El (El)

H
]

(12)

where El = (E{1}
l , · · · ,E

{z}
l , · · · ,E

{Z }
l )

T ∈ RMZ×1 denotes
the model uncertainty of sequential measurements and noise

interference at Z array positions, whose item E
{z}
l is defined

in (5). x = diag(E
[
Sl (Sl)

H
]
) denotes the powers of acoustic

sources, x = (x1, · · · , xn, · · · , xN )T ∈ RN×1 with xn being
the power of a discrete source (grid) at the n-th grid. And
diag(·) means diagonal items of a matrix.

Inserting (12) into (11), the beamforming output of non-
synchronous measurements can be expressed as:

yn1 =
gHn1RCSMgn1∥∥gn1

∥∥4
2

=
gHn1

∑N
n2=1 xn2gn2g

H
n2
gn1∥∥an1

∥∥4
2

+ en1

=
N∑

n2=1

xn2

∣∣gHn1gn2
∣∣2

∥∥gn1
∥∥4
2

+ en1 (n1, n2=1, · · · ,N ) (13)

A linear equation group can summarize the discrete forward
model of acoustic power propagation in (13) as:





y = Hx+ e

hn1,n2 =
∣∣gHn1gn2

∣∣2
∥∥gn1

∥∥4
2

(14)

where e = (e1, · · · , en, · · · , eN )T ∈ RN×1 with en related to
the n-th grid. e denotes the model uncertainty, including the
noise interference at each microphone and the approximation
error of the forward model. hn1,n2 is the element of power
propagation matrix H ∈ RN×N .

In (13) and (4), the beamforming output yn1 at the n1-th grid
mainly depends on the weighted combination of all discrete
power vector x and its weight hn1,n2 , which comes from each
row of the power propagation matrix H. In (14), the CBF
result y of non-synchronous measurements depends on the
weighted combinations (Hx) of all discrete grids. Then the
source power x can be estimated from an inverse problem in
(14) when given y under model uncertainty e.
Compared with the discrete forward model of acoustic

signals in (7), the advantages of (14) are 1) it is a system
of determined equations, whereas (7) is an underdetermined
system of equations, because the number of microphones is
much less than the number of scanning grids (M ≪ N );
2) it directly infers the acoustic source power x instead of
acoustic signals Sl (including phases), and source power is
directly used to visualize the acoustic strength distribution
(acoustic imaging); 3) it gives more useful constraints on the
ill-posed inverse problem such as positivity (x > 0) and
sparsity (K ≪ N ) of source powers than those in (7).

C. PROPOSED CONVOLUTION APPROXIMATION

To make an insight on the PSF influence at the non-
synchronous measurement beamforming, in this section,
we propose a convolution model to approximate the forward
model of power propagation in (14). We find out that power
propagation matrix H seems to be a quasi-Symmetric Block
Toeplitz (SBT) matrix in the far-field measurement, so that
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the (in)variant convolution kernels (sizes and values) can be
derived from this SBT matrix [5], [6]. Thus a 2D-convolution
forward model can be used to approximate Hx as:

{
Hx ≈ [h∗ ∗ x0]′
y = [h∗ ∗ x0]′ + e

(15)

where x0 denotes the ground-truth image of acoustic pow-
ers. Here x0 is the matrix form of x. And [·]′ denotes the
vectorization operator transforming a matrix to a vector in
column order. h∗ ∈ RA×B is a 2D-convolution kernel (PSF).
∗ denotes the valid convolution, whose output is made up of
the overlap parts without zero-padded edges, so that the size
of the output is the same as the input. A× B denotes the size
of the PSF. Normally, the PSF with square form (A = B) is
mostly used, and its size is no larger than that of x0. It is noted
that in (15), e denotes the model uncertainty, including noise
interference, the approximation errors of non-synchronous
measurements, as well as the 2D-convolution.
In the forward convolutionmodel of (15), the beamforming

result y can be seen as the convolution result of acoustic
source power image x0 and PSF h∗. But sometimes, the 2D-
convolution kernel is spatially variant for the large-surface
scanning, that is, the same acoustic source is blurred by dif-
ferent PSFs in the non-synchronous measurements. To sim-
plify this problem, suppose that the convolution kernel is
spatially invariant. For the n-th source, an average distance
r̄n is defined to satisfy the condition r̄n/rmn ≈ 1 as:

r̄n = 1

M

∑M

m=1
rm,n (16)

Based on the above assumption, each element hn1,n2 ∈ H in
(14) can be approximated by:

hn1,n2 =

∣∣∣∣∣∣∣∣

∑M
m=1

exp
−j 2π fc (rm,n2−rm,n1)

rm,n1 rm,n2∑M
m=1

1
r2m,n1

∣∣∣∣∣∣∣∣

2

≈ r̄2n1
1

M2

∣∣∣∣
∑M

m=1
exp−j 2π fc

(
rm,n2−rm,n1

)∣∣∣∣
2 1

r̄2n2
(17)

Then the power propagation matrix can be separated into an
approximated SBT matrix H̃ and two diagonal matrices D1
and D2 as:

H ≈ D1H̃D2

with





h̃n1,n2 = 1

M2

∣∣∣∣
∑M

m=1
exp−j 2π fc

(
rm,n2−rm,n1

)∣∣∣∣
2

D1 = Diag
[
r̄2n1

]
, n1 = 1, · · · ,N

D2 = Diag

[
1

r̄2n2

]
, n2 = 1, · · · ,N

(18)

where Diag [·] denotes the operator transforming a vector to a
diagonal matrix. For the approximated SBT H̃, its middle row
(n1 = ⌊(N + 1)/2/2⌋) contains more diverse items than the
other rows. Thus the PSF of microphone array can be derived
from the elements in the middle row of SBT H̃. In (15),

FIGURE 3. Demonstration of non-synchronous measurements. Prototype
microphone array (left), acoustic source plane (middle), non-synchronous
measurements of prototype microphone arrays at 9 positions (right).

suppose A = B =
√
N , the invariant convolution kernel

h∗ = [h∗
a,b]A×B is derived from H̃ in (18) as:





h∗
a,b = h̃n1,n2

n1 =
⌊
N + 1

2

⌋

n2 = n1 +
(⌊√

N + 1

2

⌋
− a

)
√
N+

⌊√
N+1

2

⌋
−b

(19)

where ⌊·⌋ denotes the integer part. A real and non-negative
symmetric h∗ matrix is obtained to approximate the spatially
invariant PSF of the non-synchronous measurements.

In Fig. 3, the distance between planar acoustic sources
and the planar array is 1.5 m. These two planes are parallel
to get a 2D acoustic imaging. The sub-figures in the left,
middle, and right are respectively the prototype of micro-
phone array with 56 channels, acoustic source plane, and
non-synchronous measurements of the prototype array at
9 following positions: the centre of the prototype array are:
(−0.41, −0.7), (−0.41, 0), (−0.41, 0.7)4, (0, −0.7), (0, 0),
(0, 0.7), (0.41, −0.7), (0.41, 0), (0.41, 0.7). Here the acoustic
source plane is divided into 841 grids (N = 841) with 29 rows
and 29 columns. The aperture of the prototype array is about
1 m. The synthetic aperture of the non-synchronous array is
about 2.4 m.

Setting that the analysis frequencies are 800 Hz and
1000 Hz respectively. According to the definition of the spa-
tially invariant 2D-convolution kernel in (18), the PSF com-
parisons between the prototype array and non-synchronous
measurements are demonstrated in Fig. 4. In far-field, the PSF
would theoretically be a Dirac delta function under ideal
conditions such as large enough array aperture, high enough
microphone density, etc. Although the PSF is not ideal in
experiments, it can still be measurable by the array response.
According to the results in Fig. 4(a) and 4(b), when a
prototype array is used to measure the acoustic pressures,
the response region of PSF has been flatted over the scanning
plane, and the form of PSF is fat and smooth, which results
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in significant blur-effect on beamforming result. In contrast,
the non-synchronous measurements successfully refine the
PSF performance by reducing significantly the PSF volume
and sharpening the PSF shape. Moreover, the PSF of the pro-
totype array at 800 Hz in Fig. 4(c) has apparent deterioration
from the one at 1000 Hz in Fig. 4(b). On the contrary, the PSF
of non-synchronous measurements at 800 Hz is as fine as that
inFig. 4(b).

III. REGULARIZATION AND BAYESIAN INFERENCE

A. REGULARIZATION IN BAYESIAN FRAMEWORK

In this section, two classical regularizationmethods are devel-
oped in the Bayesian framework. For a stochastically sta-
tionary process, the Gaussian distribution is regarded as the
most common prior to the unknown variables. The Gaussian
priors are assigned to model uncertainty in (14) or (15): each
component of e is approximated as a zero-mean Gaussian
distribution with unknown variance ve and all the elements
of e are independent of each other. The rationality of this
assumption is detailed in the reference [3], [14], [19], [29].
Therefore the prior distribution of e and likelihood function
can be expressed as:




℘ (e|ve) =
N∏

i=1

N (0, ve) = (2πve)
−N

2 exp
− ‖e‖22

2ve

℘ (y|x) = N (Hx, ve) = (2πve)−
N
2 exp

− ‖y−Hx‖22
2ve

(20)

where N (0, ve) stands for Gaussian independent distribu-
tion. To obtain the posterior distribution of the estimated
object x, proper priors should be assigned to x. Here two
specific prior distributions are discussed later (seen in Fig. 5).
Firstly, a Gaussian prior is attributed to x: each component

of x is approximated by a zero-mean Gaussian indepen-
dent distribution with unknown squared variance vx . Due to
the Bayesian posterior law, the posterior probability can be
obtained as:



℘ (x|y) ∝ ℘ (y|x) ℘ (x)

− ln [℘ (y|x) ℘ (x)] = 1

2ve

(
‖y−Hx‖22 + ve

vx
‖x‖22

)

+N

2
ln (2πve) + N

2
ln (2πvx)

(21)

where ln(·) denotes the natural logarithmic operator. Accord-
ing to (21), the problem of maximizing a posterior can be
transformed into minimizing the cost function of x as:

JG (x) = ‖y−Hx‖22 + ve

vx
‖x‖22 (22)

Then x is obtained from the following optimization problem:

x̂ = argminx
(
‖y−Hx‖22 + λ ‖x‖22

)
(23)

where λ = ve/vx , λ > 0 denotes the regularization parame-
ter, and it controls the trade-off between the smoothed solu-
tion and data-fitting error. The equation (23) is exactly the

FIGURE 4. PSF Comparisons. (a) PSF of the prototype microphone array at
1000 Hz. (b) PSF of non-synchronous measurements at 1000 Hz. (c) PSF of
prototype array at 800 Hz. (d) PSF of non-synchronous measurements at
800 Hz. Prototype aperture is 1 m, the synthetic aperture is 2.4 m.
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Tikhonov regularization formula, or called L2 regularization.
Without the Bayesian framework, λ has to be carefully tuned
by conventional L2 regularization for optimal performance.
Owing to the Bayesian inference, λ is inherently determined
by the Signal-to-Noise Ratio (SNR). In general, the L2 reg-
ularization is solved by ridge regression or time-consuming
convex optimization [26], [27], and it is robust to noise
interference, but L2 norm prefers to smooth estimation of
x and its spatial resolution still needs improving. This fact
can be explained by Bayesian inference that the Gaussian
independent prior related to L2 regularization is not a sparse
distribution, since there is a long tail and slim body for sparse
distribution (seen in Fig. 5).
Another commonly used sparse prior is the Laplace prior

assigned to x: each component of x is approximated as a zero-
mean Laplace distribution with unknown scale parameter bx
and all the elements of x are independent of each other. Then
the posterior probability can be expressed as:




℘ (x|y) ∝ ℘ (y|x) ℘ (x)

− ln [℘ (y|x) ℘ (x)] = 1

2ve

(
‖y−Hx‖22 + 2ve

bx
‖x‖1

)

+N

2
ln (2πve) + N ln (2bx)

(24)

The cost function under Laplace prior is defined as:

JL (x) = ‖y−Hx‖22 + 2ve
bx

‖x‖1 (25)

Then x is obtained from the following optimization problem:

x̂ = argminx
(
‖y−Hx‖22 + η ‖x‖1

)
(26)

where η = 2ve/bx , η > 0 denotes the regularization param-
eter corresponding to L1 regularization and its function is
similar to λ in L2 regularization in (23). The L1 regularization
is commonly solved by the Least Absolute Shrinkage and
Select Operator (LASSO) [28], [29]. Owing to the sparse
prior, the L1 regularization can obtain better spatial resolution
than L2 regularization does. But due to its non-differentiable
at x = 0, L1 regularization inevitably causes the deconvo-
lution artifacts and cannot guarantee a fast convergence in
strong noise interference.
In the inverse problem of acoustic localization in (23) and

(26), the physical meaning of x is the power distribution on
the scanning plane. Generally, the number of acoustic sources
is much less than the number of scanning grids (K ≪ N ).
So that the power distribution of acoustic sources is sparsely
distributing along the scanning plane. This sparsity is an
essential constraint for solving the inverse problem of (14).
From the perspective of the Bayesian framework, Probability
Density Function (PDF) is themost intuitive representation of
the sparsity of prior information. Different prior distributions
will bring varying degrees of sparsity constraints. More-
over, the Bayesian framework reveals that the regularization
parameters λ and η can be determined by the SNR.

FIGURE 5. PDF comparison of gaussian distribution, laplace distribution,
and student-t distribution.

In this paper, a Student-t distribution is introduced to
balance the sparsity and computation complexity compared
with the Gaussian distribution and Laplace distribution.
As expressed in (27), x is one of the elements within x.℘1 (x),
℘2 (x), and ℘3 (x) are the PDFs of Gaussian distribution,
Laplace distribution, and Student-t distribution, respectively.
Assume the mean values of these distributions are 0, and the
shapes of these distributions are controlled by scale param-
eter v, as shown in Fig. 5. Student-t distribution has the
longest tail, and more sparsity than the Laplace distribution.
In fact, the Gaussian distribution has less sparsity due to
its short tail. Moreover, the background noise can also be
modeled by Student-t distribution, which can be adaptively
fit for Gaussian and non-Gaussian noise interference such as
Cauchy or Laplace noise.





℘1 (x) = 1√
2πv

exp− x2
2v

℘2 (x) = 1

2v
exp− |x|

v

℘3 (x) =
Ŵ

(
v+1
2

)

√
vπŴ

(
v
2

) (1 + x2

v
)
− v+1

2

(27)

whereŴ (·) denotes the Gamma function. Combining the (27)
and corresponding PDFs in Fig. 5, most of the high proba-
bility values concentrate on zero-mean, and very few non-
zero values are distributing over the tail of PDF. In general,
a sparse distribution should have a slim body and a long
tail such as Student-t and Laplace distributions. According to
Fig. 5, the dynamic range of Laplace distribution is wider than
the Gaussian distribution and narrower than the Student-t.
Meanwhile, the tail of Laplace distribution is longer than the
tail of Gaussian distribution and shorter than the Student-t.
Hence, the solution of L1 regularization is more sparse than
the L2 regularization. But L1 regularization is more com-
plex to calculate than the L2 regularization. Moreover, the
Student-t distribution has a great potential to coordinate
the solution sparsity and calculation complexity. Therefore,
the following part will explore the advantages of Student-t
distribution.
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B. PROPOSED SPARSITY-ENFORCING PRIOR

To enforce the solution sparsity, there are several kinds
[3], [5], [15], [25] of priors such as Double Exponential,
Generalized Gaussian, and some other mixture models with
heavy tails. In this paper, the Student-t distribution is inves-
tigated to promote sparse solutions for two reasons. Firstly,
as mentioned above, the tail of Student-t distribution is longer
than Gaussian distribution and Laplace distribution; sec-
ondly, thanks to its Infinite Gaussian Scaled Mixture (IGSM)
property, the Student-t can be expressed as a hierarchical
Gaussian-Gamma framework as:

St (x|lν) =
∫ ∞

0
N (x|0, 1/u)G (u|1/α, 1/β) du (28)

where St (·) and G (·) denote Student-t distribution and
Gamma distribution, respectively. 1/u is the variance of
Gaussian distribution. 1/α is the shape parameter and 1/β
is the scale parameter of Gamma distribution.

Owing to the IGSM property in (28), the following hierar-
chical prior model is developed as:





℘ (x|Vx) = N (x|0,Vx)

℘ (Vx) =
N∏

j=1

℘
(
Vxj,j

)
=

N∏

j=1

IG
(
Vxj,j |αx0 , βx0

)

℘ (e|Ve) = N (e|0,Ve)

℘ (Ve) =
N∏

i=1

℘
(
Vei,i

)
=

N∏

i=1

IG
(
Vei,i |αe0 , βe0

)

IG (v|α, β) = βαv−α−1exp−β/v/Ŵ(α)

(29)

where Vx and Ve denote unknown covariance matrices of
x and e respectively, and Vxj,j is one of the diagonal items
withinVx, so doesVei,i toVe. And IG (v|α, β) denotes inverse
Gamma distribution with shape parameter α and scale param-
eter β. Compared with (20), the model uncertainty e has
been modeled by Student-t distribution, which is related to
non-Gaussian noise interference such as Cauchy and Laplace
noise. According to (29), the Bayesian hierarchical diagram
is depicted in Fig.6 as:
Based on the proposed Bayesian hierarchical framework,

the joint posterior of all the variables x, Vx and Ve is derived
as:

℘ (x,Vx,Ve|y)
∝ ℘ (y|x,Vx,Ve) ℘ (x|Vx) ℘

(
Vx|αx0 , βx0

)
℘
(
Ve|αe0 , βe0

)

(30)

where the noise interference is supposed to be independent
of acoustic sources, thus Ve is independent of x and Vx.
And the JMAP inference is implemented to solve (30) in the
following.

FIGURE 6. Bayesian hierarchical diagram: y means beamforming map
based on non-synchronous measurements, x means ground-truth of
acoustic source power, and e means model uncertainty, including array
noise interference and approximation error. Circle with padding:
Observed data; Hollow solid circle: Unknown variables; Hollow dotted
circle: Hidden variables; Square: Hyper-parameters.

FIGURE 7. Flowchart of the proposed Bi-NAM method.

C. JMAP INFERENCE

Inserting the (29) and (14) into (30), the JMAP can be trans-
formed into minimization of the cost function as:

JJMAP (x,Vx,Ve)

= − ln
[
p (x,Vx,Ve, y)

]

= 1

2

N∑

i=1

ln
(
Vei,i

)

+ 1

2
(y−Hx)T V−1

e (y−Hx)

+ 1

2

N∑

j=1

ln
(
Vxj,j

)
+ 1

2
xTV−1

x x

+
N∑

j=1

[
(
αx0 + 1

)
ln
(
Vxj,j

)
+ βx0

Vxj,j

]

+
N∑

i=1

[(
αe0 + 1

)
ln
(
Vei,i

)
+ βe0

Vei,i

]
(31)
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The estimation of all the unknown variables x,Vx,Ve can
be achieved by solving the alternate optimization as:





x̂ = argmin(x)JJMAP
(
x, V̂x, V̂e

)

V̂x = argmin(Vx)
JJMAP

(
x̂,Vx, V̂e

)

V̂e = argmin(Ve)
JJMAP

(
x̂, V̂x,Ve

) (32)

For this optimization problem, there are the theoretical
solution for some unknown variables under the assumption
that other variables are fixed. Firstly, when Vx and Ve are
fixed, the cost function for x is:

Jx (x) = 1

2
(y−Hx)T V−1

e (y−Hx) + 1

2
xTV−1

x x (33)

The cost function (33) can be solved by a gradient descent
approach. Note that the initialization of x{0} can be the ana-
lytical solution by putting the derivative of (33) equal to
zero. This initialization makes alternate iteration to converge
much faster than that initialized by random process. Thus the
initialization and iteration can be expressed as:





x{0} =
[
HTV−1

e H+ V−1
x

]−1

x{c+1} = x{c} − ρ
∂Jx

(
x{c})

∂x{c}

(34)

where ρ denotes the step size of gradient decent, c denotes
the number of iterations. Then assume x being fixed, the cost
function for Ve and Vx can be alternatively expressed as:




JVx (Vx) = 1

2

N∑

j=1

ln
(
Vxj,j

)
+ 1

2
xTV−1

x x

+
N∑

j=1

[
(
αx0 + 1

)
ln
(
Vxj,j

)
+ βx0

Vxj,j

]

JVe (Ve) = 1

2

N∑

i=1

ln
(
Vei,i

)

+1

2
(y−Hx)T V−1

e (y−Hx)

+
N∑

i=1

[(
αe0 + 1

)
ln
(
Vei,i

)
+ βe0

Vei,i

]

(35)

Similarly, putting the derivative of Vx and Ve equal to zero,
the JMAP estimation of Vx and Ve can be expressed as:





[
Vxj,j

]
JMAP

= βx0 + x2j
2

αx0 + 3
2

[
Vei,i

]
JMAP

= βe0 + 1
2 (yi −Hix)

2

αe0 + 3
2

(36)

whereHi denotes the i-th row of matrixH. Here αx0 , βx0 , αe0
and βe0 are initialized by a random number between 0 and
1. These alternate iterations are summarized by the Bayesian
JMAP Inference Algorithm in Table 1:
where ε denotes a small value to stop the alternate iteration.
Bayesian JMAP inference finally achieves reasonable estima-
tions of object x and hidden variables Vx,Ve.

TABLE 1. Bayesian Jmap inference algorithm.

The whole framework is shown in Fig. 7. The proposed
Bi-NAM via the JMAP algorithm is implemented to obtain
high-resolution imaging at low frequencies. Here the clean
map from our proposed method can be feedback to optimize
the non-synchronous measurements. But this point will not
be discussed due to limited pages.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. EXPERIMENT SETTING

In this section, experiments are carried out to validate the
proposed Bi-NAM method. In order to remove the effects
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FIGURE 8. Experiment setup: (a) Planar spiral array with 56 channels and acoustic monopole sources generated by 4 loud-speakers. (b)
Non-synchronous measurements by sequentially moving prototype array at 9 positions, and procedure from item-missing CSM of prototype
array to full CSM of the synthetic array.

of uncontrollable factors, the experiments are performed in
an anechoic chamber, as shown in Fig. 8(a). The distance
between planar acoustic sources and the planar array is
1.5 m, and the distance between diagonal loud-speakers is
about 0.75 m. The prototype array is moved sequentially
9 times during non-synchronous measurements, and array
centre positions at each move are shown in Fig. 8(b) with
coordinates (−0.41, −0.7), (−0.41, 0), (−0.41, 0.7), (0,0.7),

(0,0), (0, −0.7), (0.41, −0.7), (0.41,0), (0.41,0.7). It is noted
that the movement order of array does not substantially affect
the imaging results. However, it is a convenient choice to
move in sequence according to the convenience in the exper-
iment.

In Fig. 9, narrow-band signals with center frequencies at
1000 Hz and 800 Hz are played respectively by 4 loud-
speakers to simulate acoustic monopole sources. At each
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FIGURE 9. Experimental data: (a) Acoustic signals with narrow-band 400 Hz and center frequency 1000 Hz; (b) Acoustic signals with narrow-band 400 Hz
and center frequency 800 Hz; (c) Wavelet transform of (a); (d) Wavelet transform of (b).

FIGURE 10. CSM completion (a) Item-missing CSM at 1000 Hz; (b) Full CSM at 1000 Hz; (c) Item-missing CSM at 800 Hz;(d) Full CSM at 800 Hz.
(e) Difference between (a) and (c); (f) Difference between (b) and (d).

FIGURE 11. Real-data results of 4 monopole sources with narrow-band 400 Hz, center frequency 800 Hz, without noise interference in acoustic
anechoic chamber obtained by (a) CBF, (b) LASSO, (c) Proposed Bi-NAM based on JMAP. Blue dashed circles stand for the positions of four
loudspeakers.

position of prototype array, the signals are sampled for
10 seconds with a sampling frequency of 50000 Hz. Then
the measured data are processed by the CBF, LASSO, and
proposed Bi-MAN based on JMAP at 1000 Hz and 800 Hz,
respectively, in Fig. 10-12. The hybrid data with the Gaussian
and Laplace noise interferences are also tested in Fig. 13.
In reality, the difficulties of source setup are that the used
loud-speakers are not identical sources, and they cannot syn-
chronously emit signals.Moreover, the emitted sounds are not
strictly stationary and stable.

B. RESULTS AND DISCUSSIONS

Firstly, the CSM completion is shown in Fig. 10. Col-
orbar represents the relative sound power level. With-
out noise interference, the differences between full CSMs
from 1000 Hz to 800Hz cannot be neglectable. This is
because that the tested signals are not strictly station-
ary and synchronous. And these differences might lead
to the localization result of the proposed Bi-NAM at
800 Hz in Fig. 11(c) is not better than that at 1000 Hz in
Fig. 12(c).
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FIGURE 12. Real-data results of 4 monopole sources with narrow-band 400 Hz, center frequency 1000 Hz, without noise interference in acoustic
anechoic chamber obtained by (a) CBF, (b) LASSO, (c) Proposed Bi-NAM based on JMAP. Blue dashed circles denote the positions of four
loudspeakers.

FIGURE 13. Hybrid-data results by proposed Bi-NAM: (a) Real data + Simulated Gaussian noise; (b) Real data + Simulated Laplace noise; (c-f) 1000 Hz,
at SNR 0 dB and −5 dB respectively; (g-j) 800 Hz, at SNR 0 dB and −5 dB respectively. Blue dashed circles stand for the positions of four loudspeakers.

In Fig. 11, it shows the acoustic imaging results at 800 Hz
without noise interference. The colormap dynamic range is 5
dB. The blue bold dotted line stands for the positions of four
acoustic sources. The CBF and LASSO can hardly demon-
strate any valid information about acoustic sources. The pro-
posed Bi-NAM method can localize each source accurately
and break the limitation caused by the PSF from the blurred
CBF result. In Fig. 11(c), the intensity of the left acoustic
source is much lower than those of the other 3 sources, so that
it is invisible in the 5 dB dynamic range. The reason is that the
acoustic intensity is unstable and nonstationary due to loud-
speaker quality.

In Fig. 12, it shows the acoustic imaging results at 1000Hz
without noise interference. The CBF is not able to distinguish
clearly 4 monopoles due to the fat and flat PSF at 1000Hz
in Fig. 4. The LASSO can provide a high-resolution result,
but the reconstructed distributions are too sparse that the over-
sparse results will lose the continuous distribution. When
the dynamic range is increased, the massive artifacts will
inevitably cause frequent false-alarm detection. It is difficult
to tell whether these points are sources or sidelobes, and
not easy to confirm the number of the monopole sources.
The proposed Bi-NAM method can achieve high-resolution
imaging, and adjacent sources can be separated clearly. The
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TABLE 2. Calculation time of LASSO and proposed Bi-NAM.

TABLE 3. Method comparisons.

distribution of acoustic sources can also be vividly displayed.
In addition to the acoustic imaging results, the calculation
efficiency is also a significant indicator to evaluate the per-
formance of the algorithm. In this paper, all programs are
run in MATLAB R2017b software on Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz system with 16 GB-RAM. The
iteration termination parameter is set asε = 0.1, and the
calculation time of the LASSO and the proposed Bi-NAM
based on JMAP is given in Table 2, in which we can con-
clude that the proposed Bi-NAM method doesn’t bring extra
computation burden.
In Fig.13(a) and (b), the hybrid data are generated by

adding the Gaussian and Laplace noise interferences to the
real data in Fig.9. The SNR are set 0 dB and -5 dB, respec-
tively. Then the proposed Bi-NAM method can achieve rea-
sonable and consistent localization results at 1000 Hz in
Fig.13(c), (d), (e) and (f), as well as at 800 Hz in Fig.13(g),
(h), (i) and (j). But due to the non-stationarity of four loud-
speakers, it would worsen the phase continuity and CSM
completion of the non-synchronous measurements, and bring
the apparent sidelobes and artifacts around corners to the
localization results.
In brief, the proposed Bi-NAM approach has been con-

firmed to achieve high-resolution acoustic imaging at 1000Hz
and 800Hz at low SNR, respectively, even under the Laplace
noise interference. The comparisons of the PSF and afore-
mentioned methods are summarized in Table 3.

V. CONCLUSION

This paper presents that the PSF of microphone array is a
critical factor that causes quite blurred imaging for acous-
tic localization and visualization at low-frequencies. In fact,
the PSF has become an insightful way from array topology

to localization resolution. In order to obtain high-resolution
imaging at low-frequency, what is worth breaking is not only
to improve the rationality of sparse constraints in the inverse
algorithm, but also to reduce the PSF influence by optimizing
the prototype array, or making the synthetic array of non-
synchronous measurements.

The proposed Bi-NAM method has taken the above
two aspects into account comprehensively. First, the non-
synchronous measurements are implemented to extend the
array synthetic aperture and enhance the microphone density.
In this way, the PSF of the prototype array, which is flat
and fat, has been successfully refined as the synthetic PSF of
the non-synchronous measurements, which is sharp and slim.
Next, the Bayesian JMAP inference is developed to solve the
very ill-posed inverse problem caused by non-synchronous
measures, in which, the item-missing CSM needs element-
completion and necessary approximation. Student-t prior is
employed to promote sparsity for high resolution and low
computation. All the variables can be alternatively estimated
via a Bayesian hierarchical framework. Finally, localization
results of experiment data at 800 Hz and 1000 Hz validate the
proposed Bi-NAMmethod. Our proposal is capable of build-
ing up a refined PSF and inferring high-resolution acoustic
imaging at both low-frequency and low SNR, even under
Laplace noise interference.

In the future, the proposed Bi-NAM method can be
extended to 3D acoustic source localization with high reso-
lution. The optimal topological design of non-synchronous
measurements is worthy of studying for easier implementa-
tion and better performance. In the fast calculation, it is an
interesting topic for the Bayesian JMAP algorithm combined
with the shift-invariant convolution model.
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