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Abstract

Motivation: Although the amount of small non-coding RNA-sequencing data is continuously

increasing, it is still unclear to which extent small RNAs are represented in the human genome.

Results: In this study we analyzed 303 billion sequencing reads from nearly 25 000 datasets

to answer this question. We determined that 0.8% of the human genome are reliably covered by

874 123 regions with an average length of 31 nt. On the basis of these regions, we found that

among the known small non-coding RNA classes, microRNAs were the most prevalent. In subse-

quent steps, we characterized variations of miRNAs and performed a staged validation of 11 877

candidate miRNAs. Of these, many were actually expressed and significantly dysregulated in lung

cancer. Selected candidates were finally validated by northern blots. Although isolated miRNAs

could still be present in the human genome, our presented set likely contains the largest fraction of

human miRNAs.

Contact: c.backes@mx.uni-saarland.de or andreas.keller@ccb.uni-saarland.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The part of the human genome which is transcribed into RNAs

but does not encode for proteins contains many elements with

regulatory function that are central for physiological and

pathophysiological processes. Generally, non-coding RNAs can be

divided into long- (lncRNAs) and small non-coding RNAs

(sncRNAs). Among the many different categories in the latter class

are tRNAs, snoRNAs, miRNAs, snRNAs, piRNAs and others

(Kowalczyk et al., 2012). Altogether, over 85 000 human transcripts

VC The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1621

Bioinformatics, 34(10), 2018, 1621–1628

doi: 10.1093/bioinformatics/btx814

Advance Access Publication Date: 21 December 2017

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1621/4769492 by guest on 21 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx814#supplementary-data
https://academic.oup.com/


not coding for proteins have been annotated so far (Harrow et al.,

2006). To discover further non-coding transcripts and to detect cor-

relations to pathologies various specimens have been deeply

sequenced and evaluated by a heterogeneous set of bioinformatics

tools (Akhtar et al., 2016). Many studies list large collections of

putatively novel sequences that are frequently validated either to a

limited extent or not at all (Backes et al., 2016; Friedländer et al.,

2011; Londin et al., 2015). The proposed candidates do not only

consist of new representatives of the respective molecule class, but

also consist of artifacts that are often also deposited in central data-

bases. In a recent study, Vitsios et al. (2016) reanalyzed hundreds of

small RNA-sequencing samples and revealed that many miRNAs in

miRBase (Kozomara and Griffiths-Jones, 2014) are potentially mis-

annotated. Another challenge arises from the substantial redundan-

cies between the different studies. Since not all candidates are stored

in a central repository, it is likely that a ‘new’ candidate has already

been discovered in the same or very similar manner by others in pre-

vious studies. The heterogeneity and magnitude of small RNA-

sequencing studies calls for a sophisticated meta-analysis of the

available data. We have carried out such a meta-analysis and present

our results in this paper including a high-resolution map of

sncRNAs with a focus on miRNAs by an integrative analysis of

thousands of small RNA-sequencing datasets.

2 Materials and methods

2.1 Sample collection
Our sample collection stems from three different sources. First, we

downloaded sequencing data likely to contain small RNAs from the

sequence read archive (SRA) (Kodama et al., 2012) using the follow-

ing query:

(“small rna” OR srna OR mirna OR microrna) AND “Homo

sapiens”[orgn:__txid9606]

This query resulted in 18 367 SRA Runs, of which we kept only

those sequenced using an Illumina platform, with single-end reads,

public access and assay type annotated as miRNA-, ncRNA- or

RNA-seq. This resulted in 10 233 Runs. Since multiple runs can be

performed for the same experiment, we merged them, leading to

8985 samples. We determined for these the presence or absence of 5’

barcodes and 3’ adapter, as described in the section below.

Second, we collected 10 999 miRNA-seq samples from the can-

cer genome atlas project (TCGA) (http://cancergenome.nih.gov/)

(accessed on April 7, 2017). Since the raw files are only available as

mapped BAM files, we transformed them back into FASTQ format

for subsequent analysis.

As third data source, we used the collapsed reads users uploaded

in our tool miRMaster (Fehlmann et al., 2017), if they gave us con-

sent for usage of their data in an aggregated manner, which summed

up to 4570 samples. These different data sources provided in total

24 554 samples.

More information about the pre-processing of the samples can

be found in the Supplementary Material.

2.2 Isoform analysis
For miRNAs different types of isoforms have been described in the

literature (Guo and Chen, 2014). Most common are isoforms that

only differ in the length of the sequence, but non-template additions

at the 5’ or 3’ end have also been detected (Guo et al., 2014).

Variants within the miRNA sequence could also potentially stem

from either sequencing errors or ‘normal’ genetic variability. To

capture these different modification types, we performed our analy-

sis as follows: For each human miRNA annotated in the miRBase

(Kozomara and Griffiths-Jones, 2014) we mapped the reads to the

respective precursor, while allowing up to two non-template addi-

tions to the 5’ and 3’ ends and up to one mismatch in between. We

ensured that all precursors have at least 15 bases flanks on both

ends so that no isoforms are missed. We then defined the mature 3’

and 5’ form covered by the largest fraction of reads per million

mapped to miRNA (RPMMM) normalized reads as the canonical

form. Mappings were allowed in a window of 10 bases up- and

downstream of the annotated miRNAs. To avoid a bias through

potentially mis-annotated miRNAs, we required that at least 80%

of normalized reads mapped with at most one mismatch in an up-

and downstream window of 2 and respectively 5 bases to the anno-

tated miRNAs, or in-between. If only one miRNA was annotated,

the other was derived from the read with the highest RPMMM,

shorter than 25 bases and with at least 3 bases distance to the anno-

tated miRNA. We determined the fraction of reads mapping to

potential isoforms from the determined canonical forms, while

allowing up to 5 bases variability at the 5’ end and 7 bases at the 3’

end. Isoforms that were longer than 25 bases or shorter than 17

bases were discarded. If a potential isoform was covered by at least

2% of all RPMMM normalized reads the isoform was considered to

be present.

2.3 Single nucleotide variants in mature miRNAs
Single nucleotide variants were detected for each previously deter-

mined canonical miRNA form (see above) by mapping the reads

against the respective precursor while allowing up to one mismatch.

We allowed a variability of two nucleotides at the 5’ end and five

nucleotides at the 3’ end.

2.4 Prediction of novel miRNAs
For the prediction of novel miRNAs, we used our web-based tool

miRMaster (Fehlmann et al., 2017). For each of the 18 035 samples

we performed the prediction of novel miRNAs. Afterwards, the pre-

dicted precursors were merged and all reads aligned to the potential

new precursors. From these mappings the candidate miRNAs were

derived. To exclude candidates overlapping with already known

ncRNAs, we mapped the predicted miRNAs to the human non-

coding RNAs of Ensembl (release 85) (Yates et al., 2016) and to

NONCODE 2016 (Zhao et al., 2016) using BLASTþ (Camacho

et al., 2009). We considered a candidate as not novel when the can-

didate miRNA sequence had an overlap of at least 90% with the

aligned sequences while allowing at most one mismatch. All precur-

sors containing mapping (i.e. non-novel) miRNAs were then dis-

carded. To further asses the likelihood that miRNAs are true

positives and to rank miRNA candidates we subsequently applied

the novoMiRank tool (Backes et al., 2016). This tool compares fea-

tures of new miRNAs to a set of high-confidence miRNAs from

early miRBase versions and ranks those miRNA candidates highest

that match best to the known high-confidence miRNAs.

2.5 Validation of novel miRNAs
It is generally known that high-throughput approaches can lead to

artifacts. This also holds for miRNA analysis where a substantial

bias depending on the underlying measurement approach is known

(Backes et al., 2016). Since even different sequencing approaches

can have different bias (Fehlmann et al., 2016), we decided to vali-

date new miRNA candidates by another technique. Since we wanted

to avoid PCR bias, we decided in favor of amplification free
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microarrays. Specifically, we collected a set of miRNAs from

miRBase, a set of miRNA candidates from two other studies (Backes

et al., 2016; Londin et al., 2015) and those that achieved a high

rank in the above mentioned novoMiRank analysis. Altogether,

11 877 sequences were used for the custom microarray analysis.

Previous studies (e.g. Ludwig et al., 2016) suggested reasonable

results with 20 technical replicates per miRNA, thus 237 540 fea-

tures were required. Since the used Agilent microarrays do not pro-

vide sufficient feature numbers per array, the features were split

across five arrays. Each of these arrays contains a fifth of the fea-

tures, so that we get the full feature set when combining the different

expression data from five arrays for one sample. A set of RNA sam-

ples (plasma and PAXGene blood pools, a reference sample and

brain, kidney, liver, testis and heart tissue) was hybridized with the

microarrays as previously described for standard miRBase v21

microarrays (Hecksteden et al., 2016).

From all (candidate) miRNAs found expressed in the blood we

generated a new custom microarray entitled ‘all human blood

miRNA array’. This array contains 2305 new and known miRNAs

that are found in human blood. The microarray is manufactured by

Agilent, handling is facilitated by standard Agilent equipment and

the microarray is available for research use from Hummingbird

Diagnostics. This array was hybridized with 53 patients, 25 controls

and 28 small-cell lung carcinoma patients (SCLC). Microarray data

were evaluated according to manufacturer’s instructions and data

were processed using R. P-values were determined using a two-

tailed t-test and the Benjamini–Hochberg procedure (Benjamini and

Hochberg, 1995) was used to adjust for multiple testing.

3 Results

3.1 Dataset collection and processing
The important first step in the meta-analysis is the collection, quality

control, and curation of available small RNA-sequencing datasets.

As major sources for sequencing data we included the SRA

(Kodama et al., 2012), the cancer genome atlas project (http://cancer

genome.nih.gov/) (Cancer Genome Atlas Research, 2008), and data

that have been analyzed through our miRMaster workbench

(Fehlmann et al., 2017). The initial sample collection covered

24 554 individual NGS samples and 303 billion sequencing reads

covering together 13 009 billion bases (corresponding roughly to the

number of nucleic acids in 4200 human genomes). In a stringent

quality control step, we removed samples having <1 million reads,

samples without known sequencing adapters, samples not mapping

to the human genome or those mapping with over 1% to coding

exons. Further, samples covering >1% of the human genome were

excluded, since high-quality small ncRNA-seq datasets usually cover

a much smaller fraction of the human genome. More details about

the quality filtering process can be found in the Methods section.

Following this stringent QC process, 27% of all samples were

removed for quality issues, leaving 18 035 samples containing 162

billion reads. The list of samples from SRA and TCGA is provided

in Supplementary Table S1 and online at https://mircarta.cs.uni-saar

land.de/data_sources/. As a matter of fact, a substantial percentage

of all small RNA-sequencing reads is identical—collapsing the set of

all reads leaves 1.9 billion unique reads. Mapping them to the

human genome and excluding those that match to more than five

unique positions in order to avoid unspecific reads, we found hits

for 602 million unique reads in the human genome. A detailed

breakdown of the numbers in the different steps is presented in

Figure 1A. Next, the 18 035 samples were annotated with respect to

their tissue of origin to create a map representing all datasets. This

was achieved by applying t-distributed stochastic neighbor embed-

ding. The respective map—color coded by the tissue of origin—high-

lights that in the majority of cases tissues of the same type build

dense clusters (see Fig. 1B).

3.2 Coverage of the human genome
Given the large collection of small RNA-sequencing reads, a natural

first question to ask is how densely the human genome is covered by

the sncRNA-sequencing reads. Mapping the 602 million unique

reads without allowing mismatches we calculate a total (1-fold) cov-

erage of 64%. Increasing the coverage threshold leads to a rapid

drop of the covered part of the genome. For example, we observe a

decrease from 13 to 6% when considering the 10- and 20-fold cov-

erage of the human genome by unique reads. Detailed analysis

immediately highlights that large fractions of the human genome are

covered only by single samples (16.3%) or few samples (41.1% are

represented by at most five of the 18 035 samples). Although such

regions covered by very few samples could still contain true non-

coding RNAs, we excluded these regions because our aim was to

present a collection of reliable regions present in a reasonable num-

ber of samples containing potentially new sncRNAs. We thus calcu-

lated the fraction of the genome covered by at least n samples and at

least m reads. The diagonal of the matrix, the percentage covered by

at least n reads in at least n samples, is presented in Figure 2A. For

n ¼ m ¼ 20, the fraction already decreases to 7.5%, for n ¼ m ¼
50–3% and for n ¼ m ¼ 100–1.5%. Heatmaps for the complete

matrix are shown in Supplementary Figure S1. For determining

regions that are reliably covered by small sequencing reads, we set

the lower coverage threshold to 180, corresponding to 1% of the 18

035 samples. We denote this part of the genome that consists of

0.8% of the genome covered by 25 million bases as ‘high confi-

dence’ or ‘reliable’ regions. The length distribution of the roughly

900 000 different regions is presented in Figure 2B as histogram. On

top of the histogram, the length distribution of known and anno-

tated non-coding RNAs is presented. The peak of the regions is at a

length of 22 nucleotides, fitting best to annotated human miRNAs.

Especially in this range, many reliable regions fall into not-

annotated regions of the human genome. However, also longer

stretches exceeding 150 bases were detected among the reliable

regions. These usually match to lncRNAs or even genes. The high

confidence regions that represent one of the central results of our

work are provided as GFF3 file in Supplementary Material S1.

3.3 The most prevalent RNA species
In a next step, we asked how many percent of the considered RNA

classes are covered by reliable regions on each chromosome

(Supplementary Fig. S2). The reliable regions contain on average per

chromosome 81% of miRNAs that are annotated in miRBase v21.

Best concordance was computed for Chromosome 14 (91%). Since

the data may not only contain miRNA-sequencing reads, but poten-

tially also other non-coding RNAs or mRNA contaminations, we

calculated the fraction of these classes covered by reliable regions.

Only 0.5% of all piRNAs and 0.9% of all lncRNAs matched to reli-

able regions. For coding exons, the number however increased to

20%. Although this distribution in principle shows that our quality

filtering successfully extracted samples primarily containing miRNA

data, we also observed many regions corresponding to protein-cod-

ing genes. These can potentially also contain non-coding elements;

however, contamination due to fragmented mRNA is more likely. In

the following, we focus on miRNAs as molecule class and highlight
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interesting findings about potential isoforms, variations and novel

miRNA predictions.

3.4 Variability in mature miRNAs
Frequently, miRNAs show variability in their length, start and end

position, which can influence their regulatory function. In addition

to the canonical form, for each mature miRNA several dozens of so-

called isomiRs can exist. Importantly, the mature miRNAs as anno-

tated in the miRBase (considered as the canonical form) represented

in <43% of cases the most expressed mature miRNA across our

18 035 samples. In particular, we observed shifts at the 5’ end in

23% of cases, thereby influencing the expected miRNA seed region.

This effect is due to the fact that many canonical miRNAs in the

miRBase are derived only from few samples usually only in one tis-

sue type or cell fraction while we aim to identify the overall most

abundant mature form of a miRNA. We thus set the mature form

with highest read count to be the canonical form for each miRNA

and calculated the variation frequency for respective isoforms. To

reduce the influence of potentially mis-annotated precursors on our

analysis we considered only precursors that passed a basic signature

check (details are provided in Section 2), leaving 1415 precursors

out of the original 1881 extracted from miRBase v21. The deter-

mined canonical forms are presented in Supplementary Table S2. As

presented in Figure 3A, we observed a substantial variability in the

length distribution of miRNAs. Comparing the 3’ and the 5’ mature

forms of all miRNAs suggests that the 3’ forms have a slightly

increased variability. Most significantly, for both, the 3’ and 5’

mature forms the frequency of variations at the 3’ end were signifi-

cantly higher as compared to the frequency of variation at the 5’

end. A factor that may compromise the considerations is the depth

of coverage per miRNA. For high-abundant miRNAs, the likelihood

to discover an isoform is higher as compared to low abundant

miRNAs. Therefore, we used a threshold relative to the expression

of the miRNA and considered an isoform as detected if at least 2%

of all RPMMMs matched to the variant. We observed 15 437

isoforms for 2258 miRNA/precursor pairs, thus corresponding to

seven isoforms on average. An example of a miRNA with only two

isoforms is hsa-miR-153-5p (Fig. 3B). The canonical form of this

miRNA was covered by 92% of all RPMMM, while the most abun-

dant isoform—two bases longer at the 3’ end—was found in 3% of

reads. Although this miRNA is an example with a clearly most

abundant mature form, the canonical form as annotated in miRBase

v21 was one base shorter at the 5’ end and two bases longer at the 3’

end. An example of a miRNA with many detected isoforms, in total

14 isoforms, is hsa-miR-330-3p (Fig. 3C). The corresponding canon-

ical form is represented only by 19% of all RPMMM, while its sec-

ond and third most expressed isoforms are represented by 14–15%

of all RPMMM. Again, the annotation in miRBase does not match

the canonical form in our study—it is one base longer at the 3’ end.

A complete list of the 15 437 isoforms for human miRNAs for

which we detected a canonical form with the relative RPMMM fre-

quencies and absolute number of reads mapping to this isoform is

available in Supplementary Table S3.

3.5 Single nucleotide variants in mature miRNAs
Variability in miRNAs is not limited to the length of the mature

miRNAs. Single point variants in miRNAs, especially in the seed

region, can significantly influence miRNA-target gene interactions.

Therefore, we investigated the mutation frequency of all miRNAs

considered in the previous sub-section. As shown in Figure 4A,

mutations at the 3’ end are the most frequent ones, similar to the iso-

forms that are also mostly observed at the 3’ end. The most frequent

variations are adenylation and uridylations. This is in agreement

with previous findings where post-transcriptional adenylation by

GLD-2 (Katoh et al., 2009) and uridylation by TUTases (Heo et al.,

2012) were reported. Interestingly, also a wide variability of modifi-

cations at the 5’ end was observed. However, the relative frequency

of the different alterations was usually low. One example with a

high frequency is hsa-miR-376a-2-5p for which we observed the

sequence with an A->G mutation at the third base in 48% of the

Fig. 1. Overview of the sample collection. Panel (A) shows a detailed breakdown of the reads during our quality filtering process into different categories. We

determined for the remaining 18 035 samples to which different genomic annotations they map (using zero mismatches and allowing at least five mappings in

the genome per read). Panel (B) shows a t-SNE map for samples with known tissue of origin. We computed the pairwise distances of these samples using the

software Mash and plotted a visual representation with the Rtsne package. For almost all tissues distinct clusters can be discovered. Some clusters contain outly-

ing samples from other tissues that could partially be due to wrong annotations in the original datasets
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normalized reads of this miRNA. Interestingly, no other sequence in

the human genome matched the mutated sequence (with up to one

mismatch), minimizing the possibility of a false detection. This

mutation could be the result of an adenosine to inosine RNA editing,

since the inosine is reported as guanine during sequencing. We also

detected the same A->G mutation for the other arm, hsa-miR-376a-

3p, at the sixth base. Here, the variant was observed even in 67% of

the total reads. This variability is not limited to a certain cell type or

tissue: the miRNA was detected with at least 10 reads per sample in

a total of 5744 samples. The high frequency of these modifications

and their expression across a large number of samples suggest that

the RNA editing of this miRNA is important in a wide range of dis-

eases or tissue contexts, confirming and extending previous findings

by other researchers (Kawahara et al., 2007; Zheng et al., 2016).

When comparing the relative frequencies on the level of mature

arms, we can see that the most abundant modifications at the 3’ end

seem to be slightly more frequent for the 3’ arm than for the 5’ arm.

For the other modifications there seems to be no observable bias.

Figure 4B shows the mean relative expression of the observed muta-

tions per position for all known miRNAs of miRBase v21. A list

containing all detected mismatches including their absolute number

of reads and relative RPMMM frequency is provided in

Supplementary Table S4.

3.6 Discovery of new miRNAs
As described earlier and highlighted in Figures 1A and 2B, not all

reads match to known RNA resources. Respective regions that are

covered but are not annotated yet contain potentially novel

miRNAs. We applied the algorithms implemented in miRMaster

(Fehlmann et al., 2017) to predict new miRNA candidates. From its

basic principles the approach is similar to miRDeep2 (Friedländer

et al., 2011). The very large number of samples however required a

completely re-implemented and optimized version in Cþþ to facili-

tate the joint analysis of the billions of reads in reasonable comput-

ing time. From all sequencing reads, we predicted a total of 135 290

new miRNA candidates. It is expected that these contain many false

A

B

Fig. 2. Panel (A) Distribution of coverage/samples against percentage of

human genome covered. With 1% of all samples, we cover almost 1% of the

human genome (represented by the dot). Panel (B) Length distribution of the

high confidence regions. There is a clear peak at 18–22 nt, which falls in the

known length distribution of mature miRNAs (shaded region). In the peak

region we see an enriched fraction of regions where no annotation is known

yet. We also added the length distribution of selected other RNA entities on

top of the plot for completeness. However, only piRNAs and miRNAs have

lengths distributions that match the observed peak

Modified at 5‘ end

Modified at 3‘ end

A

B

C

Fig. 3. Panel (A) shows the frequency of canonical and iso-miRNAs. For each

human miRNA we calculated the canonical form as the form with highest

read stack. Then we likewise calculated the isoforms. The analyses were per-

formed for 3’ and 5’ mature miRNAs separately. Below the box plots, the

respective isoform is presented schematically. The horizontal black lines

mark the canonical form. The dots above the isoform flag those with 5’ modi-

fications, those below the isoforms flag those with 3’ modifications. The iso-

forms are sorted with respect to decreasing median frequency and only the

top 20 are shown. Higher abundant miRNA isoforms are dominated by modi-

fications at the 3’ end. Panels (B) and (C) represent examples for miRNAs

with few isoforms (panel B) and many isoforms (panel C)

High-res. map of the human small nc transcriptome 1625

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1621/4769492 by guest on 21 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx814#supplementary-data


positives. Thus, in a first step to reduce the number of potential pre-

cursors and to increase the precision (the fraction of true positive

prediction on all positive predictions), we matched the predicted

precursors to the previously annotated high confidence regions. This

analysis yielded 17 400 miRNA candidates overlapping with our

reliable regions that are not equal or similar to known ncRNAs.

These candidates are available as GFF3 in Supplementary Material

S2 and are stored in our new online repository miRCarta (http://

www.ccb.uni-saarland.de/mircarta) (Backes et al., 2017). MiRCarta

(v1.0) is a comprehensive database that allows for browsing and fil-

tering the miRNA candidates from this article, the candidates from

the publications of Backes et al. (2016) and Londin et al. (2015), as

well as the latest miRBase data. In addition, it visualizes the expres-

sion data from the 18 035 samples as pileup plots for the stem-loops

to facilitate the assessment if the expression profile belongs to a true

positive finding. To have a consistent naming of the novel candi-

dates and known miRNAs we implemented a new scheme. This

scheme, which is detailed in the Methods section, is also suited to

unify future findings and is valid across species. In brief, identical

mature miRNAs have the same identifier independent of the species

(e.g. m-17) and the precursors are named by an organism tag (simi-

lar to miRBase) followed by the 5’ and 3’ mature miRNAs they con-

sist of (e.g. hsa-17-22 contains the 5’ mature miRNA m-17 and the

3’ mature miRNA m-22). Although this new naming scheme is the

primary identifier in miRCarta, the well-known miRNA name and

miRBase ID is contained for all currently available miRNAs.

3.7 Genomic miRNA clusters
Frequently, miRNA genes are not isolated and uniformly distributed

across the genome but accumulate in clusters. Thus, we searched for

such clusters in the human genome for the set of known and pre-

dicted miRNAs. A cluster was defined as a region containing at least

two precursors with a distance of at most 10 kb between the middle

positions of at least two members. Altogether, 1802 clusters with an

average of 2.35 precursors were observed. The chromosomes with

the largest number were the largest chromosomes: Chromosome 1

(176 clusters) and Chromosome 2 (131 clusters). In contrast,

Chromosome 21 (18 clusters) and Chromosome 13 (25 clusters) had

significantly fewer representatives (Fig. 5). This figure shows that

the clusters are not uniformly distributed across the genome and

only partially reflect the chromosome sizes. Although Chromosome

4 with �190 million bases contains 62 clusters (1 precursor per �3

million bases), and Chromosome 13 (�110 million bases) contains

25 precursors (1 precursor per �4.4 million bases), especially

Chromosomes 17 (�80 million bases, 121 clusters, 1 cluster per

�0.66 million bases) and 19 are enriched for miRNA clusters (�60

million bases, 100 clusters, 1 cluster per �0.8 million bases). The

full list of clusters with regions, and the number of known as well as

predicted miRNAs is presented in Supplementary Table S5.

3.8 Validation of new miRNAs
As described earlier miRNA candidates can only be considered real

miRNAs once they have been experimentally validated. Among the

core criteria for validating a miRNA is to report expression by using

a hybridization-based technique. We consider the detection of proc-

essed mature forms from cloned precursors via Northern Blotting as

gold standard for experimental validation. However, due to the

large number of candidates we performed a first validation step via

a custom microarray. Since the predicted miRNAs could be influ-

enced by technological bias, e.g. the library preparation or sequenc-

ing, we selected a subset of 11 877 miRNAs containing the

annotated miRNAs from miRBase v21 and further candidates, with

the focus on blood miRNA candidates. Using these candidates, we

built a custom microarray and hybridized the arrays with plasma

and PAXGene blood pools, a reference sample, brain, kidney, liver,

testis and heart tissue samples. By this amplification free procedure,

we measured signals for 1146 (44%) known miRNAs and 3151

(34%) miRNA candidates. The results of the microarray analysis

are presented as heat map in Figure 6A. The pileup plot and secon-

dary structure of one novel predicted precursor is shown exempla-

rily in Figure 6B. Another example of a predicted precursor is shown

in Supplementary Figure S3. This precursor is already annotated in

two other species (oan-mir-2985 and tgu-mir-2985-1), but not yet

as human miRNA precursor.

A

B

Fig. 4. Panel (A) details the frequency of the different variants in the 3’ and 5’

mature form of the miRNAs. The variants are shown relative to the 3’ (T) or 5’

(F) end of the miRNAs. The variants are sorted according to decreasing

median frequency and only the top 20 are shown. Panel (B) shows the fre-

quency of different single nucleotide variants across the position in the

miRNA

Fig. 5. Frequency of known and predicted precursor clusters across the differ-

ent human chromosomes. A cluster was defined as a region containing at

least two precursors with a distance of at most 10 kb between the middle

positions of at least two members
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Among the specimens with the most complex miRNomes were

blood samples. Since they can be gathered minimally invasive, blood

samples represent also an important source of new biomarkers for

various human pathologies. Many studies have shown that known

miRNAs can be differentially expressed comparing disease and con-

trol samples. In an additional validation step, we therefore asked

whether we can also observe expression differences for novel blood

miRNA candidates. To this end, we built a microarray containing

2305 (candidate) miRNAs from the first validation that were

expressed in blood. The resulting human blood miRNA microarray

can be used to facilitate the discovery and validation of circulating

miRNAs for many human pathologies. Among the diseases with the

largest effect size and the highest reproducibility in miRNA bio-

markers is lung cancer. With the new array, we hybridized 53 indi-

viduals, 25 controls and 28 SCLC patients. Following adjustment

for multiple testing, 695 miRNAs had an adjusted t-test P-value

below 0.05 and were considered statistically significant. Although

the six most significant features are known from the miRBase,

already the seventh marker was a new candidate miRNA (raw and

adjusted P-value 10�9 and 10�6). Altogether, 457 candidate

miRNAs that are not included in the miRBase were among the 695

significant markers for SCLC. As the cluster heat map in Figure 6C

details, the most significant markers were predominantly down-

regulated in SCLC patients. These results suggest that new miRNAs

are not only detectable by hybridization-based techniques but also

bear a substantial diagnostic information content.

Of course, the hybridization on arrays does not replace a thor-

ough analysis of the expression and biogenesis of miRNAs followed

by Northern Blotting. We thus cloned the precursors of miRNAs

from different miRBase versions and new candidates and tried to

detect the processed/mature forms of miRNAs on Northern Blots.

For 59 of 103 tested candidates that have previously not been

reported by Northern Blots, bands in the expected size of around 22

nucleotides were observed (manuscript in preparation). This set is to

our knowledge the largest collection of miRNAs that have jointly

been validated using respective experimental methods. The precur-

sor presented in Figure 6B was among the ones for which both

miRNAs was validated.

3.9 Evolutionary conservation of new miRNAs
MiRNAs are frequently highly conserved. To verify if we can also

observe this for our novel candidates, we mapped the sequences of

the candidates without mismatches against the genomes of 148

organisms that are also contained in miRCarta and counted a hit for

an organism if we could find the sequence at least one time in its

genome. We find about 85% of our candidates in at least one other

organism than Homo sapiens. A novel candidate occurs on average

in 4.5 organisms. The sequences of the top five miRNA candidates

(sorted by the sum of hits in different organisms) can even be found

on average in 37 species. The miRNA candidate with the most hits

(m-7214) was detected in 58/148 organisms. These 58 organisms

are from various taxonomy classes such as Mammalia, Insecta,

Amphibia etc. For the remaining top five candidates, the variety in

species is smaller such that we can find the lowest common ancestor

Craniata for these taxa at subphylum level. Furthermore, some of

our candidates are already annotated in miRBase for other organ-

isms than human. For example, m-3155 corresponds to the known

miRNAs mmu-miR-3085-3p and rno-miR-3085. Of course, these

findings only illustrate that identical sequences are contained in

other organisms, not that they necessarily function as miRNAs.

4 Discussion and conclusions

Since the advent of next-generation sequencing, thousands of small

RNA-sequencing datasets have been created and also been partially

deposited in public databases. However, depending on which pipe-

lines were used for the evaluation of the datasets in the different

study setups, these are not directly comparable to each other. To

make maximal use of the available datasets, a consistent analysis of

the different samples with the same pipeline is necessary. The aim of

our study was to remove redundancies due to different study setups

and to provide a reliable map of high-quality small RNA annota-

tions, particularly for miRNAs.

Starting with a collection of 24 554 human small RNA NGS

samples, we performed stringent quality controls, which left us with

18 035 usable samples for down-stream analysis.

Depending on the coverage thresholds, up to 64% of the genome

are covered (1-fold coverage). However, this number does not reflect

the true complexity of the human non-coding transcriptome but is

affected by different sources of bias. By defining those regions that

are covered by at least 1% (180) of all samples as reliable, we still

obtained about 900 000 such regions with variable lengths.

Although they contain true positive sncRNAs, we still expect a rea-

sonable number of false positive hits. Since solid low-throughput

validation of such large sets of potential non-coding miRNAs is not

feasible, we performed a large first pass validation by using microar-

rays. We were able to detect expression signals for 34% of our novel

candidates in high-quality samples, minimizing the risk of false posi-

tives e.g. by degradation of mRNAs. Further, we found that some of

these miRNAs have considerable potential as biomarkers in SCLC.

Still, these are not necessarily functional miRNAs but remain
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Fig. 6. Panel (A) describes the first-pass validation of human (candidate)

miRNAs by microarrays. Cluster heat map of all 4297 mature (candidate)

miRNAs that showed signals in high-quality RNA samples based on amplifi-

cation free hybridization. Panel (B) presents a representative example with

the mapping distribution as presented in Figure 3. In addition to the pileup

plot, the secondary structure is shown. Panel (C) shows the result of the

human blood miRNA array hybridized with lung cancer (blue) and control

samples (orange). Results are presented as heat map resulting from hierarch-

ical clustering with dendrograms on top (clustering of samples) and at the left

side (clustering of miRNAs)
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candidates until a detailed validation has been carried out. Thus, we

performed such a validation for selected candidates using Northern

Blotting.

With our sncRNA study, we performed to our knowledge the

most complete analysis of human sncRNAs with a focus on

miRNAs. The set of reported reliable regions, which is covering

0.8% of the human genome, likely contains a very substantial frac-

tion of all small non-coding elements in the human genome.
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