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ABSTRACT

A HIGH RESOLUTION DATA-ADAPTIVE TIME-FREQUENCY REPRESENTATION
by

Douglas Llewellyn Jones

The short-time Fourier transform and the Wigner distribution are the time-frequency
representations that have received the most attention. The Wigner distribution has a number
of desirable properties, but it introduces nonlinearities called cross-terms that make it difficult
to interpret when applied to real multi-component signals. The short-time Fourier transform
has achieved widespread use in applications, but it often has poor resolution of signal! com-
ponents and can bias the estimate of signal parameters. A need exists for a time-frequency

representation without the shortcomings of the current techniques.

This dissertation develops a data-adaptive time-frequency representation that over-
comes the often poor resolution of the traditional short-time Fourier transform, while avoid-
ing the nonlinearities that make the Wigner distribution and other bilinear representations
difficult to interpret and use. The new method uses an adaptive Gaussian basis, with the basis
parameters varying at different time-frequency locations to maximize the local signal concen-
tration in time-frequency. Two methods for selecting the Gaussian parameters are presented:
a method that maximizes a measure of local signal concentration, and a parameter estimation
approach. The new representation provides much better performance than any of the

currently known techniques in the analysis of multi-modal dispersive waveforms.
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CHAPTER 1

Introduction

Time-frequency representations describe signals in terms of their frequency content at a
given ume. These representations have proven to be useful for analyzing signals with both
time and frequency variations, such as speech, music, and certain propagating waves. Of par-
ticular interest are signals propagating in dispersive channels such as the borehole complex in

acoustic well-logging, the Arctic underwater acoustic channel, and the mantle of the earth.

The short-time Fourier transform has been widely used in time-frequency analysis for a
number of years. More recently, bilinear time-frequency representations (most notably, the
Wigner distribution) have been developed or revived as possible high-resolution alternatives
to the short-time Fourier transform. The Wigner distribution has a number of properties,
including high signal concentraticn in time-frequency, that are very desirable in a time-
frequency representation. However, the Wigner distribution is highly nonlinear; it creates
cross-terms between multiple signal components in time-frequency. These cross-terms can
obscure other components or even closely-spaced auto-components, and the cross-terms can
also be mistaken for true signal components. Only the short-time Fourier transform has
achieved widespread use in applications, even though it is considered to have less resolution
than the bilinear representations, because the bilinear representations are so difficult to inter-
pret when applied to realistic multi-component signals. A need exists for a high resolution
time-frequency representation that avoids the cross-terms associated with the Wigner distri-

bution and other bilinear representations.




This thesis develops a linear, high resolution, data-adaptive time-frequency representa-
tion vased on Gaussian "windows." This new representation is somewhat similar to the
short-time Fourier transform, except that the "window" function varies with time and fre-
quency to maximize the time-frequency concentration of the locally dominant component.
The second chapter of this document describes the current time-frequency representations
and their behavior. The third chapter presents the central concept of the new data-adaptive
time-frequency representation and the reasons why such a representation can have superior
time-frequency resolution and signal concentration. A local measure of time-frequency sig-
nal concentration is defined in the fourth chapter, and a procedure for determining the optimal
Gaussian window parameters that maximize this concentration measure is developed. This
procedure requires a large amount of computation, so an alternate method based on a Gaus-
sian parameter estimate is presented in the fifth chapter. This technique requires much less
computation than the concentration-based method but does not perform as well. The sixth
chapter presents a number of examples that demonstrate the performance of the new time-
frequency renresentations. The final chapter contains conclusions and some suggestions for

further research.




CHAPTER 2

Current Time-Frequency Representations

2.1. Time-Frequency Uncertainty, Concentration, and Resolution

A time-frequency representation describes a signal in terms of its joint time and fre-
quency content. A time-frequency representation is in some sense inherently ill-posed
mathematically, since a time-frequency representation results in an artificial increase in the
dimension of a signal by mapping a signal that is a function of one variable (time) to a func-
tion of two variables (time and frequency). This artificial increase in dimension implies that
not all functions in the time-frequency piane have a corresponding time function. The mani-
fold of valid time-frequency representations is difficult to characterize, but several results are
known. Probably the most impornant result is the time-frequency uncertainty principle,
which gives an upper bound for the concentration of any signal in the time-frequency plane.
This result is analogous to Heisenberg’s uncertainty principle in quantum mechanics; the
time and frequency content of a signal are not independent, and the joint time-frequency con-

tent of a signal can be determined only up to the uncertainty limit.

Maximum concentration of signal components in time-frequency is often a goal of
time-frequency analysis, since high concentration usually results in good resolution. Two
signal components are considered resolved in time-frequency if their peaks are both visible as
local maxima. In time-varying filtering applications using an analysis-synthesis technique,
maximum concentration minimizes the area in time-frequency occupied by a signal com-
ponent, thus allowing a tighter filter with greater rejection of noise and unwanted signal com-

ponents. Several definitions of time-frequency concentration have been developed by various



researchers [15, 19, 32]. The development of new time-frequency representations is largely
a quest for useful representations that approach the maximum concentration allowed by the
time-frequency uncertainty principle; this is the primary goal of this thesis as well. In this
chapter we describe the time-frequency representations that are currently of interest, and the

qualities and drawbacks of each of these methods are discussed.

2.2, The Short-Time Fourier Transform

The short-time Fourier transform, defined as

Sw) = [ x(Tw(t-t)e dr 2.1)

~00

in which x(z) is the signal and w(z) is the window function, has been widely used in time-
frequency analysis for a number of years. This time-frequency representation has tradition-
ally been viewed in two different ways. The short-time Fourier transform can be thought of
as a bank of band-pass filters with impulse responses w(—t)e/%*; the demodulated output of
one of the bandpass filters represents the signal content at that particular frequency and time.
Alternatively, w(t) can be considered a window that selects a particular portion of the signal
centered around the given time location, and the Fourier transform of the windowed signal

yields the frequency content of the signal at the given time.

A third viewpoint yields insight into the short-time Fourier transform that is fundamen-
tal to the new methods developed in this thesis. The function w(t—t)e 7®° is concentrated in
time-frequency around the location (¢,0). The short-time Fourier transform is a projection of
the signal onto a basis formed by a set of these functions; the projection, or inner product,
with a particular element is a measure of the time-frequency content of the signal at that loca-

tion. Gabor first applied this point of view to time-frequency analysis in 1946 [15].




Ideally, the projection function, or modulated window, should be an impulse in time-
frequency. However, Gabor proved the time-frequency uncertainty principle, which pre-
cludes the existence of impulses in tim;e-frequency. Gabor found that Gaussian signals
¢ Jonli-lorei-1 4 chieve minimum time-frequency uncertainty, which implies that they are the
closest approximation to an impulse in time-frequency; hence, time-shifted and frequency-
modulated Gaussian functions appear to be the best basis in a projection-based time-
frequency representation such as the short-time Fourier transform. The short-time Fourier
transform with a Gaussian window is sometimes called a Gabor-Helstrom transform, since
Helstrom came up with this representation by generalizing Gabor’s results [16]. Other
researchers have applied different measures of time-frequency concentration and have found

that Gaussian functions maximize these measures as well [19, 32].

2.3. Window Effects in the Short-Time Fourier Transform

Many researchers have found that the choice of the window dramatically affects the
appearance of and the signal concentration in the short-time Fourier transform. The optimal-
ity of the matched filter (w(r) = x,(2)) is well known for detection purposes, where x.(¢) is the
signal component of interest. It is also well known in radar applications that tradeoffs can be
made in time-frequency resolution by varying the length and time-frequency orientation of
the window to enhance resolution in one direction in time-frequency at the expense of resolu-

tion in the orthogonal direction [28].

Barber and Stegun have determined the optimal bandwidth of the window for signals
with a time-varying frequency to be roughly equal to the square root of the time derivative of
the instantaneous frequency of the signal [1]. For some signals, this leads to the use of
analysis filters in a generalization of the short-time Fourier transform with different

bandwidths at different frequencies [31]. A number of authors have suggested the use of




frequency-varying filters in time-frequency representations {13, 25, 30]. These analyses,
however, neglect the orientation of the filter in time-frequency. Dudgeon has demonstrated
the value of matching the chirp rate of a window to that of the signal [12]; the chirp rate of a
window is another degree of freedom besides the bandwidth that can be exploited to improve
the performance of the short-time Fourier transform. More recently, it has been shown that
the window maximizing the concentration of localized signal components in time-frequency
is the matched window (w(z) = x_ (~¢)), and that the effective resolution of the matched signal
component in the short-time Fourier transform is at least equal to that in the Wigner distribu-
tion [21].

The results of the past research into the effects of windows in the short-time Fourier

transform can be summarized as follows:

(1) The window function has a major effect on the concentration and resolution in a

short-time Fourier transform.

(2) The best window depends on the signal, and may differ for different signal com-

ponents in the same signal.

(3) Use of a window that varies with frequency results in better performance on cer-

tain types of signals.

(4) A window that is matched in some way to the signal component yields high per-

formance according to several measures.

(5) Gaussian windows are optimal according to several measures of time-frequency

uncertainty and concentration.




These observations lead to the idea for a new time-frequency representation, to be described

in Chapter 3 of this dissertation.

2.4. Short-Time Spectral Estimates

The short-time Fourier transform at a fixed time location is a spectral estimate of a seg-
ment of the signal. Several authors have considered applying high resolution spectral esti-
mates instead of the DFT with a window to obtain better time-frequency resolution [9, 24].
Although these spectral estimates have somewhat better frequency resolution than the DFT,
in many cases they yield a short-time spectral representation that is much inferior to the
short-time Fourier transform with a properly chosen window. These approaches are mostly
model-based methods that assume stationarity of the signal, but the purpose of time-
frequency analysis is to process signals with frequency content that varies with time. The

fundamental signal models on which these approaches are based are thus inappropriate.

The high resolution spectral estimates fail to process chirp signals effectively. A chirp
signal occupies a large portion of the frequency spectrum over the analysis interval. A win-
dow with a chirp rate matched to that of the signal demodulates the chirp in the signal, so the
wincowed signal occupies a narrow frequency band, resulting in a spectrum occupying a
much smaller frequency band than the signal in the analysis interval. The high resolution
spectral estimates do not contain this implicit chirp demodulation, so they produce a spec-
trum occupying the full bandwidth of the signal in the analysis interval, resulting in spectral
estimates with much less resolution than the DFT with the chirp demodulation in the win-

dow.

The discussion in the previous section indicates that the best length of the analysis

interval depends on the signal and that this length may vary with different components of a




f

multi-component signal. The analysis interval must be as carefully chosen for a high resolu-
tion spectral analysis method as for the DFT and may be acceptable only for a single signal
component. The high resolution spectral estimates thus suffer from the same drawbacks as
the traditional short-time Fourier transform and are furthermore unsuitable for processing sig-
nals with chirp components. For certain types of signals they can provide a modest improve-
ment over the traditional short-time Fourier transform, but they are not a sound general-

purpose alternative to the shcrt-time Fourier transform.

2.5. The Wigner Distribution

The Wigner distribution of a signal,

WD(6,0) = | x(t+%)x'(t—g-)e'j“"dt : 2.2)

-0

is of special theoretical importance in time-frequency analysis [4-7, 19, 34]. The Wigner

distribution preserves the time and the frequency marginals of a signal, or

1 o
|x() | 2= ;E_[nWDx(t,co)dm : 2.3)
[X(w)|%= J WDt,w)dt . (2.4)

The Wigner distribution also preserves the convex hull of the support in time-frequency. In
other words, if the signal is zero outside a connected band in time or in frequency, the Wigner

distribution is also zero for times or frequencies outside this band.
The above properties are quite desirable in a time-frequency representaiion, because

they intuitively suggest that the Wigner distribution places signal energy in the proper place

in the time-frequency plane, that the Wigner distribution achieves the time-frequency uncer-




tainty bound in terms of signal concentration, and that the Wigner distribution may be inter-
preted as a ime-frequency signal energy distribution. However, the Wigner distribution of a
signal in general will be negative in some regions of the time-frequency plane, so an energy
distribution interpretation is not strictly correct.

A more serious problem with the Wigner distribution is the preserce of cross-terms
introduced by the nonlinearity of the Wigner distribution. The Wigner distribution of the
sum of two signals is the sum of the Wigner distributions of the two signals plus an interfer-

ence term between the signals;
WDy = WDy + 2Re[WD, )] + WD, ' (2.5)

where WD, , is the cross-Wigner distribution

WDop(6®) = [ x(t+2)y"(=2)e T%dt, (2.6)

and 2Re[WD,,] is called a cross-term. Cross-terms can obscure other components or even
closely-spaced auto-components, and they can also be mistaken for true signal components.
In spite of the desirable properties of the Wigner distribution, the cross-terms make it so
difficult to interpret that it is rarely used in applications.

The short-time Fourier transform and the Wigner distribution are related in a number of
interesting ways. The squared magnitude of the short-time Fourier transform is the two-
dimensional convolution of the Wigner distribution of the signal and the time-reversed com-

plex conjugate of the analysis window [7].
|S(t,0) |2 = WD WD, _, (2.7)

The squared magnitude of the short-time Fourier transform is thus a filtered version of the

Wigner distribution in which the convolution smooths the time-frequency spectral estimate.
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Furthermore, by making the change of variables T = %+% in (2.1), we obtain

~j>5" —j—z—

)
—j=s e

2% 4 ¢
s,:(z,m)=e2 jx(2+;)w(; T % ds=

t o
WDx,w'(—t)(-i','z—) (2.8)

and the short-time Fourier transform is shown to be nierely a time- and frequency-scaled and
phase-shifted cross-Wigner distribution. It is thus not surprising that when scaling effects are
removed, the Wigner distribution and the short-time Fourier transform have the same effec-

tive signal resolution in time-frequency when certain windows are used [21].

2.6. Other Time-Frequency Representations

A large number of time-frequency representations have been introduced over the years
in attempts to avoid some of the problems with the short-time Fourier transform and the
Wigner distribution. Most of these representations have been shown to be members of
Cohen’s generalized class of time-frequency representations [8]. Other researchers have
shown that most of these representations can be derived from the Wigner distribution. Few
of these representations are considered today, because they either have worse performance
than the short-ime Fourier transform or they suffer from the same problems as the Wigner
distribution but lack its nice properties [19]. The reader is referred to the dissertation by
Boudreaux-Bartels [4] or the series of papers by Claasen and Mecklenbrauker [5-7] for a

more complete survey of the various time-frequency representations.

The ambiguity function, defined as

oo

AF(T,0) = i x(z%)x‘(r—%)e-f@dr, (2.9)

is of central importance in radar and detection theory. The ambiguity function is the two-

dimensional Fourier transform of the Wigner distribution. As a bilinear representation, the
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ambiguity function has cross-terms. Although it is closely related to the Wigner distribution,
the ambiguity function lacks many of the desirable properties of the Wigner distribution, so it
is rarely used in time-frequency analysis. .

The only other time-frequency representation that attracts much interest today is the
smoothed Wigner distribution [14], of which the pseudo-Wigner distribution and the squared
magnitude of the short-time Fourier transform (see (2.7)) are special cases. Smoothed
Wigner distributions are merely the Wigner distribution convolved with a two-dimensional

filter F(¢,0) in time-frequency.
SWD,(t,0) = WD (t,0)**F(t,00) (2.10)

The idea motivating this representation is that the smoothing function may filter out the
cross-terms in the Wigner distribution while leaving the auto-components largely intact. The
smoothed Wigner distribution allows a tradeoff between the high auto-component concentra-
tion of the Wigner distribution and the elimination of cross-terms in the short-time Fourier
transform. As in the short-time Fourier transform, the choice of the filter function in the
smoothed Wigner distribution has a major impact on the appearance and quality of the result-
ing time-frequency representation, and the best filter depends on the data. Since the effective
resolution of the Wigner distribution and the short-time Fourier transform (with the proper

window) are the same, the improvements offered by the smoothed Wigner distribution are

largely cosmetic.




CHAPTER 3

A Data-Adaptive Time-Frequency Representation

As discussed in the previous chapter, the current time-frequency representations fall
short of the ideal. The Wigner distribution has a number of desirable properties including
high signal concentration in time-frequency, but the cross-terms make the Wigner distribu-
tion unsuitable for general use. The smoothed Wigner distribution allows flexibility in mak-
ing tradeoffs between cross-terms and signal concentration, but it does not offer increased
resolution over the Wigner distribution or the short-time Fourier transform with a properly

chosen window.

The short-time Fourier transform performs very well in terms of concentration and reso-
lution of a given signal component when a properly chosen window is used. However, the
proper window function depends on the data, and no automated procedure currently exists for
determining a good window. This means that the time-frequency analyst needs to know a lot
about the signal before it can be processed effectively. A second problem is that for signals
composed of several different components at different locations in time-frequency, the best
window differs for each component. For a thorough analysis, several short-time Fourier
transforms with different windows are needed. Furthermore, the analyst has no rational way

to decide which window gives the most accurate representation of the data.

We propose a new representation that overcomes these problems with the short-time
Fourier transform. The fact that different windows are needed for different signal com-
ponents suggests the use of a data-adaptive window that varies at different time-frequency

lecations to achieve high concentration of any signal component at any location in time-

12
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frequency. Since the Gaussian function is the most concentrated in time-frequency, we
choose Gaussian windows. 'This leaves a two-parameter class (the real and imaginary part of
the Gaussian window parameter) of functions that are equivalent in terms of their natural
time-frequency concentration. They differ, though, in the time-frequency concentration they
provide for a particular signal component. We define a measure of local signal concentration
and compute the Gaussian window parameter maximizing this measure at each time-
frequency location to achieve maximum concentration of the locally dominant signal com-
ponent at every location in time-frequency. This procedure automates the choice of the win-
dow and thus overcomes the problem of window selection in the short-time Fourier

transform.

The new time-frequency representation can be expressed as

1
= —~Refc ry .
A(t®) = J.X(’E) .M ec:,w(‘t—t)2e__,wtd,c , 3.1

Which is a projection of the signal x(t) onto the Gaussian basis elements

1
—Relcye) |4

T

g a1l p—jer (3.2)

The new representation is like a short-time Fourier transform with a Gaussian window,
except that the Gaussian parameter c,, may vary at different locations in time-frequency. It
is important to note that, given c,, the new representation is linear with respect tc the signal,
and thus it avoids the cross-terms associated with the Wigner distribution and other bilinear
representations. Linearity also allows simple linear least squares techniques to be used to

reconstruct the signal from the modified transform.
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Although the new representation is a projection-based representation like the short-time
Fourier transform and can be considered a composite of a number of short-time Fourier
transforms, the variation of the Gaussian projection function in (3.2) with frequency means
that the new representation does not produce the Fourier transform of the windowed signal.
In situations in which the Gaussian projection function varies only with time, it seems rea-
sonable to call the new representation an "adaptive window short-time Fourier transform."
Even when the Gaussian function varies with frequency, it may be convenient to call this
representation an adaptive window short-time Fourier tran'sform, as long as it is understood
that a Fourier transform is not actually present. In what follows, we use the terms "Gaussian
projection function” and "window" interchangeably; the reader should note that the term

"window" is not always strictly correct but represents an extension of the usual concept.

The performance of this new time-frequency representation depends on the selection of
the adaptive Gaussian window parameters. In the following two chapters two different
approaches to this problem are presented. In Chapter 4, we define a measure of local time-
frequency signal concentration and find the Gaussian parameter maximizing this measure at
each time-frequency location. This technique performs very well. Unfortunately, the optimal
parameter is found by a brute-force search, so the computational requirements of this method
are substantial. An alternate approach requiring much less computation is developed in
Chapter 5. This method is based on the idea that a window matched to the data is known to
yield high concentration of time-frequency concentrated components. Since Gaussian win-
dows are used, we determine Gaussian parameters that most closely match those of the signal
at each time-frequency location and apply these parameters in computing (3.2). This tech-
nique requires much less computation than the concentration measure approach, but its per-

formance is inferior. The two methods allow a tradeoff between performance and computa-




tion time.

15



CHAPTER 4

Optimal Window Parameter Selection by Maximizing Concentration

4.1. Introduction

Maximum concentration of signal components in time-frequency is desired, since con-
centrated components in general overlap or interfere with other nearby components as little as
possible and thus enhance resolution. Maximum concentration also implies that signals are
confined as closely as possible to their proper support in time-frequency, which gives the
interpreter more confidence in the time-frequency representation. Several measures of time-
frequency concentration are available in the literature [15, 19, 32], but these measures are
appropriate for describing the concentration in time-frequency of a signal consisting of a sin-
gle component only. In this chapter, we define a new measure of concentration that appeals
to the intuition for single-component signals and that can also be extended into a local meas-
ure of concentration, thus allowing the concentration of individual components in multi-
component signals to be measured in the time-frequency regions they dominate. The Gaus-
sian window parameter maximizing the local concentration is determined at each time-
frequency location and applied in (3.1) to give a time-frequency representation with good

concentration everywhere in time-frequency.

4.2. A Measure of Time-Frequency Signal Concentration

For a signal with a single concentrated component, the most concentrated representa-
tion is the least spread out in time-frequency. The time-frequency representation of a concen-

trated component tends to decay monotonically in all directions from a central peak. If the

16




17

representation is scaled to have a maximum value of unity, the most concentrated representa-
tion is then reasonably defined as the one with the minimum integral, or volume, of the nor-
malized representation over the time-frequency plane. We suggest the following normalized
volume Vy of the squared magnitude of the short-time Fourier transform S(s,0) as a measure
of time-frequency signal concentration, in which a smaller volume implies greater concentra-
tion.

[ [ 18@9) 1 %duds
e (4.1)

© max [S(T,0)|2
0

Since we are using Gaussian windows, we choose as the optimal Gaussian parameter ¢

the one that satisfies

oo oo

|S(T.0) | 2ddd
j j 4.2)

min Vy = min 3
¢ ¢ max [Sc(1,9) |
T

where S, is the short-time Fourier transform using the Gaussian window with parameter c.

Having defined the measure of concentration, the definition of the optimal parameter in
(4.2) is axiomatic. However, to have confidence in the reasonableness of the new measure of
concentration as applied to this problem, we must at least confirm that it yields reasonable
answers in certain special cases for which good answers are already known. It is well known
that for Gaussian signals and windows that the matched window is optimal in terms of signal
concentration according to the established concentration measures. As a partial confirmation
of the reasonableness of the new measure, we demonstrate that the minimization in (4.2)

yields the matched window when applied to Gaussian signals.
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Consider the short-time Fourier transform of the Gaussian signal
x(1)=e", Re[bl=b,<0, Imb]=b;=0 (4.3)

and the normalized Gaussian window
1

w(t) = {:_ﬂ?_e[ﬂ_J 4e“2 LRe[c]<0. (4.4)

T

The squared magnitude of this short-time Fourier transform is divided by the maximum,

which is located at the origin, to yield the normalized volume

o= 2(bye,(brc, b, cP)t? — 2b,ctw + Va(b,+c,)w?
VN=J.J‘3XP (rc(r r)+rx) rC (r r) dtd()), (45)
(Bryg)2+c?
—0—00 r+c,. 3

where ¢, = Re[c], b, = Re[b], and ¢; = Im[c]. By completing the square in either ¢ or , it can

be shown that the integral

2

ex At2+Bt0)+C0.)2] = —_—
ii p[ \4ca-B?

(4.6)

The normalized volume in (4.5) is thus

b+c,)
Vy=22\/ -(%- , @7

from which it is immediately obvious that ¢; =0 is required for minimization. By takir:; the
partial derivative with respect to ¢,, it can be shown that
(C,.+b,)(C,.—b,) - ciz =0 (48)

is required for a minimum. With ¢; =0, it is apparent that for ¢, = b,, (4.8) is satisfied. The
reader can confirm by taking second derivatives that this is a minimizer. Thus the normalized

volume is minimized for ¢ =b, and the matched window yields the maximum concentration
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as expected.

For simplicity, a Gaussian signal centered at the origin with no chirp component was
used above. However, since the squared magnitude of the short-time Fourier transform of a
time- and frequency-shifted Gaussian is accordingly shifted, and since a rotation in time-
frequency of the signal and the window [19] merely rotates the magnitude of the short-time
Fourier transform as well, no generality was lost in the preceding derivation, and the results

hold for all Gaussians.

It should be noted at this point that the squared magnitude of the short-time Fourier
transform is also called a cross-Ambiguity surface, and its volume over time-frequency is
equal to the product of the energy of the signal and the window. The numerator in (4.2) is
thus merely a constant for all values of ¢, and the parameter maximizing the maximum pro-
jection of the signal onto the window is the minimizer of the normalized volume. Thus the
matched window is immediately seen to be the optimum. This simplification is not possible
when the concentration measure is extended into a local concentration measure in the follow-

ing sections, so for continuity this approach is avoided in the previous analysis.

4.3. A Measure of Local Time-Frequency Signal Concentration

The above scheme is appropriate for a single component and returns only one parameter
for the entire signal. For signals with multiple components, a technique that locally selects
the parameter to provide maximum concentration for the dominant component at each loca-
tion in time-frequency is needed. We achieve this by defining a local measure of time-
frequency signal concentration and then selecting the parameter maximizing this at each loca-

tion in time-frequency.
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The concentration measure in (4.2) is turned into a local concentration measure by mul-
tiplying the squared magnitude of the short-time Fourier transform by a localization weight-

ing function

—0-2c;(1—1))?
( 42 (t-1)) 4.9)

Lo (t—1,0-0) = exp [ke,(T—t)? + k

centered at (4,0). This function is largest at its center and decays monotonically in all radial
directions from this point; the localization weighting function is in essence a two-
dimensional window that causes only nearby components in time-frequency to influence the

measure of concentration. This function is chosen because it is the Wigner distribution of the
. . . . k .
Gaussian window with parameter ¢ (raised to the > power), and it is thus a power of the

time-frequency window leakage envelope for the Gaussian window [20]. This is important,
because it weights the signal content at (T—t,¢—) relative to the influence it has at (¢,0), the
location of interest. Since this influence varies with the parameter c, the localization weight-
ing function must be a function of the window parameter ¢ to avoid biasing the local concen-
tration measure. The factor & determines the tightness of the localization weighting function;
k=0 results in no localization, and a large k gives high localization but reduces the sensi-
tivity of the concentration measure with respect to c. We generally choose & from 0.1 to

0.25.

After applying the localization weighting function to the squared magnitude of the

short-time Fourier transform, we compute the normalized volume as in (4.1).

[ ] Ledr—t0-0)]5.1,6) | *drd

Va(t, @) = ==
Mh©) max L, x(7-5.0-0) 5:(2.0)1

(4.10)

The Gaussian parameters ¢, minimizing Vy(r,0) are applied in (3.1) to yield the adaptive
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time-frequency representation.

As before, we seek partial confirmation of the reasonableness of this local concentration
measure by demonstrating that it yields the expected matched window when appiied o a
Gaussian signal. With rather extensive algebraic manipulation, the product in (4.10) of the
squared magnitude of the short-time Fourier transform of the Gaussian signal in (4.3) and the

localization window in (4.9) centered at (£,0) can be placed in the form

(66) 1 2Li(E-1:0-0) = N [ 45—+ BT-T0)(6—40) + co-007, @11)

4 2b,c,[c (brte, el + ke HcAl(b+c,) ]

c[(bptep )yt Ciz] ’ (4.12)

— 2b,c,c; - Yake{(bye,)P+c?
B= 4 , (4.13)

e, [(brte e

2 bote)e, + (e e

C= (4.14)
2 ’
Cr[(b,+C,)+ ] ]
where Np,, is the maximum
Nomax = max | S(z.0) 2L (1-t,0—), (4.15)

which occurs at (Tg,$0). In computing the normalized volume in (4.10), the denominator is
brought inside the integral to cancel Np,,, and the normalized volume can be found using
(4.6). By taking first partial derivatives with respect to ¢; and c,, it can be shown that a criti-
cal point occurs at ¢, = b,, c;=0 for any value of &, the localization factor. That this point is
a minimum is confirmed by showing that the Hessian matrix is positive definite. For the rea-
sons discussed earlier for the global concentration measure, no generality is lost in this

analysis, and thus minimizing the local concentration measure at any point in time-frequency
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for any Gaussian yields the expected matched window parameters.

4.4. Implementation of the New Method

Although the concentration measures described in the previous two sections are defined
and analyzed for continuous-time signals, these techniques are implemented on a digital com-
puter with discrete-time signals. This is most easily accomplished with discrete approxima-
tions to the continuous-time operations; integrals are computed as summations, Gaussian

functions are truncated, and the DFT is used in place of the Fourier transform.

As demonstrated earlier, it is possible with some difficulty to obtain analytically the
optimal Gaussian parameter c,, in certain special cases. Unfortunately, we have not found a
general analytic expression for the optimal parameters for arbitrary signals. Furthermore, the
function to be minimized is so extensive that use of a standard nonlinear minimization rou-
tine appears to be computationally prohibitive. We determine the optimal parameter using a
brute force search over the entire range of reasonable parameters. Fortunately, the search
grid for the Gaussian parameters ¢, and ¢; can be fairly coarse, since concentration is rela-

tively insensitive to small errors in c.

For sampled signals, the parameter c,, is determined by generating a discrete short-
time Fourier transform and the localization weighting function on a time-frequency grid fine
enough to yield a good approximation to the integral and the maximum in (4.10). The locali-
zation weighting function is applied to the short-time Fourier transform at each time-
frequency location of interest, and the normalized volume is computed according to (4.10).
This is done for all values of ¢ to be searched, and the squared magnitude associated with the
minimum normalized volume at each time-frequency location is the value of the new time-

frequency representation at that location.
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Since the computation involved is quite extensive, the necessary search ranges must be
carefully considered. The optimal window parameter certainly need be computed only at
time-frequency locations at which an output is desired. It is also possible to compute the
optimal parameter on a grid coarser than the oatput grid and use the parameter at nearby loca-
tions. This is a reasonable thing to do if the optimal parameter is not expected to change
much over the region on which it is used. The size of this region depends in general on the
tightness of the localization weighting function, which is controlled by the factor k in (4.9).
As a rough estimate, the spacing in samples between points at which the optimal parameter is

determined should be about £~ in both the time and frequency directions.

The search grid for the optimal parameter ¢ need not extend beyond the range of rea-
sonable values. This range can generally be obtained by a preliminary glance at the time
series or is known from the physics of the problem. For the approximation of the integral in

(4.10) as a summation to be accurate, c, should be such that the number of time samples for
. . . 1 R
the window function to decay from the maximum to — the maximum is not much less than
e

three samples. The length of the DFT used in computing the short-time Fourier transform
should be such that the same is true in the frequency direction as well, which limits the max-
imum value of ¢,. The parameter ¢; should be confined to a range such that no significant
aliasing occurs in the short-time Fourier transform. This requirement is necessary to ensure
that the integral in (4.10) is well approximated; aliasing chops off part of the signal com-
ponent in the summation, which makes the partial volume appear less and can thus lead to an
erroneous choice of the optimal parameter.

The search grid for ¢ can be rather coarse, since signal concentration is relatively insen-
sitive to small errors in ¢. The best choice of the search values depends on the application,

but we use a grid that is linear in the square root of —¢, from the maximum to minimum




24

search value, and on which the maximum and minimum c; values are proportional to the
square root of —c,, with a linear grid over this range. It is hard to imagine an application in
which more than 10 values of ¢, and more than 20 values of ¢; need be tried, for a maximum
of 200 values to be searched. When available, additional knowledge about possible con-
straints can be incorporated to reduce the search. For example, if it is known that the signal
components have no chirp, then ¢; is set to zero, and only a one-dimensional search over ¢, is
required.

The grid on which the short-time Fourier transform is computed must be of sufficient
density to ensure a reasonably accurate approximation to the integral in (4.10). The DFT
need not be as long as the signal; the frequency sample density just needs to be sufficient.
The user must also make sure that the boundaries of the computed short-time Fourier
transform include the entire region in which the transform is essentially nonzero, again to

ensure that the integral is accurately approximated.

The localization parameter & allows a tradeoff between the sensitivity of the concentra-
tion measure and the rate at which the Gaussian window parameter can vary. We have found
that the concentration measure is generally not lozalized enough for & < 0.1, and too much
sensitvity is sacrificed for £ > 0.5. Within this range, a large & performs best for resolving
the tops of nearby components, especially when they have different amplitudes and shapes.
However, the lower levels of a component are often poorly concentrated when & is large. A

small k should be used when the low-amplitude fringes of a component are of interest.

4.5. Extensions to Improve Computation Speed

Determination of the optimal Gaussian parameters at each time-frequency location

requires a large amount of computation. The brute force search increases the computational
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load by an amount proportional to the number of search values, but unfortunately this
expense cannot be avoided. The computation of the normalized volume at each time-
frequency location is by far the dominant computational load in the algorithm, and any means

to speed this up would decrease the computational burden tremendously.

The numerator in the definition of the local normalized volume in (4.10) is a two-
dimensional convolution of the localization window and the squared magnitude of the short-
time Fourier transform. This convolution can be computed very efficiently by use of two-
dimensional Fourier transforms, but unfortunately this technique cannot be used because the
maximum of the product of the localization window and the short-time Fourier transform is
also needed in the denominator of (4.10), so the product must be computed in the time-

frequency domain to obtain this maximum.

To take advantage of efficient convolution, we modify the measure of concentraton.
The normalized volume can be thought of as the L; norm of the squared magnitude of the
short-time Fourier transform multiplied by the localization window divided by the L., norm
of this function. This suggests that replacing the L,, norm in the denominator with another L,
norm may yield another function that effectively measures concentration but that is also
easier to compute. Although any L, norm, p > 1, works, we use the L, norm because it is

easy to square the two functions. The modified volume V), which we minimize is

j [ Lopr-1,6-0) | Si(7,0) | 2drdy
Vi) = : (4.16)

J j L2(t-1,0—0) | S(7,0) | *dtdt

In practice, we minimize V} to avoid the square root. The denominator in (4.16) is now a

two-dimensional convolution as well as the numerator, so fast convolution techniques can be
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used to compute these functions.

As with the old concentration measure in (4.10), we confirm the reasonableness of this
new measure by demonstrating that it yields the matched window parameters when applied to
a Gaussian signal. This is easily shown by expressing (4.16) for the Gaussian signal and win-

dow from (4.3) and (4.4) in the form

o0 2
[ | [NmaxexplA(t—10)? + B(1—10) (¢—tp) + C(0—bo)drddy
VE=—=
M s 4.17)

L

| [NZaexpl2A(T~10)2 + 2B(1=T0)(9—00) + 2C(9—b0)?dTdd

where A, B, and C are the same as in (4.12), (4.13), and (4.14), respectively. From (4.6), we

obtain the values of the integrals to get

2
NmaxT ]
=
ca B2 J
4 2n
V= > = , (4.18)
Nmaxn: BZ
= -
4CA - (25)

which is the same function in (4.6) that is minimized by the matched window parameter in
the original localized concentration measure. Thus the modified volume also yields the
expected results everywhere.

The modified technique is implemented in the same way as described in Section 4.4,
except that the time-frequency domain computation of the normalized volume at each loca-
tion is replaced by two convolutions that compute all locations at once. The convolution
arrays should be zero-padded sufficiently so that a linear rather than a cyclic convolution is

obtained. The modified procedure speeds up the algorithm by one to two orders of magni-
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tude for problems of a reasonable size. The new concentration measure generally performs
slightly better than the original method as weil, so we recommend its use even in a time-
frequency domain implementation, although the difference is not substantial enough to over-

ride computational or convenience considerations.




CHAPTER 5

Optimal Window Selection by Gaussian Parameter Estimation

5.1. Introduction

Selection of the Gaussian window parameter by maximizing a local measure of concen-
tration, as developed in the previous chapter, appeals to the intuition and performs quite well.
However, the computational burden imposed by this technique is substantial, and situations
may exist in which this burden is either unacceptable or in which some performance can be
sacrificed in the interests of increased speed. In this chapter, we present an approach to
selecting the Gaussian window parameter based on a Gaussian parameter estimate. This
method requires much less computation than the method in Chapter 4; for situations in which
r.l.le window varies only with time, the new method requires little more computation than the
short-time Fourier transform with a fixed window. The performance of this technique, how-
ever, is not as good as the concentration-based method, and thus the two approaches offer a

tradeoff between performance and computational burden.

In the Gaussian estimation method developed in this chapter, the goal of maximum sig-
nal concentration is approached indirectly. We know that the matched window gives optimal
concentration of Gaussian signals, and we are using Gaussian windows in the new time-
frequency representation in (3.1), so it seems reasonable that the Gaussian that most closely
approximates a signal component will yield high concentration of that component in time-
frequency. Thus we choose the window by finding the Gaussian that locally most closely
approximates the signal. The performance and speed of such a technique depends largely on

the Gaussian parameter estimation algorithm.

28
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5.2. A Gaussian Parameter Estimate

Any direct least-squares local fit of the signal with a Gaussian function requires a non-
linear minimization routine that imposes the computational burden we are trying to avoid.
We therefore seek an alternate estimate of the Gaussian parameters that may not result in as
good a fit but which is more attractive computationally. Such an estimate is analogous to
linear predictive coding (LPC) in exponential fitting problems, which minimizes an "equa-
tion" error to determine the exponential parameters using simple linear minimization tech-
niques.

We observe that for any discrete Gaussian signal x(n) = e+ g p , and ¢ complex,

ez::: Mﬁﬁ all

o A (5.1)

and the Gaussian parameter ¢ can be determined from

c=1ln &HQM alln. (5.2)
x“(n)

This function serves as an estimate of the Gaussian parameters most closely matched to the
signal at any time location n. In practice, we average several nearby estimates of ¢ to pro-
duce the window parameter that is actually used. We note in passing that this estimate is
somewhat similar to instantaneous frequency. (We also note that a continuous-time non-

linear differential equation analogous to this nonlinear difference equation is

_xX' KPR
2c= =0 2(0) 5.3)

for x(1) = e 4 b, and c complex.)
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5.3. A Modified Gaussian Parameter Estimate With Frequency Selectivity

The Gaussian parameter estimate is accurate only for a single Gaussian component at
any time location. For multi-component signals, a Gaussian bandpass filter e ~/e&n” jg
applied to retain only the dominant coraponent at the current frequency of interest. The
filtered signal

1
x{n) = x(n)* [Z_Rﬁ_@:l 4 e8np—jon 54

is then analyzed as in (5.2) to obtain a Gaussian parameter cfn) for the time-frequency loca-
tion (n,®).

The Gaussian parameter obtained from (5.4) has been biased by the Gaussian filter, but

. . 2 . .
for a Gaussian signal x(n) = e****"* the Gaussian parameter cg estimated from x{n) can be

shown to be
8
cr g (5.5)

The unbiased parameter ¢ can be calculated as

Cfg
c=—— 5.6
Py (5.6)

and applied in (3.1) to give the time-frequency estimate at that point.

5.4. Implementation of the Parameter Estimation Method

If a single window parameter is desired at each time location, (5.2) is computed, and the
resulting parameter is applied in (3.1) to yield the time-frequency representation. Several
estimates of (5.1) from adjacent time locations may be averaged to reduce the variance of the

Gaussian parameter estimate. This averaging introduces a tradeoff between rate of adaptation
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and variance reduction in the Gaussian parameter estimate; the proper tradeoff depends on
the situation and must be evaluated by the user. The algorithm is best implemented by com-
puting and applying the best window at each successive time location. The window is the
same for all frequencies at a given time, so an FFT can be used to compute the Fourier pro-
jections. Since little computation is needed to estimate the Gaussian parameter, this adaptive
window short-time Fourier transform requires little more computation than a fixed window

short-time Fourier transform.

If frequency selectivity is desired, the best implementation applies the Gaussian
bandpass filter, computes the Gaussian window parameters for all times at that frequency,
and computes the representation in (3.1) before moving on to the next frequency band. This
implementation avoids two-dimensional arrays and allows the filtering to be done in the
Fourier domain. Although a tight bandpass filter allows more frequency selectivity, it also
increases the bias of the estimate and eventuaily degrades its performance. The Gaussian
bandpass filter should be made as broad in frequency as is possible in the particular applica-
tion. Again, averaging introduces a tradeoff that must be resolved by the user between the
rate of adaptation and the variance of the Gaussian parameter estimates, but it should be
noted that the Gaussian filtering already introduces smoothing of the filtered signal inversely
proportional to the filter bandwidth, so less averaging is required for tighter bandpass filters.
The computation required is on the order of that needed to compute a fixed window short-
time Fourier transform using a DFT instead of an FFT; an FFT cannot be used since the win-
dow varies with frequency as well as with time.

An important component of a practical algorithm implementing this technique is a trap
for unacceptable parameter estimates. For example, the Gaussian parameter estimate may

yield a real part greater than zero. Our solution is to establish a range of acceptable values,




32

and any value outside the range is set to the closest acceptable value. Thus positive real parts

of ¢ are set to the maximum allowed (nonpositive) value for Re[c].




CHAPTER 6

Applications and Comparisons

6.1. Introduction

This chapter describes applications of time-frequency analysis and examines the poten-
tial of the new adaptive techniques in these applications. Section 6.2 reviews major current
applications of time-frequency analysis. The rest of the chapter describes applications of the
adaptive time-frequency analysis techniques to the analysis of dispersive waves and com-
pares their performance with the traditional techniques. In section 6.3, various time-
frequency analysis techniques are applied to a synthetic atmospheric whistler. In section 6.4,
the various time-frequency analysis techniques are applied to the analysis of a synthetic sig-
nal composed of two chirp Gaussians; this example is used by Cox and Mason in [9] to test
their short-time maximum entropy spectral analysis technique. In the fifth section, a more
sophisticated synthetic signal that was generated by Duckworth and Baggeroer from a wave
equation model of the acoustic channel under Arctic ice is analyzed [11]. A real waveform
recorded in the Arctic is analyzed in section 6.6 to test the performance and robustness of the

adaptive technique on challenging real data.

6.2. Applications of Time-Frequency Analysis

Time-frequency analysis is used in a number of applications. Short-time spectral
analysis plays a major, perhaps even dominant role in speech analysis, coding, and recogni-
tion [27]. Short-time Fourier and linear predictive analysis are the only time-frequency

analysis techniques that are commonly used in speech applications. Although speech pro-

33
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cessing is probably the most common application of time-frequency analysis, the time-
frequency representation developed in this thesis is probably not useful in speech applica-
tions. The goal in speech time-frequency analysis is rarely high concentration of signal com-
ponents; the window is either deliberately chosen to extensively smooth in the frequency
direction to preserve only the formant structure, or to suppress the time direction pitch period
effects in order to track the frequency variations in time-varying spectral features. Adaptive
techniques could be developed that would somewhat enhance performance in the latter situa-
tion during formant frequency glides and other spectral transitions, but such techniques arc
unlikely to achieve broad usage. The goal of time-frequency analysis in speech applications
is generally not to achieve high concentration, which is the goal of the adaptive techniques

developed here, and thus these techniques are not very useful for speech applications.

Bioacoustics, or the study of animal sounds, is another application in which time-
frequency analysis is often used. A variety of animals, including whales, dolphins, most bats,
anc many birds, produce frequency modulated or chirp sounds [22, 26, 29, 33]. Studies
with dolphins indicate that they are able to discriminate frequency modulations better than
any other waveform variations, which suggests that the frequency modulation is the most
important feature of dolphin sounds in terms of communication [17]. As with dispersive
modes, these waveforms are spread out in time and frequency but are concentrated in the
time-frequency plane. The ability of the adaptive techniques to concentrate these waveforms
and to track the varying frequency modulation in the waveforms makes these methods very
applicable to bioacoustic time-frequency analysis.

Full waveform acoustic well logging is another application of much current interest for

which time-frequency analysis techniques, and the adaptive method in particular, show great

potential. The acoustic waveform is composed of several waveform components with differ-
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ing characteristics, resulting from several different acoustic paths within the borehole com-
plex. The Stonely wave component is usually dispersive. The goal of full waveform logging
is to isolate and obtain information from all the components; current techniques generally
determine only the time of the first arrival. Time-frequency analysis offers the possibility of
doing this.

Time-frequency analysis is commonly used in the analysis of signals propagating in
dispersive channels in which different frequencies either travel along different paths and/or
with different velocities, causing different frequencies to be received at different times. Such
signals are especially appropriate for time-frequency analysis, because they are spread out in
both time and frequency but are concentrated in time-frequency. In general, individual non-
dispersive transient signal components can be processed effectively using an appropriate
combination of frequency filtering and time truncation, but time-frequency analysis is the
only current technique offering high performance on dispersive signal components. Earth-
quake data is often dispersive, and time-frequency analysis techniques are widely used in
these analyses [2, 10, 13]. Coal seams are usually dispersive acoustic channels, and time-
frequency analysis techniques are often applied to coal seam data [9]. Techniques have been
developed for removing dispersion from seismic waveforms [3], but these techniques require
an accurate dispersion relation that is obtained by time-frequency analysis. The water chan-
nel under arctic ice is also a dispersive acoustic channel, and time-frequency analysis is used
to determine the dispersion relations of the multiple acoustic modes [11]. The goal of time-
frequency processing in these applications is to obtain enough resolution so that the various
waveform components or modes can be distinguished, and to obtain the best possible concen-
tration so that the dispersion relations can be obtained as accurately as possible. The adaptive

techniques developed in this thesis have great potential in these applications.
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6.3. Application to Synthetic Whistler Analysis

Whistling atmospherics are naturally occurring frequency modulated electromagnetic
signals at acoustic frequencies. Storey studies these signals in some detail in [31] and con-
cludes that they are electromagnetic waves induced by lightming strikes that propagate along
a dispersive path through the jonosphere. This channel causes lower frequencies to arrive

later in time, according to a dispersion law
t= Df"'& , (6 1)

where D is the dispersion constant. Examination of his data reveals an amplitude dependency
on time (or frequency) as well, but no theory for this dependency is presented in [31]. The

real part of an analytic synthetic whistler

2
x(8) = exp |-0.002(+~128)% + | 2:_5;‘21 6.2)

with a Gaussian amplitude weight is shown in Figure 6.1. A contour plot of the Wigner dis-
tribution of this signal is shown in Figure 6.2a. The maximum value is normalized to 0dB,
and the contours in this and subsequent plots are at 5dB intervals from -5dB to -25dB. The
Wigner distribution is highly concentrated in time-frequency and accurately tracks the disper-
sion law. Inner cross-terms [18] between the "arms" of the waveform are visible in Figure
6.2a. For a relatively simple single-component signal such as this one, the cross-terms do not
obscure the signal or confuse the interpreter, so the Wigner distribution is probably the best

time-frequency representation to use.

Figure 6.2b contains a contour plot of the squared magnitude of the short-time Fourier
transform of the synthetic whistler using the (non-chirped) Gaussian envelope of the signal in

(6.2). The signal is poorly concentrated, and the dispersion relation is difficult to track accu-
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Figure 6.1: Dispersive synthetic "whistler" x(z) = exp |-0.002(—128)% + j
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rately. Figure 6.2c shows the squared magnitude of the short-time Fourier transform using
the matched window. The representation is quite concentrated, but inner cross-terms are visi-
ble in the plot. A more serious drawback is that the matched window representation does not
track the dispersion relationship. The matched window representation thus may not be
acceptable in some applications. Figure 6.2d displays the squared magnitude of the short-
time Fourier transform using the matched filter. The central peak of this representation is
quite sharp, which is expected because of the optimality of the matched filter for detection
purposes. However, the matched filter imposes symmetry in the time-{icquency representa-
tion on asymmetric signals such as this one; in this case, the signal appears to have an "S"
shaped dispersion relation, which is completely wrong. For this reason, the matched filter is

usually not acceptable in most time-frequency analysis applications.

Figure 6.3 contains time-frequency representations of the synthetic whistler with time
and/or frequency varying filters. Figure 6.3a shows the result of using frequency varying
Gaussian filters with the optimum bandwidth as derived by Barber and Ursell [1]. As pointed

out by Storey, their analysis implies that the filters should have a one-sided bandwidth equal

to

B(f):'\,—j{ , (6.3)

which yields a Gaussian filter parameter ¢ in A(f) = e’

3
__f? (6.4)
2DIn2

At the higher frequencies, this representation yields better resolution of the dispersion rela-
tion than the fixed Gaussian window in Figure 6.2b, but this analysis yields very poor results

at the lower frequencies.
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Figure 6.3: Adaptive time-frequency representations of a synthetic dispersive "whistler”
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Figure 6.3b shows the result of using the adaptive window short-time Fourier transform
using the Gaussian parameter estimation approach developed in Chapter 5. This representa-
tion accurately tracks the dispersion relation and has fairly good signal concentration. It also
lacks the cross-terms in the Wigner distribution and the matched window short-time Fourier
transform. Figure 6.3c shows the maximum concentration adaptive time-frequency represen-
tation developed in Chapter 4 with a localization weighting factor k=0.2. This technique
tracks the dispersion relation fairly well, but not quite as well as the Gaussian parameter esti-
mation approach in regions where the dispersion rate is quickly varying. However, it yields a
highly concentrated representation with roughly the concentration of the matched window
representation that has no cross-terms. It also accurately tracks the dispersion relation. A
larger localization weighting factor increases the ability of the maximum concentration
approach to follow fast variations in the dispersion rate. The ability of the adaptive schemes
to continuously track a nonlinear dispersion relation without introducing cross-terms or
sacrificing concentration is a major advantage of the adaptive representations over the tradi-

tional time-frequency representations.

Figure 6.3d contains a contour plot of the concentration maximization adaptive time-
frequency representation in which the Gaussian basis elements centain no chirp. The perfor-
mance is much better than the fixed window shon-time Fourier transforms in Figure 6.2, but
not as good as the adaptive approaches in Figures 6.3b and 6.3c in which the chirp parameter
varies. This illustrates the importance of the chirp component in obtaining high performance

on dispersive signal components.

6.4. Analysis of Two Crossing Gaussian Chirps

Figure 6.4 contains the real part of a synthetic signal composed of two chirp Gaussian

components with different parameters. This signal is almost identical to the synthetic signal




42

0.2 I

0.0

-0.1— .

200 400 7600 300 1000

TIME
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used by Cox and Mason to test a short-time maximum entropy time-frequency representation
[9].

Figure 6.5 contains a contour plot of the squared magnitude of the short-time Fourier
transform of this signal using a length-64 Hamming window, with the maximum value nor-
malized to 0dB and contours at 5dB intervals from -25dB to -5dB. Unless otherwise noted,
all the plots in this section are displayed in this manner. The tails of the two chirps begin to
separate at about the -15dB level, but they are never very distinct. Figure 6.6 displays a
short-time Fourier transform in which the window is matched to one of the chirp components.
The matched component is very concentrated and distinct, but the other component is poorly
concentrated. Furthermore, the apparent chirp rate of the other component is not the true
chirp rate of that component; the chirp rate is biased by that of the window. In Figure 6.7 the
window is matched te the other component. This component is now highly concentrated, but
the first component is biased and poorly concentrated. A Gaussian window with parameters
that are a compromise between the parameters of the two chirp components is used in Figure
6.8. The chirps are much better resolved than in the Hamming window short-time Fourier
transform in Figure 6.5, but both signal components are biased and not extremely concen-

trated.

The Wigner distribution of this signal is shown in Figure 6.9. Both signal components
are highly concentrated and distinct, but cross-terms appear between all the arms of the cross-
ing chirps. In a simple synthetic example such as this, the cross-terms can be determined and
ignored, but in more complicated situations they become a major problem. Figure 6.10
displays a short-time spectral estimate using Burg’s technique (Maximum Entropy). The pro-
gram developed by Marple in [23] was used. The contours are at 10dB intervals from -50dB

to -10dB. The two chirps are fairly well resolved, and the chirp rates are not biased, but the
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contours are very irregular. Figure 6.11 displays an adaptive time-frequency representation
of the signal. The maximum concentration approach developed in Chapter 4 was used with a
localization weighting factor of £=0.1 to obtain the Gaussian parameters. This method
yields high concentration of both signal components in time-frequency. The chirp rates are
unbiased, and the components are clearly separated. This representation is clearly superior to
the fixed-window short-time Fourier transforms and the Maximum Entropy short-time spec-
tral estimate in these respects, and it lacks the cross-terms that obscure the Wigner distribu-

tion.

6.5. Analysis of a Synthetic Arctic Acoustic Signal

Figure 6.12 contains a more realistic synthetic acoustic signal generated from a sophis-
ticated model of the underwater acoustic channel under Arctic ice developed by Greg Duck-
worth and Art Baggeroer at MIT [11]. This signal consists of a dominant dispersive modal
component between about time locations 100-200, a number of overlapping higher order
dispersive modes at about times 30-100, and a nondispersive arrival at time locations 200-
240. The main goal of time-frequency analysis of these signals is to determine the dispersion
relations of the various modes. Figure 6.23, which is taken from Greg Duckworth’s disserta-
tion [11], plots the dispersion tracks on a short-time Fourier transform of a similar synthetic
signal. In this section, we test the performance of the various time-frequency representations
in this application.

The Wigner distribution of the synthetic "Arctic" signal is shown in Figure 6.13. As in
previous sections, the contour levels in these figures are all at 5SdB intervals from -25dB to
-5dB. The dominant dispersive mode and the nondispersive late arrival are highly concen-
trated and are easily spotted in the Wigner distribution, but the higher order modes are com-

pletely obscured by cross terms between the first mode and the early portions of the signal.
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The Wigner distribution of a complicated signal is generally too complex to interpret.

The short-time Fourier transform of the signal using a length-64 Hamming window is
shown in Figure 6.14. This window is not particularly appropriate for any of the signal com-
ponents. The late arrival and the dominant dispersive mode are visible, but they are poorly
concentrated. The other dispersive modes are jumbled together and cannot be distinguished
in this repres: atation. Figure 6.15 shows the short-time Fourier transform of the signa! u:sing
a narrow-in-time Gaussian window. The late arrival and the dominant dispersive mode are
very poorly concentrated by this technique. More detail can be seen in the region containing
the less dispersive higher order modes, however; this window is more appropriate for this
portion of the signal. Figure 6.16 contains the short-time Fourier transform using a chirp
Gaussian window approximately matched to the large dispersive mode. This mode is highly
concentrated in this representation, but the late arrival appears dispersive, and the higher
modes are not distinct. A fundamental problem with these representations is that it is not

clear which one offers the most accurate interpretation of the data.

Figure 6.17 contains an adaptive time-frequency representation of the synthetic arctic
data using the concentration maximization technique with a localization weighting factor
k=0.1. The dominant dispersive mode is highly concentrated along its entire length, and the
late arrival is fairly well concentrated, although the nearby dispersive mode has influenced
the window parameter on the near side. A number of the higher order modes are visible in
this representation; it clearly offers much better performance in this respect than any of the
other representations. Figure 6.18 shows the adaptive representation using a localization
weighting factor £=0.2. It is quite similar to the previous plot, except that the lower con-
tours are more irregular in some places, and the late arrival is less influenced by the large

nearby dispersive component.
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Figure 6.19 shows the adaptive time-frequency representation using the modified
(Ly/L,) measure of concentration developed in Chapter 4 with a localization weighting factor
of k=0.2. This representation is extremely similar to the previous plot using the L;/L,, con-
centration measure, which indicates that the modified measure is a reasonable measure of
concentration even though it is less obvious conceptually than the original measure. Figure
6.20 shows the adaptive representation with the modified concentration measure computed
using fast convolution in single precision. The convolution arrays were not zero-padded
beyond the plot boundaries, which saves computation time; this accounts for the slight differ-
ences between this plot and the previous one. Figures 6.19 and 6.20 illustrate that the
modified technique gives results practically identical to the original method, so in practice the
fastest method should be used. On most machines, the modified method using fast convolu-

tion is fastest.

The final two figures in this section illustrate the performance of the Gaussian parame-
ter estimation techniques developed in Chapter 5. Figure 6.21 shows the adaptive window
short-time Fourier transform (time variation only of the window parameters) of the synthetic
arctic signal. The Gaussian parameter estimates were smoothed with a length-15 triangular
filter. The isolated dominant dispersive mode is well concentrated in this picture, and the
latter portion of the late arrival is fairly clear, but the time-overlapping higher modes yield
poor window parameter estimates that result in a poor representation of these regions. The
Gaussian parameter estimation approach with frequency selectivity is shown in Figure 6.22.
This method with frequency selectivity performs much better on signals with multiple com-
ponents overlapping in time, but it does not perform as well as the maximum concentration
approach. The amount of computation is greatly reduced, however, so a tradeoff exists

between quality of the representation and computation time.
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6.6. Analysis of a Real Arctic Acoustic Signal

In this section, we evaluate the performance of the adaptive technique on real data. We
received this data from G.L. Duckworth and A.B. Baggeroer; it is a segment of an acoustic
waveform propagating under the Aictic ice, and it results from a dynamite explosion 341 km
away. This data was originally obtained as part of MIT and Woods Hole Oceanographic
Institution participation in the FRAM II project supported by the Office of Naval Research.
For consistency with the previous examples, the time and frequency axes are normalized.
Figure 6.23 is a copy of a figure from Duckworth’s dissertation [11], which shows a conven-
tional short-time Fourier transform of a synthetic signal generated to match as closely as pos-
sible the real signal in Figure 6.24. The dispersion relations used in the model for the first

seven modes are shown in Figure 6.23.

The short-time Fourier transform of the real arctic data using a length-64 Hamming
window is shown in Figure 6.25. The dominant mode is easily visible, as is the high-
frequency portion of the second mode. The high frequency tip of the third and perhaps the
fourth mode are visible, but all other details are obscured. Figure 6.26 displays the adaptive
time-frequency representation using the modified measure of concentration with a localiza-
tion weighting factor of £=0.2. Much more detail can be seen in this contour plot. More
detail is visible in the dominant mode in Figure 6.26 than in the traditional short-time Fourier
transform. The entire course of the second and third modes can be observed. The fourth and
higher modes cross over each other and are too close to be completely resolved, but the
center of the bundle of modes can be followed. This picture could be used to refine the esti-

mates of the modes used to generate the synthetic signal.

This signal presents a real challenge to time-frequency analysis techniques. The back-

ground noise level is low, but the dispersive modes contain beats and other deviations from
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their synthetic counterparts. Isolated modes through almost overlapping modes cover a wide
range of resolution difficulty. The fact that the adaptive techniques work well on this signal
indicates that the technique is robust enough to work in challenging time-frequency analysis
applications. This is essential, because the development of new time-frequency analysis
techniques requiring more computation than the current schemes is justfied only by
increased performance on signals for which the current techniques are inadequate. Adaptive

time-frequency representations offer that increased performance.




CHAPTER 7

Conclusion

7.1. Conclusions

The new adaptive time-frequency representations presented here obtain high resolution
and concentration in time-frequency of all signal components. By adapting the window
parameters, these methods overcome the limitations of short-time Fourier transforms with
fixed windows. The new representations also avoid the cross-terms associated with the
Wigner distribution and other bilinear representations. The method maximizing local con-
centration performs quite well on complicated, realistic test data and real data, and it is robust
enough to work well in challenging practical applications with real data. This representation
offers performance that often greatly exceeds that which can be obtained with any other
time-frequency representation known to us. The only drawback to this technique is the large
amount of computation it requires. The parameter estimation techniques work fairly well and
require much less computation, so they may be useful in situations with relatively simple sig-
nals, in applications in which computing time is important, and when the absolute maximum

performance is not required.

7.2. Suggestions for Further Research

The applications in Chapter 6 confirm the potential of adaptive time-frequency
representations to achieve better performance than the current time-frequency representa-
tions. However, the particular methods developed in this dissertation may not be the best

possible adaptive time-frequency representations. New methods for determining the Gaus-
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sian parameters that represent different tradeoffs between performance and computation time
would be useful. Of particular importance is the development of a high-performance concen-
tration maximization approach that does not require as much computation as the current tech-
nique. It seems unlikely that an analytic solution for the Gaussian parameter maximizing the
local concentration can be found for the measure of local concentration developed in this
thesis. However, it is possible that other measures that capture the essence of local concen-
tration yet better lend themselves to computation can be found. Efforts should be made in
this direction.

This dissertation considers adaptive time-frequency representations based only on adap-
tive Gaussian windows as in (3.1). Non-projection-based approaches and methods based on
other windows should be investigated. One wild idea is to do a local signal reconstruction at
the time-frequency location of interest, and then apply this as the window. Other windows
may lead to a decreased computational load or other advantages. The traditional adaptive

filter literature may contain ideas that could be of use in adaptive time-frequency analysis.

The pseudo-Wigner distribution applies a two-dimensional filter to the Wigner distribu-
tion of a signal. As in the short-time Fourier transform, the quality of the pseudo-Wigner dis-
tribution depends on the proper choice of this filter, which depends on the data and may differ
at different locations in time-frequency. Thus the development of adaptive filtering tech-
niques for the pseudo-Wigner distribution, if successful, will result in the substantial
improvements in performance found in the new adaptive techniques over the traditional

short-time Fourier transform. This problem should certainly be investigated.
Application-specific simplifications and modifications of these techniques should be

investigated. For example, the computation required by the concentration-based approach is

reduced immensely if the signals are known to have no chirp component. Similarly, in
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applications involving tracking frequency modulations of signals with a time extent greater
than that feasible for the window length, adaptive techniques with a fixed window length and
a variable chirp rate would be ideal. Similar simplifications can no doubt be made in many,
if not most, of the applications in which these techniques may be useful. The objective of
maximizing concentration appears to be appropriate for the multi-component dispersive wave
analysis applications in Chapter 6, but in other applications, such as FM tracking, other
optimization criteria may be more appropriate. This issue should be addressed in other appli-

cations.
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