
CLIMATE RESEARCH

Clim Res
Vol. 21: 1–25, 2002 Published May 23

1. INTRODUCTION

Spatially complete representations of surface climate

are required for many purposes in applied and theoret-

ical environmental science. Examples include biogeo-

chemical modelling (Cramer & Fischer 1996), forestry

(Booth & Jones 1998), agriculture (Nicholls 1997,

Changnon & Kunkel 1999), hydrology and water re-

sources (Arnell 1999), climate change studies (Hulme

& Jenkins 1998, Hulme et al. 1999, Giorgi & Francisco

2000). Typically, the required spatial resolution of cli-

mate data increases with the resolution of analysis.

Global analyses of climate change impacts and terres-

trial biogeochemical cycling historically used data

gridded at 30’ latitude by longitude (lat/lon) or coarser

resolution, due to an absence of higher resolution data

that are global in extent as well as the computing

penalty invoked if higher resolution input data were

used. Regional and country scale analyses tend to

require higher resolution data (grid spacing <25 km)

so that climatic and climate-driven differences across

regions and within sub-regions can be identified (e.g.

Daly et al. 1994, Frei & Schar 1998). However, in many

regions of the world such high-resolution data have

not been available.

This paper describes the construction of a 10’ lat/lon

mean monthly climatology of surface climate over

global land areas, excluding Antarctica (henceforth

NEW01). The data set represents an improvement on

an earlier gridded climatology at 30’ lat/lon resolution

(henceforth NEW99, New et al. 1999) through an

increased spatial resolution, the incorporation of addi-

tional station data and the inclusion of a description

of precipitation variability, enabling the calculation of

probability distributions of monthly precipitation. The

climatology comprises a suite of variables: mean tem-

perature, diurnal temperature range, relative humidity,

sunshine, ground-frost frequency, wet-day frequency,

wind speed, and the 2 parameters of the Gamma distri-

bution fitted to monthly precipitation data.
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The data set was primarily developed for use in the

International Water Management Institute’s (IWMI)

World Water and Climate Atlas, but will also appeal to

a wider audience who require climate data at a resolu-

tion higher than that of previously available data sets.

The IWMI Atlas is designed as a growing collection of

data products and analytical tools focused on climate

and water resources, assembled in a standardized for-

mat that can be quickly and easily analysed using the

accompanying software package, the IWMI Synthe-

sizer. Examples of applications of the Atlas data in-

clude: identifying areas suitable for rain-fed agricul-

ture, providing inputs for hydrologic modelling of river

basins, providing basic climate data for crop model-

ling, and helping in the projection of water supply

and demand nationally and globally. Monthly climate

summaries for selected locations and variables are

available at the IWMI web site (www.iwmi.org), through

a purpose-developed web query engine (CAWQuer)

that accesses the full Atlas data set.

The structure of the paper is as follows. In Section 2

the station data and digital elevation data are briefly

described, and the Gamma distribution and its use

with monthly precipitation is discussed. Section 3

describes the thin-plate spline methodology used to

interpolate the station data to produce continuous

fields and their associated errors. In Section 4 the

derived grids are compared to a previous climatology

at 0.5° resolution, while in Section 5 regional examples

are used to illustrate some of the characteristics of the

gridded data. Section 6 draws the paper together with

a summary and some conclusions.

2. DATA

The climate station data used to construct the clima-

tology represent the fruits of a data collation program

at the Climatic Research Unit (CRU) extending from

the 1980s to the present day (Hulme 1994a,b, Jones

1994, Jones et al. 1999). These data have been com-

prehensively described by New et al. (1999, 2000), so

are only summarised in the sections that follow.

2.1. Sources

The station means used to construct the climatology

are predominantly climatological normals1 for the

period 1961 to 1990, collated from a number of sources.

These included direct contacts (and indirect contacts

via web-servers) with national meteorological agen-

cies and archive centres, the WMO 1961 to 1990 clima-

tological normals (WMO 1996), the Centro Interna-

cional de Agricultura Tropical (CIAT), as well other

published sources and personal contacts, and data sets

of monthly station time-series held in CRU. The main

sources are detailed below:

• Data supplied by National Meteorological Agen-

cies (NMAs) comprise by far the largest single data

source. Most of these data were supplied on diskette,

but about 23% were supplied either as published vol-

umes of 1961 to 1990 normals or on NMA paper copies.

Data on the latter 2 media were scanned or keyed in,

with independent checks against the originals.

• The WMO recently published the 1961 to 1990

climatological normals, which were merged with the

CRU data set. This resulted in 690 additional stations

that had data for at least 1 variable not previously in

the CRU data set.

• Several countries in Africa (e.g. Zaire and Angola)

and Southeast Asia (e.g. Cambodia) provided few or

no 1961 to 1990 normals to either CRU or the WMO.

In these cases data were extracted from 1 of 2 sources:

Müller (1982) and FAO (1984). Generally, these means

were calculated using data from the period 1931 to

1960. In the case of the FAO publications, the number

of years contributing to a mean was unknown. A small

number of stations from several other sources were

used. These included the USAF Climatological Data

Volume (USAF 1987) and a number of personal con-

tacts where data for between one and several tens of

stations were obtained.

• Personnel at CIAT have collated several thousand

climatological means for South and Central America

(P. Jones pers.comm.). Unfortunately, the period each

mean represents is unspecified, although the number

of years of record contributing to the mean is usually

supplied. These were assumed to be broadly represen-

tative of the period 1950 to 1990, but were in any case

assigned a lower weight in the interpolation scheme.

• Global data sets of monthly time series of precipi-

tation (Eischeid et al. 1991, updated), mean tempera-

ture (Jones 1994, updated), maximum and minimum

temperature (the Global Historical Climatology Net-

work; Easterling et al. 1997, with additions by CRU) for

several thousand stations worldwide were searched for

additional stations. CRU also holds smaller data sets of

monthly time series of the other variables. These data

have been quality-controlled and checked for inhomo-

geneities. Station means for 1961 to 1990 were calcu-

lated from these time series and added to the normals

data set.

Despite these data collation efforts, the CRU data in

many regions still represent only a sub-set of the

potentially available stations.

2

1A ‘normal’ is a climatic average for a defined period, such

as the WMO standard normal periods of 1931–1960 and

1961–1990
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2.2. Quality control

Data from the WMO collection were subjected to a

fairly comprehensive series of quality control (QC)

checks by the National Climatic Data Centre (NCDC

1997). Data obtained directly from NMAs were

assumed to have been quality-checked at source.

Nonetheless, all data were subjected to a 2-stage QC

process. In the first stage, prior to interpolation, a stan-

dard series of automated tests were performed on indi-

vidual station normals. These tests were similar to

those used by the NCDC during the collation of the

WMO 1961 to 1990 climatological normals, namely:

(1) internal consistency checks, e.g. ensuring that the

monthly means follow a consistent seasonal cycle and

that predefined absolute limits are not exceeded; and

(2) between-variable consistency tests, e.g. ensuring

that monthly minimum, mean and maximum tempera-

tures are consistent and that months with zero precipi-

tation have zero wet-days.

The second stage of QC occurred during the interpo-

lation of station data, where the interpolation diagnos-

tics enabled identification of station-months that had

large residuals (see Section 3.2), and were potentially

in error. As a general rule, data that failed these QC

tests were removed from the interpolation. In some

cases, however, the data could be compared and re-

placed with normals calculated from the CRU monthly

station time-series described above.

2.3. Variables

The number of stations for each variable varies

markedly (Figs. 1 to 9). Precipitation and temperature

are the most widely available, followed by diurnal tem-

perature range (simply the difference between mean

maximum and minimum temperature). Windspeed is

the least widely reported variable with just over

3950 stations globally (Fig. 1), while precipitation has

3

Fig. 1. Distribution of

stations for which mean

wind speed was available

Fig. 2. Distribution of

stations for which mean

precipitation was available
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the most extensive and dense network, with some

27 000 stations for mean precipitation (Fig. 2) and

22 000 stations for the coefficient of variation (CV) of

precipitation (Fig. 3).

The ways in which surface climate variables are

measured and reported vary both within and between

countries. Common differences include gauge/instru-

ment type and height, measurement times, and the

units of measurement. For instance, precipitation mea-

surements can be influenced by several factors, most

notably gauge type, the ratio of solid to liquid precipi-

tation and wind conditions/turbulence. Various attempts

have been made to correct for such biases in precipita-

tion (e.g. Groisman et al. 1991, Legates & DeLiberty

1993, Yang et al. 1999, Groisman & Ranakova 2001).

The CRU data over the former USSR include the ori-

ginal data adjusted by Groisman et al. (1991), but we

made no attempt to correct precipitation data over

other regions; in most cases there was insufficient

information to attempt this.

Wind speed is measured at heights above the surface

of between 2 and 20 m. Measurement height varies both

within and between countries, and in many cases the

heights were not specified. Consequently, no corrections

were made to wind data. The large majority of known

heights were 10 m, and the interpolated wind field

should be assumed to represent speed at this height.

Differences in temperature measurement times have

been shown to induce disparities of several tenths of a

degree Celsius (Karl et al. 1986, Andersson & Mattison

1991) and different countries calculate mean tempera-

ture in various ways (Jones et al. 1986). Where pos-

sible, mean temperature was defined as the average of

mean maximum and minimum temperature, which are

measured more uniformly across the world. At stations

where only mean temperature was available, these

values were used, despite the uncertainty about their

derivation.

Wet-day frequencies were generally expressed as

the number of days per month with precipitation >0.1

4

Fig. 4. Distribution of stations

for which mean temperature 

was available

Fig. 3. Distribution of stations

for which the coefficient of

variation (CV) of monthly

precipitation was available
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Fig. 5. Distribution of sta-

tions for which diurnal

temperature range was 

available

Fig. 6. Distribution of sta-

tions for which wet-day

frequency was available.

Black and red dots repre-

sent stations for which

wet-day frequency was

provided with the 0.1 mm

and 1.0 mm thresholds

respectively. The latter

were converted to the

equivalent 0.1 mm wet-

day frequency

Fig. 7. Distribution of sta-

tions for which sunshine

(black) and cloud fraction

(red) was available. The

latter were converted to

sunshine percent as de-

scribed in the text
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or 1.0 mm. There were approximately twice as many

stations reporting wet-day frequency with a 0.1 mm

threshold than those with a 1.0 mm threshold; conse-

quently those with a 1.0 mm threshold were converted

to a 0.1 mm threshold, using the empirical conversion

procedure described by New et al. (1999). A small

number of normals (e.g. UK and Australia) used some

other threshold, typically 0.2 mm, and no adjustment

was made for these more moderate differences.

The data set contains normals for cloud cover and

sunshine, mostly from different stations. Sunshine nor-

mals were supplied as either mean hours per month

or percent of maximum possible bright sunshine. Total

cloud cover normals were mostly provided in oktas

(eighths) and sometimes in tenths. Normals in units of

sunshine hours were converted to percent of possible

maximum sunshine, and cloud cover normals were

standardised to oktas. For some countries both cloud

cover and sunshine data were available, but in most

instances either one or the other was provided. To

obtain more complete coverage, cloud cover was con-

verted to sunshine using the approach described by

New et al. (1999), which is based on the methodology

of Doorenbos & Pruitt (1984), but with an additional

latitudinal correction.

Humidity normals in the CRU data set comprised

roughly equal numbers of relative humidity (RH) and

vapour pressure (e). Vapour pressure measurements

were converted to RH using the equation:

(1)

where esat is the saturated vapour pressure (in hPa) at

mean air temperature (T), calculated using the Clau-

sius-Clapeyron equation (Shuttleworth 1992, p. 4.3):

(2)

This estimation is reliable provided that tempera-

ture and relative humidity are measured simultane-

ously and the temperature is above zero. In some

cases the mean temperatures at the times of mea-
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Fig. 8. Distribution of sta-

tions for which relative hu-

midity (black) and vapour

pressure (red) was avail-

able. The latter were con-

verted to relative humidity,

as described in the text

Fig. 9. Distribution of sta-

tions for which ground frost

frequency (black) and air

frost frequency (red) were

available. The latter were

converted to ground frost

frequency, as described in

the text. Blue dots repre-

sent stations where mini-

mum temperature was used

to estimate ground frost 

frequency
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surement were available and the estimated RH can

be considered reliable. However, in many cases only

the mean, or minimum and maximum temperature

was available, while RH was the mean of 1 or sev-

eral daily measurements. Validation of the conver-

sion using stations where both RH and e were avail-

able suggest the estimated RH will have errors of up

to ±15% (New et al. 1999). Below freezing, 2 issues

complicate the measurement of vapour pressure

and its conversion to RH. First, saturation vapour

pressure over ice is lower than over water, and not

all instruments can account for this. Secondly, satu-

rated vapour pressure decreases from ~1.0 hPa at

–20°C to ~0.15 hPa at –40°C; at these low pressures

small absolute measurement errors (~0.1 hPa) are

large in relative terms, and induce similarly large

errors in RH. These problems are revisited in Sec-

tion 5, where the gridded data are evaluated over

selected regions.

Most ground frost normals were defined as the fre-

quency of grass minimum temperatures <0°C. Some

normals, however, were defined as the frequency of

minimum air temperatures <0°C and these had to be

converted to ground frost frequency. As there was no

straightforward theoretical basis for this conversion,

the empirical formula derived by Hulme et al. (1995)

was used. Validation of this formula indicated that the

estimates are typically accurate to within 2 d mo–1

(New et al. 1999). For much of the tropics, no ground

frost or air frost normals were available for the obvious

reason that temperatures rarely fall below freezing

point. This absence of data presented problems for the

interpolation of frost frequency to high elevations in

the tropics. In these regions, ground frost frequency

was estimated from minimum temperature data using

the formulation of New et al. (1999).

The interpolation described in Sec-

tion 3 makes use of elevation as a co-

predictor. The elevation data used to

create grids of the interpolated sur-

faces derives from the GLOBE 1 km

elevation database, downloaded from

the National Geophysical Data Centre

(NGDC 2000). The GLOBE elevation

data were resampled to produce a 10’

elevation grid, simply by calculating

the average of all GLOBE elevations in

each 10’ grid box. A 10’ cell was con-

sidered to be ocean only if <25% of

the constituent GLOBE elevation cells

were land. As a result, the elevation of

any 10’ cell designated as land repre-

sents the average elevation of at least

100 (maximum 400) GLOBE elevation

points.

2.4. Precipitation probabilities

In order to estimate precipitation exceedence proba-

bilities, the Gamma distribution was chosen to model

the probability distribution of monthly precipitation.

Although other distributions are possible (Stedinger et

al. 1992, Hutchinson 1995b), the Gamma distribution

can be easily calculated using the ‘method of moments’

—the mean and standard deviation of the observed

data are used to define the 2 parameters of the Gamma

distribution (Stedinger et al. 1992):

(3)

(the ‘shape’ parameter)

(the ‘scale’ parameter)

where µx is the arithmetic mean, σx is the standard

deviation, and CV is the coefficient of variation. The

commonly used terms of ‘shape’ and ‘scale’ for para-

meters α and β arise from the effect they have on the

Gamma probability density function, illustrated in

Fig. 10. α controls the shape (or skewness) of the distri-

bution, as a function of the relative variability, or coef-

ficient of variation (CV). A high CV results in a posi-

tively skewed distribution, while a lower CV produces

a more normal distribution. In contrast β describes the

scale over which the distribution occurs. For any shape,

the scale increases (β decreases) as the arithmetic mean

of the distribution increases.

Using parametric estimators also simplifies the inter-

polation procedure, because only the mean and coeffi-
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Fig. 10. The probability density function for the Gamma distribution, with α and

β defined for a range of coefficients of variation (CVx) and for data with a mean 

(µx) of 20 and 100
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cient of variation of precipitation need to be inter-

polated. Fields of the parameters of the Gamma distri-

bution can then be calculated from the gridded mean

and CV fields. This approach was used because µ and

CV are easier to interpret and verify than α and β. The

alternative—interpolating α and β directly—would

have made intuitive verification of the interpolated

fields more difficult.

A further advantage of interpolating the mean and

CV of precipitation lay in the larger number of precipi-

tation normals (means) in the CRU data set. In contrast,

precipitation CVs had to be calculated from monthly

time-series in the CRU data set, which contains far

fewer stations (compare Figs. 2 & 3). Interpolation of

α and β directly would have limited the number of sta-

tions to those in the data set of station time series.

A limitation of the use of the Gamma distribution is its

behaviour when fitted to data with many months with

zero precipitation, a common occurrence in arid and

seasonally arid regions. In such situations, the empirical

cumulative distribution function is discontinuous near

zero, while the Gamma cumulative distribution func-

tion is continuous, and tends to approach zero as x

approaches zero. Because of this the frequency of dry

months inferred from the fitted distribution will tend to

be underestimated. An alternative procedure would be

to estimate the probability of zero rainfall from the data,

and then estimate the Gamma distribution only for non-

zero values of monthly rainfall. However, this would

have required separate interpolation of fields of zero

probability and precluded the use of stations for which

mean rainfall was available, thus reducing station con-

trol. For these reasons, the simpler approach described

in the previous paragraph was adopted.

The effect of fitting the Gamma distribution to all

data is illustrated in Fig. 11, which shows the fitted

and empirical percentiles of monthly precipitation at

Niamey (Niger), encompassing a wide range of precip-

itation regimes. In January, the height of the dry sea-

son, only 4 mo with rainfall have occurred in the 93 yr

on record; thus the empirical probability of zero rain is

~0.96. In contrast, the fitted distribution predicts the

probability of zero rainfall to be lower, at 0.94. A fur-

ther consequence of this bias is that the predicted

rainfall quantiles are overestimated (underestimated)

at lower (higher) percentiles.

8

Fig. 11. Fitted (Gamma distribution) and empirical percentiles of monthly precipitation at Niamey, Niger
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April and October precipitation at Niamey represent

intermediate cases, where there are fewer dry months

(30 and 45% respectively; see Fig. 11). As with Janu-

ary, the probability of zero rainfall is underestimated,

this time by ~20%. Similarly, the lower (higher) precip-

itation totals are overestimated (underestimated), by a

few mm at lower totals and 10 to 20 mm at higher

totals. In July, during the West African monsoon, all

months in the record have rainfall, with a minimum of

30 mm. Here the fit is much better and the biases at

low and high totals are not as marked; nonetheless,

there remains over- and underestimation at the lowest

and highest totals respectively.

Similar results were found when evaluating the

Gamma distribution in a number of climatic environ-

ments (United Kingdom, Southern Africa, Brazil and

India), but are not shown here. These results all sug-

gest that, apart from the largest percentiles, the esti-

mation error in all months is only a few mm, and is not

significant in most practical applications (e.g. crop suit-

ability assessments). At the largest percentiles, pre-

cipitation is considerably overestimated and estimates

at these percentiles should be treated with caution;

indeed it is recommended that precipitation should be

estimated only between the 10th and 90th percentiles

to avoid the relatively large errors associated with the

tails of the fitted distributions.

3. INTERPOLATION

3.1. Thin-plate smoothing splines

The station climate statistics were interpolated using

thin-plate smoothing splines (ANUSPLIN) developed

by Mike Hutchinson at the Australian National Univer-

sity (Hutchinson 1999). The original thin-plate spline-

fitting technique is described by Wahba (1979), while

Hutchinson (1995a) provides a theoretical description

of their application to surface climate variables such as

precipitation. Spline interpolation is robust in areas

with sparse or irregularly spaced data points. Thin-

plate splines are defined by minimising the roughness

of the interpolated surface, subject to the data having a

predefined residual. This is usually accomplished by

determining the amount of data smoothing that is

required to minimise the generalised cross validation

(GCV). The GCV is calculated implicitly and hence

without recourse to computationally demanding itera-

tive procedures. The main advantage of splines over

many other geostatistical methods is that prior estima-

tion of the spatial auto-covariance structure is not

required (Hutchinson 1995a).

Using the Bayesian arguments of Wahba (1983) and

Silverman (1985) to define the error covariance matrix

of the fitted values, the ANUSPLIN package also

enables the calculation of spatially distributed stan-

dard errors about the fitted surface. The Bayesian stan-

dard error can be interpreted in an analogous manner

to the standard error in linear regression. Confidence

intervals for the predicted surface can be estimated by

multiplying the surface standard error by 1.96, the

95% 2-sided confidence interval for the standard nor-

mal distribution.

3.2. Interpolation of climate variables

The approach to interpolation of all surface climate

variables except precipitation CV is the same as that

described by New et al. (1999). Trivariate thin-plate

spline surfaces were fitted as functions of latitude, lon-

gitude and elevation to the station data over several

regional domains or ‘tiles’ (Fig. 12). The inclusion of

9

Fig. 12. Spatial domains or

‘tiles’ over which the inter-

polations of surface climate

data were performed. Note

that for some variables,

most notably precipitation,

the actual surface fitting

was undertaken over 2 or

more sub-tiles within each

domain in order to reduce 

computational times
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elevation as a co-predictor adds considerable skill to

the interpolation, enabling topographic controls on

climate that are resolved by the station data to be cap-

tured. For some of the variables, especially precipita-

tion, station numbers were too large for available com-

puter memory to permit interpolation over an entire

domain. In such cases the continental domains were

divided into sub-areas that were subsequently merged.

Sub-areas were defined with overlaps of several de-

grees latitude and/or longitude to avoid discontinuities

when they were merged.

Precipitation CV was interpolated as a function of

latitude, longitude and mean precipitation. There were

2 main reasons for this. First, CV is closely (inversely)

related to mean precipitation and we found that pre-

cipitation was as good or better as a predictor of CV

than elevation in most regions. Second, making the

interpolated CV dependent on mean precipitation

ensured that the 2 statistics varied together in a consis-

tent manner in regions with poor station control. The

alternative, interpolating CV as a function of location

and elevation, increased the likelihood of different ele-

vation dependencies arising during the surface fitting

process, with the consequence that the mean and CV

of precipitation would not necessarily vary together in

a consistent manner.

The spline-fitting program provided a list of the sta-

tions with the largest residuals from the fitted surfaces.

These lists were used to identify and check potentially

erroneous stations. In some instances, these stations

were deemed to be correct and their positions as outliers

were assumed to be due to local climatological variations

that could not be resolved with the available network.

However, a number of station outliers were found to

have identifiable errors—most common mistakes in-

cluded inaccurate locational and/or elevation informa-

tion, and typographic errors, where values for a single

month did not fit in with the overall seasonal pattern.

Stations such as these were corrected or, if this was not

possible, excluded from the interpolation data set.

Once spline surfaces had been fitted to the station

data, the resultant surface coefficients were used in con-

junction with the 10’ elevation data to calculate grids of

climate variables. In the case of precipitation CV, the

(interpolated) grid of mean precipitation was used in-

stead of the elevation to compute the gridded estimates.

At this stage, the grids were plotted and inspected visu-

ally for errors that might have escaped the earlier QC.

3.3. Interpolation errors

By definition, geostatistical interpolation involves

errors, as it is the error structure of the input data that

helps to define the fitted surface. For geostatistical

interpolation to be appropriate, the data should have

some spatial predictability. Variability in the data that

is not predictable (in this case, variability that is not a

function of latitude, longitude and elevation) is consid-

ered to be noise. Thus local topographic effects such as

rain shadows cannot be resolved unless: (1) a predictor

that is a proxy for this influence is incorporated in the

interpolation, and/or (2) there are sufficient stations to

capture this local dependency as a function of latitude,

longitude and elevation. In regions with sparse data,

the station networks used to create these data sets are

clearly unable to capture this sort of detail and the

interpolated fields will represent the larger-scale (>25

to 50 km) climatic regime; however the surfaces will

nonetheless explicitly incorporate the larger-scale cli-

mate lapse rates and these will be reflected in the grid-

ded data set as a function of local elevation in the

gridded elevation data. In regions with increasingly

dense station data, increasingly finer-scale topographic

dependencies will be resolved.

The noisier the data are (in terms of predictability as

a function of latitude, longitude and elevation), the

greater will be the predictive error as one moves away

from control stations. The spline-fitting program pro-

vides an estimate of this predictability through the

GCV. Although calculated implicitly, the GCV is equi-

valent to removing each data point in turn and sum-

ming, with appropriate weighting, the square of the

difference between the omitted point and that pre-

dicted by a surface fitted using all the other points.

The square root of the GCV (RTGCV) for each inter-

polation domain and variable is shown in Tables 1 to 9. As

would be expected, the mean cross validation errors are

similar to those reported for NEW99 (using a similar set

of station data). The variables with the highest relative

error are precipitation (Table 1) and wind speed

(Table 9). In the case of precipitation this is because of 

its inherent spatial variability, even though there are

>27000 stations in the data set. RTGCV for precipitation

varies from <10% of the domain mean over NE North

America to >50% in domains with variable elevation

and low station density, such as South America and Cen-

tral Asia. Wind speed has the sparsest station network,

with consequent high cross validation errors; the sparse

network is compounded by difficulties in interpolating

the rather large gradients in wind speed from coastal to

inland sites, the variability in measurement heights (Sec-

tion 2.3) and the strong control of local topography in

modifying the larger-scale wind regime.

The relative RTGCVs for precipitation CV lie be-

tween 20 and 40% of the domain mean CV, with no

region exhibiting relative errors that are notably larger

than other regions. This is at least in part because the

regions with the most variable CV also have the high-

est domain-mean CV, so large absolute errors are less

10
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Table 1. Square root of the generalised cross validation (RTGCV; expressed as the percent of the domain-mean) for precipitation

over the interpolation domains.  Note that in some cases the continental domains were subdivided into smaller interpolation tiles 

to reduce the computation times where there were a large number of stations present

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Asia 20° S, 45° E–40° N, 160° E 46 44 41 42 39 35 36 36 34 39 44 43

Australia 60° S, 90° E–12° N, 140° E 32 31 30 29 28 27 30 29 29 29 30 31

Australia 60° S, 140° E–12° N, 180° E 21 22 21 22 23 25 25 26 27 23 22 20

C. Asia 25° N, 55° E–90° N, 180° E 59 54 53 59 47 65 62 54 45 41 21 55

C. America 8° N, 120° W–20° N, 25° W 61 61 56 38 28 23 25 23 21 24 36 54

C. America 0° N, 50° W–20° N,25° W 17 17 15 18 21 26 36 37 43 38 27 21

C. America 0° N, 120° W–20° N,80° W 56 49 48 40 31 24 26 26 24 29 44 60

C. America 0° N, 80° W–20° N,50° W 36 31 29 26 25 26 32 30 27 26 31 39

Europe 30° N, 20° W–85° N,10° E 20 19 19 16 13 14 15 15 17 18 18 20

Europe 30° N, 10° E–85° N,60° E 31 30 30 25 21 21 22 23 31 31 29 32

N. Africa 5° S, 25° W–40° N,60° E 29 28 28 36 40 35 34 31 32 38 38 34

N. America 35° N, 80° W–85° N,20° W 11 10 9 9 8 8 7 8 9 10 8 9

N. America 20° N, 180° W–35° N,20° W 26 33 37 39 30 21 23 22 22 27 36 33

N. America 35° N, 180° W–85° N,105° W 27 27 25 22 17 14 13 13 18 28 27 27

N. America 35° N, 105° W–85° N,80° W 15 11 10 8 8 8 10 8 10 10 9 11

S. Africa 40° S, 0° E–0° N,60° E 29 28 27 34 41 35 33 31 32 39 32 29

S. America 60° S, 110° W–15° S,20° W 17 20 20 26 33 36 38 36 28 23 21 19

S. America 15° S, 110° W–0° N,50° W 27 25 27 28 30 34 40 40 36 31 31 32

S. America 15° S, 50° W–0° N,20° W 17 18 16 20 26 33 44 46 44 30 22 19

Table 2. RTGCV as for Table 1, but for the coefficient of variation of precipitation

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 25 21 21 16 16 18 17 21 19 15 16 20

Asia 20° S, 87° E–40° N, 160° E 25 29 25 23 22 26 24 29 28 28 33 34

Asia 20° S, 45° E–40° N, 87° E 29 28 30 33 33 26 29 30 25 25 28 28

C. Asia 25° N, 55° E–90° N, 180° E 33 30 32 37 35 23 23 23 22 25 30 30

C. America 25° S, 120° W–25° N, 25° W 23 21 22 22 24 29 29 31 28 26 25 22

Europe 30° N, 20° W–85° N, 60° E 26 21 18 22 29 29 34 35 25 26 22 20

N. Africa 5° S, 25° W–40° N, 60° E 26 26 29 32 33 32 33 36 31 28 28 24

N. America 20° N, 180° W–80° N, 95° W 22 20 23 21 24 28 30 25 18 16 18 21

N. America 20° N, 95° W–80° N, 20° W 22 19 20 17 15 17 19 16 14 14 19 21

S. Africa 40° S, 0° E–0° N, 60° E 39 40 33 34 30 37 41 39 34 26 35 37

S. America 60° S, 110° W–0° N, 20° W 20 20 21 22 25 29 29 31 28 27 26 22

Table 3. RTGCV for mean monthly wet-day frequency (expressed in d mo–1) over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 1.8 1.7 1.9 1.8 2.1 2.1 2.1 2.1 2.1 2.1 1.9 2.0

Asia 20° S, 45° E–40° N, 160° E 1.8 1.6 1.6 1.7 1.7 2.0 2.6 2.5 1.9 1.6 1.7 1.8

C. Asia 25° N, 55° E–90° N, 180° E 1.5 1.3 1.3 1.2 1.2 1.7 2.4 2.3 1.6 1.2 1.2 1.5

C. America 0° N, 120° W–20° N, 25° W 2.5 2.1 2.3 2.2 2.5 3.1 3.6 3.5 3.2 2.8 2.4 2.5

Europe 30° N, 20° W–85° N, 60° E 1.8 1.6 1.6 1.4 1.3 1.2 1.3 1.4 1.6 1.6 1.6 1.8

N. Africa 5° S, 25° W–40° N, 60° E 1.8 1.8 1.9 1.8 1.9 1.6 1.8 1.9 1.7 1.9 1.9 1.9

N. America 20° N, 180° W–47° N, 20° W 2.3 1.9 1.8 1.5 1.5 1.6 1.7 1.9 1.8 1.9 1.7 2.2

N. America 47° N, 180° W–85° N, 20° W 2.3 1.9 1.8 1.6 1.7 1.5 1.4 1.5 1.5 1.6 1.8 2.2

S. Africa 40° S, 0° E–0° N, 60° E 2.1 2.3 2.4 2.2 2.3 1.9 1.9 2.0 2.1 2.4 2.5 2.2

S. America 60° S, 110° W–0° N, 20° W 3.5 3.1 3.5 3.4 3.7 4.1 4.3 4.2 3.8 3.4 3.3 3.6
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Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 3.9 3.8 3.6 3.8 3.7 3.5 3.7 3.5 3.4 3.6 3.6 3.7
Asia 20° S, 45° E–40° N, 160° E 5.7 5.4 5.2 4.8 4.8 4.7 4.7 4.7 4.9 4.9 5.4 5.7
C. Asia 25° N, 55° E–90° N, 180° E 6.7 6.4 6.3 5.5 5.4 5.4 5.1 5.1 4.9 5.7 6.0 6.5
C. America 0° N, 120° W–20° N, 25° W 4.8 4.9 4.8 4.8 4.6 4.2 4.4 4.3 4.2 3.8 4.1 4.5
Europe 30° N, 20° W–85° N, 60° E 3.6 3.5 3.4 3.4 3.8 4.0 4.1 3.9 3.7 3.3 3.3 3.5
N. Africa 5° S, 25° W–40° N, 60° E 4.8 4.6 4.7 4.7 5.0 5.4 5.6 5.6 5.2 4.7 4.7 4.8
N. America 20° N, 180° W–85° N, 20° W 4.8 5.1 5.2 5.4 5.1 4.3 4.2 3.9 3.7 3.9 4.3 4.6
S. Africa 40° S, 0° E–0° N, 60° E 5.0 4.7 4.7 5.0 5.2 5.6 5.6 5.5 5.2 5.1 5.3 5.1
S. America 60° S, 110° W–0° N, 20° W 4.4 4.5 4.2 4.1 3.9 4.2 4.5 4.7 4.5 3.8 3.9 4.4

Table 4. RTGCV (expressed in °C) for mean monthly temperature over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.2 1.0 1.0 1.0 0.9
Asia 20° S, 45° E–40° N, 160° E 1.1 1.1 1.1 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.1 1.1
C. Asia 25° N, 55° E–90° N, 180° E 1.1 1.1 1.0 0.8 0.8 1.0 1.0 1.0 1.0 0.8 1.0 1.0
C. America 0° N, 120° W–20° N, 25° W 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1
Europe 30° N, 20° W–85° N, 60° E 1.1 1.0 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.1
N. Africa 5° S, 25° W–40° N, 60° E 1.8 1.6 1.4 1.4 1.5 1.6 1.7 1.7 1.6 1.5 1.6 1.7
N. America 20° N, 180° W–85° N, 110° W 1.5 0.9 0.9 0.7 0.6 0.7 0.7 0.7 0.7 0.6 0.8 0.9
N. America 20° N, 110° W–85° N, 90° W 1.3 0.9 1.0 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.9
N. America 20° N, 90° W–85° N, 75° W 0.6 0.7 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.6 0.5 0.6
N. America 20° N, 75° W–85° N, 20° W 0.7 0.8 0.6 0.6 0.7 0.6 0.7 0.6 0.6 0.6 0.6 0.7
S. Africa 40° S, 0° E–0° N, 60° E 1.5 1.5 1.4 1.4 1.5 1.7 1.7 1.6 1.5 1.4 1.4 1.4
S. America 60° S, 110° W–0° N, 20° W 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N,180° E 2.2 2.3 2.3 2.2 2.2 2.2 2.3 2.6 2.3 2.2 2.2 2.1
Asia 20° S, 45° E–40° N,160° E 2.4 2.3 2.4 2.3 2.4 2.4 2.5 2.5 2.6 2.7 2.5 2.4
C. Asia 25° N, 55° E–90° N,180° E 1.8 1.4 1.7 1.6 1.6 1.4 1.3 1.3 1.5 1.6 1.7 1.7
C. America 0° N, 120° W–20° N,25° W 2.5 2.6 2.5 2.6 2.4 2.2 2.1 2.1 2.1 2.2 2.4 2.6
Europe 30° N, 20° W–85° N,60° E 1.5 1.5 1.7 1.8 2.0 2.1 2.2 2.2 2.1 2.0 1.7 1.5
N. Africa 5° S, 25° W–40° N,60° E 3.1 3.1 3.2 3.2 3.5 3.8 3.8 3.9 3.8 3.6 3.2 3.0
N. America 20° N, 180° W–85° N,105° W 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.4 1.3 1.3
N. America 20° N, 105° W–85° N,85° W 1.4 1.5 1.5 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.4 1.4
N. America 20° N, 85° W–85° N,20° W 0.9 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.9
S. Africa 40° S, 0° E–0° N,60° E 2.8 2.9 2.8 2.8 3.2 3.7 3.7 3.6 3.2 2.9 2.6 2.7
S. America 60° S, 110° W–0° N,20° W 1.7 1.7 1.6 1.6 1.7 1.8 1.9 1.9 1.8 1.7 1.7 1.9

Table 5. RTGCV (expressed in °C) for mean monthly diurnal temperature range over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 0.8 0.9 1.4 2.7 3.6 4.1 4.2 3.9 3.3 2.8 1.9 1.1
Asia 20° S, 45° E–40° N, 160° E 1.9 1.6 1.8 1.5 1.0 0.7 0.5 0.5 0.9 1.4 2.0 2.0
C. Asia 25° N, 55° E–90° N, 180° E 1.8 1.5 1.8 1.6 1.2 0.8 0.5 0.7 1.1 1.5 2.0 2.1
C. America 0° N, 120° W–20° N, 25° W 2.2 1.9 1.5 1.0 0.7 0.5 0.5 0.5 0.5 0.9 1.5 2.0
Europe 30° N, 20° W–85° N, 60° E 2.5 2.3 2.5 2.3 1.6 0.8 0.4 0.6 1.1 1.9 2.4 2.6
N. Africa 5° S, 25° W–40° N, 60° E 2.5 2.1 2.3 1.7 0.8 0.7 0.7 0.6 0.6 1.5 2.1 2.5
N. America 20° N, 180° W–50° N, 95° W 2.1 1.9 2.0 1.7 1.3 1.1 0.6 0.8 1.3 1.7 1.7 1.9
N. America 50° N, 180° W–85° N, 20° W 1.5 1.3 1.8 1.8 1.8 1.4 0.8 1.2 1.7 2.1 1.4 1.3
N. America 20° N, 95° W–50° N, 20° W 0.4 0.4 0.8 1.4 1.4 1.1 0.3 0.6 1.5 1.7 1.2 0.6
S. Africa 40° S, 0° E–0° N, 60° E 0.5 0.5 0.4 0.5 1.4 2.1 2.3 1.8 0.9 0.5 0.4 0.5
S. America 60° S, 110° W–0° N, 20° W 0.6 0.5 0.7 0.9 1.2 1.3 1.3 1.3 0.9 0.9 0.7 0.8

Table 6. RTGCV (expressed in d mo–1) for mean monthly ground frost frequency over the interpolation domains

Table 7. RTGCV for mean monthly relative humidity (%) over the interpolation domains
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significant when expressed in relative terms. Wet-day

frequency cross validation errors vary between 1 and

4 d mo–1, with largest errors over South and Central

America—again due to topographic complexity—and

over Asia and Central Asia in the monsoon period.

Cross validation errors for mean temperature are

close to 1°C in all regions (Table 4), with lowest errors

again in areas where station coverage is dense relative

to the spatial complexity of temperature. Prediction

errors for diurnal temperature range are greater, vary-

ing between 1 and 4°C. This is partly because diurnal

temperature range is a function of both minimum and

maximum temperature, which are more difficult to

predict than mean temperature, but also because there

are fewer diurnal temperature range stations.

Ground frost frequency, relative humidity and sun-

shine percent RTGCVs (Tables 6 to 8) are between 10

and 20% of the domain-wide means (absolute errors of

between 3 and 7% for relative humidity and sunshine

percent, and 1 to 3 d for ground frost frequency). Higher

errors for ground frost frequency occur where frost is a

significant factor, and hence relative errors remain low.

4. COMPARISON TO PREVIOUS CLIMATOLOGIES

As noted in Section 1, the climate data sets differ

from an earlier version (NEW99) in 2 main ways: the

data are interpolated onto a finer-resolution grid

(10’ compared to 30’) and the station data set has been

expanded to include additional stations for some vari-

ables in some areas. Generally, these 2 enhancements

interact to produce differences (or ‘added value’) be-

tween the new 10’ and old 30’ grids. New station data

should improve the interpolation skill, especially in

areas with more complex mesoscale (100 to 10 000 km2)

climate, where a sparser network may have captured

only the regional trend surface. A higher-resolution

elevation grid enables the surface fitted to such a grid

to reflect the influence of local elevation effects not

resolved by a coarser grid, provided the surface co-

efficients incorporate this effect.

A comprehensive evaluation of differences between

NEW01 and NEW99 is a non-trivial task that goes

beyond the scope of this paper, and so we provide only

a summary of ‘added value’. As there are no global-

scale data sets at this resolution, we do this primarily

through comparison of NEW99 and NEW01 to station

data. The comparison involves a number of steps. First,

the monthly mean climate at each station is estimated

from the 4 nearest grid points in NEW99 and NEW01

using an inverse-squared-distance weighting scheme.

The absolute difference between each station data

point and the monthly estimates are then calculated

(i.e. 12 per station). These differences are summarised

by computing the mean of all the monthly absolute
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Table 8. RTGCV for mean monthly sunshine fraction (%) over the interpolation domains

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 5.9 6.2 5.8 6.9 6.2 6.5 6.4 6.1 6.5 6.2 6.0 6.7
Asia 20° S, 45° E–40° N, 160° E 6.6 6.5 5.9 6.0 6.1 6.9 7.5 7.1 6.8 5.8 5.9 6.9
C. Asia 25° N, 55° E–90° N, 180° E 7.3 6.4 5.3 4.8 4.9 5.8 6.4 6.2 5.7 5.1 5.9 7.1
C. America 0° N, 120° W–20° N, 25° W 7.2 7.2 6.6 6.9 7.1 7.1 7.0 6.6 6.2 6.1 6.7 7.3
Europe 30° N, 20° W–85° N, 60° E 3.7 3.7 3.1 3.0 3.3 3.7 3.7 3.4 3.3 2.9 3.0 3.5
N. Africa 5° S, 25° W–40° N, 60° E 5.1 5.0 4.3 4.3 4.5 5.1 5.3 5.3 4.7 4.5 4.3 5.1
N. America 20° N, 180° W–85° N, 20° W 4.8 5.0 5.2 5.3 4.9 4.8 4.5 4.3 4.2 4.3 4.4 5.0
S. Africa 40° S, 0° E–0° N, 60° E 5.2 5.1 5.1 5.5 5.4 5.7 5.8 6.0 5.4 5.5 5.2 5.6
S. America 60° S, 110° W–0° N, 20° W 7.5 7.7 7.6 7.1 7.0 7.7 8.1 8.3 7.6 6.8 7.0 7.9

Region Domain Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Australia 60° S, 90° E–12° N, 180° E 46 46 47 49 51 51 50 48 49 50 49 47
Asia 20° S, 45° E–40° N, 160° E 41 38 35 33 33 34 37 37 37 38 40 42
C. Asia 25° N, 55° E–90° N, 180° E 43 40 35 31 31 33 36 36 37 38 40 43
C. Asia 25° N, 55° E–90° N, 180° E 43 40 35 31 31 33 36 36 37 38 40 43
C. America 0° N, 120° W–20° N, 25° W 41 38 36 34 34 36 37 36 35 36 37 40
Europe 30° N, 20° W–85° N, 60° E 28 27 25 24 24 25 27 28 28 29 29 29
N. Africa 5° S, 25° W–40° N, 60° E 42 40 38 37 37 38 41 42 43 45 45 44
N. America 20° N, 180° W–85° N, 20° W 25 24 21 20 19 20 21 22 22 23 24 26
S. Africa 40° S, 0° E–0° N, 60° E 60 59 60 61 61 61 62 61 61 61 61 62
S. America 60° S, 110° W–0° N, 20° W 34 34 35 36 36 37 34 32 32 31 33 34

Table 9. RTGCV (expressed in percent of the domain-mean) for mean monthly wind speed over the interpolation domains
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Fig. 13. Fractional change in mean absolute difference between mean monthly precipitation at stations and estimates from

NEW01 and NEW99. Colours show fractional change, text in bottom left of each cell shows the percent of individual station-grid

differences that show a decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell shows 

the number of stations in each 5° grid box
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differences (mean absolute difference or MAD) in

5° grid boxes over the globe and plotting the reduction

(or increase) in grid box MAD when NEW01 is used

instead of NEW99. This change in MAD is expressed

as a fractional change for precipitation (for which the

size of the absolute difference is closely tied to actual

precipitation amount) and as an absolute change for

other variables. In addition, we map (1) the percentage

of station-estimate absolute differences that are lower

for NEW01 compared to NEW99, and (2) the number

of stations occurring into each 5° grid box (note that

the number of estimates is 12 times the number of

stations).

4.1. Precipitation

The change in MAD (as defined above) between

precipitation station data and estimates from NEW01

and NEW99 are shown in Fig. 13 and summarised in

Table 10. Over nearly all areas the agreement between

NEW01 and station data is on average better than for

NEW99, and a large proportion of 5° cells show a

reduction of >25% in MAD. Moreover >66% of the

individual station-to-grid differences are improved in

>90% of the 5° grid boxes. There are a few instances

where NEW99 is closer to the station estimates than

NEW01, but in nearly all of these the MAD is small,

with the result that quite small changes in MAD can

result in large fractional changes. These locations also

tend to have only 1 or a few stations,

suggesting that in some data-sparse

regions there is little difference be-

tween the coarse and fine grids, and

that the additional elevational in-

formation in the finer grid is not

always utilised. However, NEW01

also shows an improvement in as

many data-sparse regions, but again

the estimates from NEW01 and

NEW99 are quite similar.

To investigate the improvement in

the precipitation grids compared to

NEW99 in more detail, we focus on

2 regions: the Indian sub-continent

and the western USA. Over the

Indian sub-continent the NEW01

interpolation benefits from ~400

additional stations, as well as the

finer resolution elevation grid. The

effect of this can be seen in Fig. 14,

which compares July precipitation

for NEW99, NEW01 fitted to the 0.5°

(NEW99) elevation grid, NEW01 and

the raw station data. NEW99 fails to

capture the steep increase in monsoon rainfall from the

coastal plain to the western Ghats, and then the sharp

drop to arid conditions in the rain shadow on the east-

ern (lee) side of the Ghats. This is primarily due to the

sparser station network in NEW99, but is also a func-

tion of the under-representation of topography in the

coarser grid. This can be seen from Fig. 14b which

shows the NEW01 interpolation fitted to the coarser

(NEW99) elevation grid; although the precipitation is

higher along Ghats, it is still under-estimated relative

to both the 10’ grid and the station data (Fig. 14c,d).

However, the NEW01 10’ grid does not capture the full

variance of rainfall along the coast exhibited by station

data, with some smoothing of the steep spatial gradi-

ents and under-estimation of the highest precipitation.

Over the western USA, we adopt a similar compari-

son to that employed over the Indian sub-continent,

but we are also able to compare NEW01 to a ‘state of

the art’ regional climatology, the 10’ version of the

PRISM data set (Daly et al. 1994), downloaded from

the USDA Natural Resources Conservation Services

(http://www.ftw.nrcs.usda.gov). Note also that in this

example we do not compare NEW99 to NEW01 fitted

to the 0.5° grid; however, the 2 grids are very similar,

suggesting that in both cases the same larger-scale

climate trends are well captured.

Fig. 15 compares the grids for January. Both NEW99

and NEW01 capture the main features of precipitation

over the region when compared to PRISM, including

the higher rainfall over the Coast Range, the Cascades
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Table 10.  Summary, for all variables, of analyses undertaken to produce a diagram

such as Fig. 16. Results for all 5° cells were sorted and the cell statistics at various

percentiles extracted. The first figure for each percentile is the percent of NEW01

estimates of station values that are better than NEW99 estimates (i.e. bottom-left

values from each cell in Fig. 16). Values in brackets are the reduction in cell MADs

corresponding to that percentile (corresponding to cell colours in Fig. 16). For

example, in the case of precipitation, half the 5° cells have 78% or more NEW01

estimates that are better than the NEW99 estimates, and half the cells exhibit a

fractional decrease in MAD of at least 0.52. Note that for all variables except pre-

cipitation, changes in MAD are in absolute units rather than fractional changes

Variable Percentile

10 25 50 75 90

Precipitation 95 (–0.8) 86 (–0.7) 78 (–0.5) 71 (–0.4) 64 (–0.2)

Wet-day frequency 100 (–1.5) 95 (–0.8) 88 (–0.4) 79 (–0.2) 69 (–0.1)

Mean temperature 100 (–0.8) 91 (–0.6) 83 (–0.4) 72 (–0.3) 60 (–0.1)

Diurnal temperature range 100 (–1.0) 95 (–0.6) 86 (–0.4) 77 (–0.2) 66 (–0.1)

Frost frequency 100 (–0.9) 94 (–0.5) 85 (–0.3) 75 (–0.1) 58 (0.0)

Relative humiditya 100 (–0.9) 100 (–0.5) 91 (–0.3) 83 (–0.2) 75 (–0.1)

Sunshine 95 (–2.2) 87 (–1.2) 73 (–0.6) 58 (–0.2) 35 (0.6)

Wind speed 100 (–0.7) 97 (–0.6) 84 (–0.4) 66 (–0.1) 41 (0.2)

aRelative humidity is compared to NEW01 fitted to the 0.5° elevation grid as

this variable does not form part of NEW99, which instead used vapour

pressure
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and Sierra Nevada, the intervening rain shadows, and

then the gradual decrease in rainfall over the Rocky

Mountains and into the Great Plains. In other months

these larger features are also present in all 3 data sets

(not shown).

When NEW01 and PRISM are compared in more

detail, it is clear that the spatial variance in the former

is reduced over regions of complex topography, being

underestimated in many high elevation regions. This

indicates that NEW01 does not capture the full topo-

graphic control on precipitation. One reason for this

lies with the station data used to fit the NEW01 surface

(Fig. 15d), which also do not capture most of the high

precipitation peaks in PRISM—the problem of ‘topo-

graphic bias’ of input data identified by Briggs &

Cogley (1996). Moreover, if the climate-elevation rela-

tionship is non-linear, or 2 stations with similar eleva-

tion on either side of a topographic barrier have high

(windward) and low (leeward) precipitation, values

interpolated as a function of location and elevation (as

in NEW01) will tend to be underestimated. PRISM

overcomes this problem by including (1) more stations

and (2) additional predictors—such as aspect—but at

the expense of computational effort. Thus in regions

with dense station networks that can resolve some of

the topographic complexities in precipitation, an inter-

polation technique like PRISM is able to produce supe-

rior results. However, on a global scale few regions

have the required station density, and the computa-

tional and station-input demands of an approach such

as PRISM are unsustainable. The simpler technique

employed to construct NEW01 is therefore more

appropriate for such global-scale interpolations.

4.2. Mean temperature

Fig. 16 shows the change in the mean station-grid

differences for mean temperature when NEW01 and

NEW99 are compared to station data. As with precipi-
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Fig. 14. Comparison of

precipitation grids

(mm mo–1) for July

over the Indian sub-

continent. (a) Original

0.5° grid from NEW99;

(b) NEW01 fitted to the

NEW99 0.5° elevation

grid; (c) NEW01 at 10’;

(d) precipitation sta-

tion data used to

interpolate NEW01,

with the colours corre-

sponding to the July

mean precipitation at 

these stations

(a) NEW99 (0.5°) [JULY] (b) NEW01 (0.5°) [JULY]

(c) NEW01 (10°) [JULY] (d) Station Data [JULY]
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tation, a large proportion of stations show closer agree-

ment with NEW01, with only 7% of grid boxes show-

ing an increase in MAD, and over 75% of grid-boxes

showing a decrease in MAD of >0.2°C. In contrast, the

greatest increase in MAD is just <0.2°C, and only a few

5° cells show any increase in MAD. Thus, as for pre-

cipitation, the 10’ grids described here show an overall

improvement in accuracy when compared to station

observations.

4.3. Wind speed

The final detailed comparison between NEW01 and

NEW99 is wind speed, which is, after precipitation, the

most difficult variable to interpolate (see Table 9) and

suffers from a particularly sparse station network. This

variable therefore has lower potential ‘added value’

when interpolated to finer resolution, because the

station network may not capture spatial variability at

this resolution. Over much of North America, Asia and

Australia the MAD of wind speed at stations (Fig. 17)

decreases when NEW01 is used (by between 0.2 and

1.00 m s–1; note that typical wind speeds vary from 2 to

8 m s–1 globally). This is mainly because: (1) the 10’

grid points are closer to the station locations than the

0.5° points and will simply, by their proximity, produce

a better station estimate; and (2) there is some addi-

tional skill derived from the improved elevation grid.

Over Australia the decrease in MAD is quite large

(generally 0.5 to 1.0 m s–1), predominantly due to

improved station data, with the addition of ~200 sta-

tions, whereas over much of Asia the improvement is a

result of the finer grid resolution, as no additional sta-

tions were added in this domain. Over large regions of

Africa and South America, the MAD actually increases,

by up to 0.2 m s–1; these increases are relatively small

and are in part due to the fitted surface being slightly

smoother (lower roughness coefficient and larger sta-

tion error assumed in the statistical model). Overall,

wind speed in NEW01 shows an improvement in some

regions and slightly less skill in others.
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Fig. 15. Comparison of pre-

cipitation grids (mm mo–1) for

January over the western

USA. (a) Original 0.5° grid

from NEW99; (b) NEW01 at

10’; (c) the PRISM precipita-

tion grid at 10’; (d) precipi-

tation station data used to in-

terpolate NEW01, with the

colours corresponding to the

January mean precipitation 

at these stations

(a) NEW99 (0.5°) [JANUARY] (b) NEW01 (10°) [JANUARY]

(c) PRISM (10°) [JANUARY] (d) Station Data [JANUARY]
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Fig. 16. Change in mean absolute difference (MAD) between mean monthly temperature from station data and estimates from NEW01

and NEW99. Colours show the change in MAD (°C); text in bottom left of each cell shows the percent of individual station-grid

differences that show a decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell show the 

number of stations in each 5° grid box
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Fig. 17. Change in mean absolute difference (MAD) between wind speed station data and estimates from NEW01 and NEW99.

Colours show change in m s–1, text in bottom left of each cell shows the percent of individual station-grid differences that show a

decrease in error for NEW01 compared to NEW99 (see text for details); text in top-right of each cell show the number of stations in 

each 5° grid box
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4.4. Other variables

Space limitations preclude the inclusion of maps

showing the changes in MAD for the other variables.

However, the results of all analyses are summarised in

Table 10. In all cases except wind speed and sunshine,

>90% of 5° grid cells show a decrease in MAD and

>50% show a decrease that is non-negligible (e.g.

50% of diurnal temperature range cells show a de-

crease of 0.4°C). Similarly, depending on the variable,

at between 75 and 90% of cells (second-last and last

columns), more than half the individual station esti-

mates derived from NEW01 are better than those

derived from NEW99.

5. REGIONAL EXAMPLES

In this section, a selection of regional examples is

presented to provide a flavour of the derived climate

fields. A complete graphical presentation is beyond the

scope of this paper because of the sheer number of

climate fields, but readers are referred to the IWMI

World Water and Climate Atlas website (http://www.
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Fig. 18. Southern Asian

precipitation (January

and July) exceeded 10,

50 and 90% of the time

(i.e. the 90th, 50th and

10th percentiles), de-

rived using the inter-

polated parameters of

the Gamma distribution

(a) 90% Exceedence – JANUARY (b) 90% Exceedence – JULY

(c) 50% Exceedence – JANUARY (d) 50% Exceedence – JULY

(f) 10% Exceedence – JULY(e) 10% Exceedence – JANUARY
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cgiar.org/iwmi/watlas/atlas.htm) at which data can be

visualised and downloaded (in various formats) free

of charge, or the Climatic Research Unit website

(http://www.cru.uea.ac.uk) where the gridded data

are also available in raw ASCII format.

5.1. Precipitation over southern Asia

We illustrate the use of the parameters of the Gamma

distribution by deriving fields of precipitation ex-

ceeded 10, 50 and 90 percent of the time (i.e. the 90th,

50th and 10th percentiles) for January and July over

the south-central portion of the Asian domain. The

percentiles were determined on a grid-point-by-grid-

point basis using a numerical inversion of the Gamma

distribution (available in most graphics and numerical

packages; alternatively there are numerous approxi-

mations in the literature, e.g. Stedinger et al. 1992).

The resultant fields (Fig. 18) demonstrate the change

in monthly precipitation depth at these different ex-

ceedence probabilities. In January, at the height of the

dry season, the 90% exceedence precipitation is effec-

tively zero over much of the region, except for parts of

the Himalayas. The median precipitation in January

(50% exceedence) is similar to the mean precipitation

maps most readers will be familiar with, and shows the

well-known dry period over large parts of the Indian

sub-continent and Myanmar, with wetter conditions

over Sri Lanka and SE Asia. For precipitation with 10%

exceedence probabilities, only the western part of

India and parts of Tibetan China have zero precipita-

tion; other regions have significant non-zero precipita-

tion, up to 250 mm in Sri Lanka and Indonesia.

In July, which is in the Asian monsoon season, pre-

cipitation is much higher than in January. The 90%

exceedence precipitation is close to zero only in Pak-

istan and the extreme SE (NW) of India (Sri Lanka).

Over the western coastal regions of India and Myan-

mar the July precipitation exceeds ~300 mm 90% of

the time, the median precipitation is ~1000 mm, and

the 10% exceedence is close to 2000 mm in places.

Highest precipitation occurs over the highlands around

Shillong, India. The 50% exceedence is very similar to

the mean precipitation field in Fig. 14c.

5.2. Wet-day frequency over southern Asia

The interpolated mean wet-day frequency over

southern Asia in January, April, July and October is

shown in Fig. 19. The picture for January shows a sim-

ilar pattern of spatial variability to the median precipi-

tation (Fig. 18), with zero or only a few wet-days per
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Fig. 19. Interpolated

wet-day frequency

over the southern 

Asian region

(a) JANUARY (b) APRIL

(c) JULY (d) OCTOBER
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month over most of the region during this dry period.

In contrast, July has higher mean wet-day frequency,

up to ~20 d over western India, and up to 31 d over

Myanmar. Wet-day frequency in April and October

reflects the patterns in precipitation that are associated

with the advance and retreat of the Asian monsoon.

These wet-day frequency fields can be used in com-

bination with the mean precipitation fields (calculated

using a simple back-computation with the parameters

of the Gamma distribution—see Section 2.4) to deter-

mine mean monthly precipitation intensity in mm per

wet-day. There is also the potential to use the empiri-

cal relationship between wet-day frequency and

monthly precipitation derived by New et al. (2000) to

calculate the number of wet-days that will typically

occur in a month with precipitation of a given excee-

dence probability.

5.3. Mean temperature and humidity over Europe

We make use of part of the European domain to illus-

trate the interpolated mean temperature and relative

humidity fields. The station networks used to derive

these fields are shown in Figs. 4 and 8. The tempera-

ture fields (Fig. 20) show the expected seasonal pro-

gression of temperatures, with warmest temperatures

of 25°C in central Spain in July, and coldest tempera-

tures of –18°C in northern Scandinavia in January. The

effect of continentality is clearly visible, with coastal

areas being warmer than their adjacent interiors. The

strong elevation dependence of mean temperature is

also portrayed, with high elevation regions such as the

Alps and Pyrenees being cooler than surrounding low-

lands. Elevation lapse rates are calculated implicitly

during the interpolation because of the inclusion of sta-

tion elevation as an independent predictor: the lapse

rate therefore varies across the domain as a function of

spatial variations in this elevation dependence.

The interpolated fields of monthly relative humidity

over Europe (Fig. 21) show the change from relatively

moist conditions in winter to drier conditions in sum-

mer. The latitudinal gradient in atmospheric moisture

is also evident, as are moister conditions in western

coastal regions. In spring and summer (April and July),

the Alps also have higher relative humidity compared

to surrounding areas; this increase with elevation is

reversed in autumn and winter (October and January).

Fig. 21 also highlights some problems arising from the

merging of raw relative humidity and vapour pressure

station data to produce a single humidity variable (in this

case relative humidity, see Section 2.3). In winter, there

are marked differences in the interpolated relative

humidity over Scandinavia, with values of 80 to 90% in

Norway and Finland, and 95 to 100% in Sweden. The

humidity data for both Finland and Norway were sup-
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Fig. 20. Interpolated

mean monthly tem-

perature over Western 

Europe

(a) JANUARY (b) APRIL

(c) JULY (d) OCTOBER
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plied as relative humidity, most likely an average of daily

or sub-daily measurements. In contrast, the Swedish hu-

midity data were provided as vapour pressure measure-

ments and were converted to relative humidity using

Eq. (1) prior to the interpolation. The higher values of

calculated relative humidity for Sweden probably arise

because of mismatches in the timing of raw vapour pres-

sure (typically once or twice a day) and mean tempera-

ture (either average of maximum and minimum temper-

ature, or the average of several readings through the

day). Several reasons may act to exaggerate the biases in

winter—an increased diurnality in humidity and/or tem-

perature, and the fact that ambient temperatures are

below freezing for much of the time.

5.4. Mean windspeed over Australia

Some 280 wind speed stations over mainland Aus-

tralia and coastal islands contributed to the interpola-

tion over the Australasian domain, providing reason-

ably good station density compared to some other

regions (e.g. Russia). The interpolation has captured

several large-scale features of mean wind speed in

Australia, namely the southwest to northeast decrease

in wind speed and the higher wind speed along the

coast (Fig. 22).

6. CONCLUSIONS

We have documented the construction of a high-

resolution mean monthly climatology of global land

areas excluding Antarctica. The data set has a spatial

resolution of 10’ lat/lon, which approximates to about

18 km × 18 km at the equator, with the east-west di-

mension decreasing to ~16 and ~9 km at 30 and 60° N

and S, respectively. This research builds on earlier

work which resulted in a 30’ lat/lon data set over the

same domain (New et al. 1999) by including additional

station data in some data-sparse areas, making use of

an improved topographic data set and expressing pre-

cipitation in terms of the parameters of the Gamma dis-

tribution. The latter enables the calculation of precipi-

tation at any exceedence probability (i.e. the monthly

precipitation exceeded a given percentage of the time),

which has a number of potential applications in applied

hydroclimatology and agricultural meteorology. The

data set comprises 8 surface climate variables—precip-

itation, wet-day frequency, mean temperature, diurnal

temperature range, relative humidity, sunshine dura-

tion, ground frost frequency and wind speed.

The climate surfaces were interpolated from net-

works of station observations using thin-plate smooth-

ing splines, with elevation, latitude and longitude as

independent predictors. The density of stations varies
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Fig. 21. Interpolated mean

monthly relative humidity 

over Western Europe
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both spatially and according to the climate element

being mapped. In all cases, station networks are spars-

est over cold, dry and mountainous regions, with con-

comitant increased interpolation errors. Mountainous

regions are particularly prone to interpolation errors

because of the more complex topographic forcing in

such regions and a low-elevation (valley bottom) bias

to the station network (see e.g. Briggs & Cogley 1996).

Many regions of the tropics also have relatively sparse

station networks and larger interpolation errors, par-

ticularly for the less commonly reported variables (sun-

shine, relative humidity and wind speed).

Although the data set has a spatial resolution of 10’,

and has been shown to benefit from the improved ele-

vation information at this resolution, small-scale vari-

ability in mean climate that is not captured by the spa-

tial and elevation dependencies in the station data will

likewise not be reflected in the interpolated fields. For

example, local orographic forcing over a mountain

range would not be captured unless there are stations

at several elevations; in the absence of such stations,

elevation relationships from the larger-scale station

network would be used in defining the spline surface.

Similarly, any other forcings on local climate that are

not reflected in elevation and lat/lon—such as aspect—

will be ignored. Thus the full benefit of the higher

resolution will be realised only where the station data

permit and it is important therefore that users make

use of the figures showing the station networks and the

cross-validation statistics to obtain a qualitative idea of

the accuracy of the interpolation in different regions.

Data files listing the locations of all stations used in the

interpolation are also available through the IWMI

World Water and Climate Atlas website (http://

www.cgiar.org/iwmi/watlas/atlas.htm) and the CRU

website (http://www.cru.uea.ac.uk). These can be

used to determine the proximity of any particular grid

point(s) to the station controls.
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Fig. 22. Interpolated mean

wind speed over Australia
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