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The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to

consumer electronics [1]. The basic operation principle of an accelerometer is to measure the displacement

of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive [2, 3],

piezo-electric [4], tunnel-current [5], or optical [6–9] methods. While optical readout provides superior dis-

placement resolution and resilience to electromagnetic interference, current optical accelerometers either do

not allow for chip-scale integration [6] or require bulky test masses [7, 8]. Here we demonstrate an optome-

chanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic

crystal cavity [10] monolithically integrated with a nano-tethered test mass of high mechanical Q-factor [11].

This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of

10 µg/
√

Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical power

requirements. Moreover, the nano-gram test masses used here allow for optomechanical back-action [12] in the

form of cooling [13] or the optical spring effect [14, 15], setting the stage for a new class of motional sensors.

Due to the rapid development of silicon micro machining

technology, MEMS accelerometers have become exceedingly

popular over the last two decades [1]. Evolving from airbag

deployment sensors in automobiles to tilt-sensors in cameras

and consumer electronics products, they can now be found

in a large variety of technological applications with very di-

verse requirements of their performance metrics. While sen-

sors for inertial navigation systems require low noise levels

and superior bias stability [16], large bandwidth is crucial for

sensors in acoustics and vibrometry applications. However,

there is a fundamental tradeoff between noise performance

and bandwidth which can be understood from the basic op-

eration principle of an accelerometer, illustrated in Fig. 1a.

When subjected to an acceleration a(ω) at frequency ω , a

mechanically compliant test mass experiences a displacement

x(ω) = χ(ω)a(ω) proportional to the mechanical susceptibil-

ity χ−1(ω) = ω2
m−ω2+ i ωωm

Qm
. Here, ωm = 2π fm =

√

k/m is

the (angular) resonance frequency of the oscillator and Qm is

its mechanical Q-factor (see the plot of |χ(ω)| in Fig. 1b for

Qm = 10). Usually, accelerometers are operated below their

fundamental resonance frequency ωm, where χ(ω) ≈ 1/ω2
m

exhibits an almost flat frequency-response. This naturally

leads to a tradeoff between resolution and bandwidth, since

the large resonance frequency required for high-speed opera-

tion results in vanishingly small displacements. As a result,

the performance of the displacement sensor constitutes a cen-

tral figure of merit of an accelerometer.

In a cavity optomechanical system, a mechanically compli-

ant electromagnetic cavity is used to resonantly-enhance read

out of mechanical motion [17] (canonically, the motion of the

end mirror of a Fabry-Perot cavity). Such systems have en-

abled motion detection measurements with an imprecision at
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or below the standard quantum limit (SQL) [18–20], corre-

sponding to the position uncertainty in the quantum ground-

state of the mechanical object. Clever quantum back-action

evading techniques [21] aside, only for an ideal cavity sys-

tem (no parasitic losses) can the actual displacement sensitiv-

ity reach the SQL due to fluctuating radiation pressure forces

arising from shot noise of the probe light [22]. The aver-

age radiation pressure force, on the otherhand, can be quite

large in micro- and nano-scale optomechanical devices, and

offers the unique capability to control the sensor bandwidth

via the optical spring effect [14, 15] and the sensor’s effec-

tive temperature via passive damping [12] or feedback cold-

damping [13, 23].

In this work, we utilize an integrated silicon-nitride (SiN)

zipper photonic crystal optomechanical cavity [10] to pro-

vide shot-noise-limited read out of mechanical motion with

imprecision at the SQL, enabling high-bandwidth and high-

resolution acceleration sensing. The resolution of an ac-

celerometer can be quantified by a noise-equivalent acceler-

ation, NEA =
√

a2
th +a2

det +a2
add in units of g/

√
Hz (1 g =

9.81 m/s2). The first term in the NEA is due to thermal Brow-

nian motion of the test mass (see appendix I 1) [24] and is

given by,

ath =

√

4kBT ωm

mQm

, (1)

while the remaining two terms arise from the aforementioned

displacement readout noise (adet) and added noise (back-

action) onto the test mass due to the act of measurement (aadd,

see appendix I 4). Fundamental to minimizing the NEA is a

reduction in the intrinsic thermal noise, ath, which according

to equation (1), requires one to maximize the mass-Q prod-

uct at a given ωm. In most commercial accelerometers, the

Q-factor is relatively low, which demands large test masses

for high resolution. In contrast, in the zipper cavity devices

presented here, we use nano-tether suspension of a nano-

gram test mass to yield high intrinsic mechanical Q-factors
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FIG. 1: Overview of the accelerometer design. a, Canonical example of an accelerometer. When the device (blue frame) experiences a

constant acceleration a, a test mass m undergoes a displacement of x = ma/k. b, Frequency response |χ(ω)| of an accelerometer on a log-log

plot featuring a resonance at fm =
√

k/m/2π with Qm = 10. c, False-colored SEM-image of a typical optomechanical accelerometer. A test

mass of size 150 µm×60 µm×400 nm (green) is suspended on highly stressed 150 nm wide and 560 µm long SiN nano-tethers, which allow

for high oscillator frequencies (> 27 kHz) and high mechanical Q-factors (> 106). On the upper edge of the test mass, we implement a zipper

photonic crystal nanocavity (pink). The cross-shaped cuts on the test mass facilitate undercutting the device. d, Zoom-in of the optical cavity

region showing the magnitude of the electric field |E(r)| for the fundamental bonded mode of the zipper cavity. The top beam is mechanically

anchored to the bulk SiN and the bottom beam is attached to the test mass. e, Schematic displacement profile (not to scale) of the fundamental

in-plane mechanical mode used for acceleration sensing. f, SEM-image of an array of devices with different test mass sizes.

(1−2×106), and strong thermo-optomechanical back-action

to damp and cool the thermal motion of the test mass.

Figure 1c shows a scanning-electron microscope image

of the device studied here, with the test mass structure and

nano-tethers highlighted in green. The fundamental in-plane

mechanical mode of this structure is depicted in Fig. 1e

and is measured to have a frequency of fm = 27.5 kHz, in

good agreement with finite-element-method simulations from

which we also extract a motional mass of m = 10×10−12 kg.

The measured mechanical Q-factor is Qm = 1.4×106 in vac-

uum (see appendix G), which results in an estimated ath =
1.4 µg/

√
Hz. The region highlighted in pink corresponds to

the zipper optical cavity used for monitoring test mass mo-

tion, a zoom-in of which can be seen in Figure 1d. The cav-

ity consists of two patterned photonic crystal nanobeams, one

attached to the test mass (bottom) and one anchored to the

bulk (top). The device in Fig. 1c is designed to operate in

the telecom band, with a measured optical mode resonance at

λo = 1537 nm and an optical Q-factor of Qo = 9,500. With

the optical cavity field being largely confined to the slot be-

tween the nanobeams, the optical resonance frequency is sen-

sitively coupled to relative motion of the nanobeams in the

plane of the device (the x̂-direction in Fig. 1c). A displace-

ment of the test mass caused by an in-plane acceleration of the

supporting microchip can then be read-out optically using the

setup shown in Fig. 2a, where the optical transmission through

the photonic crystal cavity is monitored via an evanescently-

coupled fiber taper waveguide [25] anchored to the rigid side

of the cavity. Utilizing a narrow bandwidth (< 300 kHz) laser

source, with laser frequency detuned to the red side of the cav-

ity resonance, fluctuations of the resonance frequency due to

motion of the test mass are translated linearly into amplitude-

fluctuations of the transmitted laser light field (see inset in

Fig. 2a and appendix E). A balanced detection scheme allows

for efficient rejection of laser amplitude noise, yielding shot-

noise limited detection for frequencies above ∼ 1 kHz.

Figure 2b shows the electronic power spectral density

(PSD) of the optically transduced signal obtained from the

device in Fig. 1c. The cavity was driven with an incident

laser power of Pin = 116 µW, yielding an intracavity photon-

number of ≈ 430. The two peaks around 27.5 kHz arise from

thermal Brownian motion of the fundamental in- and out-

of-plane mechanical eigenmodes of the suspended test mass.

The transduced signal level of the fundamental in-plane reso-

nance, the mode used for acceleration sensing, is consistent

with an optomechanical coupling constant of gOM = 2π ×
5.5 GHz/nm, where gOM ≡ ∂ωo/∂x is defined as the optical

cavity frequency shift per unit displacement. The dotted green

line depicts the theoretical thermal noise background of this

mode. The series of sharp features between zero frequency

(DC) and 15 kHz are due to mechanical resonances of the an-

chored fiber-taper. The noise background level of Fig. 2b is

dominated by photon shot-noise, an estimate of which is indi-

cated by the red dotted line. The cyan dotted line in Fig. 2b

corresponds to the electronic photodetector noise, and the pur-

ple dashed line represents the sum of all noise terms. The

broad noise at lower frequencies arises from fiber taper mo-

tion and acoustic pick-up from the environment. The right-

hand axis in Fig. 2b quantifies the optically transduced PSD

in units of an equivalent transduced displacement amplitude

of the fundamental in-plane mode of the test mass, showing a

measured shot-noise-dominated displacement imprecision of

4 fm/
√

Hz (the estimated on-resonance quantum-back-action

displacement noise is 23 fm/
√

Hz, and the corresponding on-

resonance SQL is 2.8 fm/
√

Hz; see appendix I 4).

At this optical power the observed linewidth of the mechan-
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FIG. 2: Experimental system and noise data. a, Laser light used

to probe the zipper cavity motion is split with a beamsplitter; the

signal arm is sent through a fiber polarization controller (FPC) and

a fiber taper, which is coupled to the optical cavity, while the other

arm is sent directly to a balanced photo-detector (BPD). Variable op-

tical attenuators (VOA) in each arm balance the powers, and a power

meter (PM) is used to calibrate the probe power. The BPD signal is

sent to a proportional-integral controller (PI) – locking the laser half

a linewidth red-detuned from the optical resonance. The sample is

mounted on a shake table comprised of a shear piezo. Transduced

accelerations are measured using either an electronic spectrum ana-

lyzer (ESA) or a lock-in amplifier. b, The left axes show an optical

power spectral density (PSD) plot of the BPD signal showing me-

chanical modes at 27.5 kHz (green). The right axis shows the equiv-

alent displacement noise. The tone at 26 kHz (orange) is transduction

of a tone applied to the shear piezo corresponding to an acceleration

of 38.9 mg. The dashed and dotted lines are theoretical noise levels

for shot noise (red), detector noise (cyan), thermal noise (green), and

the total of all noise contributions (purple). The inset is a time trace

of the transduction of an applied acceleration of 35.6 mg at 25 kHz.

ical mode is ≈ 2 Hz, roughly 100 times larger than the low

power linewidth. As modeled in appendix H, the measured

mechanical damping is a result of radiation pressure dynam-

ical back-action, enhanced by slow thermo-optical tuning of

the cavity which provides the necessary phase-lag for efficient

velocity damping. Damping of the mechanical resonance is

typically used to reduce the ringing transient response of the

sensor when subjected to a shock input [26]. In contrast to

conventional gas-damping employed in MEMS sensors [27],

optomechanical back-action damping also cools the mechani-

cal resonator [13]. The measured effective temperature of the

fundamental in-plane mode of the test mass, as determined

from the area under the 27 kHz resonance line in Fig. 2b, is

Teff ≈ 3 K. This combination of damping and cooling keeps

the ratio of Teff/Qm fixed, and does not degrade the thermally-

limited acceleration resolution of the sensor.

In order to carefully calibrate the accelerometric perfor-

mance of the device, the sample is mounted onto a shake table

driven by a shear piezo actuator (see appendix F). Applying a

sinusoidal voltage to the piezo results in a harmonic accelera-

tion a(ω), and thereby a modulation of the transmitted optical

power. The optical power in the modulation sideband is given

by (see appendix E)

Pm(ω) = (1−Td)
Qo

ωo

Pin gOM |χ(ω)a(ω)| , (2)

where Qo is the optical Q-factor (= 9,500), ωo is the optical

resonance frequency, Td is the relative cavity transmission on

resonance (= 0.88), and the laser is half a linewidth detuned.

The narrow tone at 26 kHz in Fig. 2b (orange) arises from an

applied rms-acceleration of arms = 38.9 mg, calibrated using

two commercial accelerometers mounted on the shake table

(see appendix F). From the signal-to-noise-ratio of this cali-

bration tone we estimate ath = 2.0 µg/
√

Hz, comparable to

the theoretical value of ath = 1.4 µg/
√

Hz. For a driving tone

at 10 kHz, we measure amin ≈ 10 µg/
√

Hz, limited in this

case by photon shot noise. The dynamic range over which the

sensor is linear at a drive frequency of 10 kHz has also been

measured (see appendix J), and is found to be > 49 dB (up to

∼ 10 g accelerations, limited by the maximum output voltage

of the piezo shaker drive electronics).

Figure 3a shows the demodulated photodiode signal nor-

malized to the applied acceleration as a function of drive fre-

quency, corresponding to the frequency dependent accelera-

tion sensitivity of the zipper cavity (the inset of Fig. 3a shows

data from the commercial accelerometers used to calibrate

the applied acceleration). The dashed red line is the theoret-

ical calculation of the sensitivity without fit parameters and

shows excellent agreement. The sharp Fano-shaped features

for lower frequencies can again be attributed to mechanical

resonances of the fiber-taper waveguide. The broad region of

apparent higher-sensitivity around 15 kHz is due to an under-

estimate of the applied acceleration arising from an acoustic

resonance of the shake table.

The calibrated frequency-dependent NEA, shown in

Fig. 3b, is obtained by normalizing the ESA noise spectrum

(Fig. 2b) by the sensitivity curve (Fig. 3a). Between 25–

30 kHz the resolution is limited by the thermal noise of the os-

cillator, while from 5–25 kHz shot-noise limits the resolution

to ≈ 10 µg/
√

Hz. For frequencies lower than 5 kHz, motion

of the fiber-taper waveguide and the environment contribute

extra noise. The sharp Fano-shaped feature at 27 kHz arises

from interference with the fundamental out-of-plane mode of

the test mass. The dashed red curve corresponds to a theoret-

ical estimate of the NEA which shows good agreement. The

dashed green line is the fundamental thermal sensing limit.

The device platform demonstrated here straightforwardly

allows for further reduction of the NEA. For instance, ath can

be reduced further by increasing the test mass m. In a prelim-

inary study, we have fabricated a series of devices with test
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FIG. 3: Frequency-dependence of sensitivity and resolution. a, Sensitivity curve as function of frequency, obtained by driving the shear

piezo with a sinusoidal voltage and measuring the amplitude of the resulting voltage modulation of the BPD signal using a lock-in amplifier.

The dashed red line corresponds to the theoretical expectation for the sensitivity without fit parameters. The inset shows data from commercial

accelerometers also attached to the shake table (blue and green curves), which are used for calibrating the applied acceleration. b, Frequency-

dependent noise-equivalent acceleration (NEA) of the device quantifying its broadband-resolution. The plot is obtained by taking the PSD in

Fig. 2b and normalising it by the sensitivity curve in a. The dashed red line depicts the theoretical expectation for the NEA given shot-noise

and thermal noise limitations. The green dashed curve corresponds to the thermal noise (ath).

masses ranging from 100× 10−15 kg to 35× 10−12 kg and

recorded their mechanical frequency and Q-factor. Figure 4a

depicts the calculated ath versus the mechanical frequency of

the studied devices, which roughly scales with ath ∝ ω
3/2
m

(green line). Adding mass alone also results in a reduction

of the sensor bandwidth; however, by scaling the number

of nano-tether suspensions with the test mass size (see Fig-

ures 4b and c) the bandwidth can be kept constant. More-

over, as shown in the inset of Fig. 4a, we have found that

adding nano-tethers does not result in a degradation of the

mechanical Q-factor. Simultaneously scaling the width of the

test mass and the number of nano-tethers by a factor of 100

from the device shown in Fig. 1c, to a mass of m = 10−9 kg,

should reduce the thermal NEA to ∼ 150 ng/
√

Hz while

maintaining a sensor bandwidth of 25 kHz. Critically, for

gOM = 2π×100 GHz/nm as measured in previous zipper cav-

ity structures [10], the optical input power required to reach

this resolution across the entire sensor bandwidth is still sub-

milliwatt (∼ 850 µW).

With a demonstrated acceleration resolution on the order of

a few µg/
√

Hz and a bandwidth above 25 kHz, the zipper cav-

ity device presented here shows performance metrics orders

of magnitude better than other optical accelerometers [6, 7]

and comparable to the best commercial sensors [28]. These

devices, formed from a silicon chip, also allow for the inte-

gration of electrostatic tuning-capacitors [29], fiber-coupled

on-chip waveguides [8], and on-chip electronics, all of which

enables convenient, small form-factor packaging, and elim-

inates the need for expensive tunable lasers. In addition,

nanoscale optomechanical cavities such as the zipper cavity

studied here, offer the unique resource of strong radiation-

pressure back-action. The optical spring effect, for example,

allows for dynamic tuning of the mechanical resonance fre-

quency, which can increase the low-frequency displacement

response (inverse quadratically with frequency) and decrease

thermal noise (with the square root of frequency). Similar

zipper cavity devices have shown low power (sub-mW) op-

tical tuning of the mechanical resonance frequency over 10’s

of MHz (> 200% of ωm) into a regime where the mechanical

structure is almost entirely suspended by the optical field [10].

Also, as demonstrated here, back-action cooling provides a re-

source to damp the response of the oscillator without compro-

mising the resolution. Combining all of these attributes should

allow not only for a new class of chip-scale accelerometers,

but other precision displacement-based sensors of, for exam-

ple, mass, force, and rotation.
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Appendix

Appendix A: Oscillator susceptibility

The oscillator susceptibility χ(ω) given above follows from the differential equation of the harmonic oscillator:

mẍ+mγ ẋ+mω2
mx = Fappl. (A1)

Transforming to Fourier space, this reads

−ω2x+ iωγx+ω2
mx =

Fappl(ω)

m
. (A2)

With Fappl(ω)/m = aappl, this yields the accelerometer response

x(ω) = χ(ω)aappl(ω)

=
1

ω2
m −ω2 + i ωωm

Qm

aappl(ω). (A3)

This function has the following properties:

χ(0) =
1

ω2
m

=
m

k
, (A4)

χ(ωm) = −i
Qm

ω2
m

=−iQmχ(0), (A5)

χ(ω ≫ ωm) ∝
1

ω2
. (A6)

For the device studied here with ωm = 27.5 kHz, this gives an acceleration sensitivity of χ(0) = 329 pm/g with g = 9.81 m/s2.

Appendix B: Sample fabrication and design

The presented accelerometer structures are defined in a 400 nm thick silicon nitride (SiN) layer formed on top of a 500 µm

thick single-crystal silicon wafer. The SiN is stiochiometric and is grown in LPCVD under conditions that allow for large internal

tensile stress (σ = 800 MPa). The accelerometer structures comprising the test mass, the support nano-tethers, and the zipper

cavity are defined in a single electron-beam lithography step. The mask is transferred into the SiN layer using ICP/RIE dry-

etching in a SF6/C4F8 plasma. Resist residues are removed in a combination of heated Microposit 1165 remover and Piranha

solution (3:1 H2SO4 : H2O2) at 120◦ C. The structures are undercut by anisotropic wet-etching in 70◦ C hot KOH and cleaned

in a second Piranha etching step. Critical point dying in CO2 avoids collapsing of the zipper cavities.

The optical and mechanical structures are designed using finite-elements simulations performed in COMSOL Multiphysics

(http://www.comsol.com/).

Appendix C: Optical spectroscopy

The sample is optically coupled via a near-field probe consisting of a tapered optical fiber. The tapered fiber is brought in

optical contact with the device using attocube nanopositioners. Aligned in parallel to the zipper nano-beams, the fiber taper is

mechanically anchored on the struts attached to the rigid side of the zipper cavity. Launching light from a NewFocus Velocity

tunable external-cavity diode laser into the fiber taper and monitoring the taper transmission then allows us to do resonant

coherent spectroscopy of the cavity mode. Technical amplitude noise of the laser (∼ 10 dB above the shot-noise level) is

suppressed by a balanced detection scheme using a Newport 2117 balanced photodetector that features ∼ 20 dB common-mode

noise rejection.

Appendix D: Transmission function of side-coupled open cavity

In order to calculate the intensity transmission profile T (ω) of a photonic-crystal resonator side-coupled by a fiber-taper

waveguide, we start from the equation of motion of â, the annihilation operator of the cavity field:

dâ

dt
=−

(

i∆+
κ

2

)

â+

√

κe

2
âin +

√
κiâi +

√

κe

2
â−. (A7)

http://www.comsol.com/
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FIG. A1: Example transmission curve of the zipper cavity. The curve is obtained by scanning an external cavity diode laser across the

cavity resonance at λ0 = 1537.36 nm while monitoring the fiber taper transmission. The dip exhibits an optical Q-factor of Qo = 9,500 and a

transmission dip on resonance of Td = 0.88.

Here, ∆ = ωl −ωc is the laser-cavity detuning, κe is the total taper-cavity coupling rate, κ = κi +κe is the total cavity decay

rate, with κi the intrinsic cavity damping rate, and âin is the taper input field, which together with the output field âout obeys the

boundary condition

âin + âout =

√

κe

2
â. (A8)

The last two terms on the right-hand-side of eq. (A7) represent the vacuum inputs due to coupling with the intrinsic (loss) bath

of the cavity and the backward fiber taper waveguide mode, respectively (these input terms are ignored going forward as they are

in the vacuum state and do not modify the classical field equations). In steady state, where dâ
dt

≡ 0, the intracavity field operator

is

â0 =

√

κe

2

âin

i∆+ κ
2

. (A9)

âin is normalized to the power incident on the cavity Pin as Pin = h̄ωl〈â†
inâin〉 such that the intracavity photon number is

ncav = 〈â†â〉= κe

2

1

∆2 + κ2

4

Pin

h̄ωl

. (A10)

Combining eq. (A8) with eq. (A9) yields the intensity transmission function

T (∆) =
|aout|2
|ain|2

= 1− κe

4

2κ −κe

∆2 + κ2

4

. (A11)

This function describes a Lorentzian absorption curve that dips to Td =
κ2

i

κ2 at ∆ = 0. Figure A1 shows an example transmission

curve of the device studied in this work obtained by scanning an external cavity diode laser across the fundamental resonance of

the zipper cavity. The slope of the curve is given by

dT

d∆
=

κe

2

2κ −κe
(

∆2 + κ2

4

)2
∆. (A12)

Usually, we lock the probe laser to a red-side detuning of ∆ =−κ/2, where the transduction is maximum for fixed ncav. At that

detuning, the intracavity photon number is given by

ncav,κ/2 =
(

1−
√

Td

) Qo

ωo

Pin

h̄ωl

(A13)
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and the slope of the transmission curve is

dT

d∆

∣

∣

∣

∆=− κ
2

= −κe (2κ −κe)

κ3
(A14)

= −(1−Td)
Qo

ωo

. (A15)

Appendix E: Derivation of the optomechanical accelerometer transduction

Our device operates deep in the sideband unresolved regime, where ωm ≪ κ (ωm = 2π ×27.5 kHz, κ = ωc/Qo = 129 GHz).

In this regime, the intra-cavity field and hence the field transmitted through the cavity adiabatically follow changes in laser-cavity

detuning ∆ = ωl −ωc created by mechanical motion of the test-mass, ∆ = gOM x. In order to calculate the optical transmission

change ∆T induced by a shift of the cavity resonance frequency ∆, we can therefore approximate

∆T =
dT

d∆
∆, (A16)

such that the frequency component of the transmitted optical power arising from a displacement x(ω) is given by

Pm(ω) =
dT

d∆
ηinPingOM x(ω), (A17)

where Pin is the input power in the fiber taper waveguide at the zipper cavity and ηin quantifies the optical loss in the fiber taper

waveguide between the cavity and the detector via ηin = Pdet/Pin, where Pdet is the optical power reaching the detector. This

formula relates frequency components of the transmitted optical power modulation to the mechanical motion of the test-mass.

With eq. (A13) and eq. (A15), this becomes

Pm(∆ = κ/2) = (1−Td)
Qo

ωo

gOM ηinPin x. (A18)

This optical power is measured on a Newport 2117 balanced photo-detector with switchable transimpedance gain (in these

experiments we use gti = 49,600 V/W), generating a voltage output of Vm = gtiPm. An electronic spectrum analyzer (ESA)

calculates the electrical power spectral density of this optical sideband in units of V 2
m/Z with Z = 50 Ω and expresses it in

dBm/Hz. The conversion follows the relation

PSDESA(ω) = 10 · log

[

(gtiPm(ω))2

Z
·1,000

]

. (A19)

Careful calibration of the parameters in eq. (A18) and eq. (A19) as well as the optical input power, allows one to calculate the

optomechanical coupling gOM from the magnitude of the (known) thermal Brownian motion noise of the mechanical oscillator.

In the measurements presented in Figs. 2 and 3, we have Td = 0.87, Qo = 9,500, ωo = 2π × 195 THz, and ηin = 0.57. At low

optical input power, where negligible back-action cooling is being performed on the fundamental in-plane mechanical mode of

the suspended test mass and the mode’s effective temperature is the temperature of the room temperature bath (T ∼ 300K), the

optomechanical coupling constant is estimated to be gOM = 2π × 5.5 GHz/nm from the area under the Lorentzian centered at

27 kHz of the optically transduced displacement noise PSD. This corresponds to an optical displacement sensitivity of Pm/x =
3.7 nW/pm for the fundamental in-plane mechanical mode of the suspended test mass. From electromagnetic finite-elements

simulations we calculate gOM = 2π × 13.5 GHz/nm for dimensions of the zipper cavity as measured with a scanning electron

microscope, in good agreement with the measured value.

Appendix F: Acceleration sensitivity measurement

For applying AC accelerations to our device, we constructed a shake table comprising a sample holder plate glued on a shear

piezo actuator. Applying a sinusoidal AC-voltage to the piezo creates a displacement x0 sin(ωdt), which results in an applied

acceleration of −x0ω2
d sin(ωdt). For calibration of the shake table assembly, we use commercial accelerometers from Analog

Devices of 5.5 kHz (ADXL103) and 22 kHz (ADXL001) bandwidth, respectively. In order to measure the frequency response

of our optomechanical accelerometer, we apply a constant-voltage drive to the piezo and tune its frequency, while measuring the

photodetector output on a lock-in amplifier. After normalizing for the ωd-dependence of the applied acceleration, this yields the

frequency-dependent sensitivity of the device. Normalizing an optical noise PSD then allows us to calibrate the noise-floor of

the accelerometer in terms of a noise-equivalent acceleration.
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FIG. A2: Autocorrelation trace of the thermal noise driven mechanical amplitude. The signal was obtained from computing the auto-

correlation of the slowly varying magnitude of the mechanical motion returned from a lock-in amplifier. Fitting the trace with an exponential

decay yields the time constant and thereby the mechanical Q-factor of the mode (Qm = 1.4×106).

Appendix G: Mechanical spectroscopy and autocorrelation method to determine mechanical quality factor

Motion of the mechanical oscillator results in amplitude-modulation of laser light transmitted through the fiber taper which

can be measured by monitoring the power spectral density of the detected balanced-photodiode photocurrent on an electronic

spectrum analyzer (ESA) from which we can extract the resonance frequency and the total power in transduced sideband (pro-

portional to mode temperature). However, the sub-Hz linewidths of our mechanical modes make establishing the quality factor

from a measurement of the power spectral density on a spectrum analyzer infeasible because it requires a fractional stability of

the frequency to greater than ≫ 1/Qm ≈ 5×10−7 over a period much longer than the decay time Qm/ωm ≈ 10 s. To overcome

this limitation, we extract Qm from the autocorrelation function of the mechanical motion [30]. Since the system is driven by a

Gaussian thermal noise process, the autocorrelation of the amplitude 〈X(t)X(t +τ)〉 can be shown to decay as e−t/τ from which

the quality factor can be obtained as Qm = τωm [30]. The slowly-varying envelope of 〈X(t)〉 is obtained from the magnitude

channel of a lock-in amplifier tuned to the mechanical resonance frequency with a bandwidth (≈ 100 Hz) much larger than the

linewidth which ensures that small frequency diffusion does not affect the measurement of the envelope. To obtain the bare

mechanical Q-factors the measurement is made at an optical power low enough to ensure there is no backaction. The autocor-

relation is numerically computed and the decay is fit to an exponential curve with a constant (noise) offset. In Fig. A2 we show

an autocorrelation trace of the device studied in this work calculated from ≈ 3000 s of data sampled at 100 Hz and fit it to find

τ = 7.85 s and for ωm = 2π ×27.5 kHz that Q = 1.4×106. For lower-Q structures, it was confirmed that this technique agrees

with a direct measurement of the linewidth from a spectrum analyzer. In order to avoid air-damping, measurements are carried

out in vacuum.

Appendix H: Optomechanical and thermo-optical backaction

The relatively small test mass makes the device studied in this work highly susceptible to optomechanical and thermo-optical

back-action effects. Such dispersive couplings are well known to renormalize the frequency and damping rate of the mechanical

oscillator. In particular, thermo-optical coupling which arises from a refractive index change of the material upon the absorption

of cavity photons plays a significant role in these devices due to the efficient thermal isolation of our nano-tethered test-masses

in vacuum. Previous studies have shown strong modification of the optomechanical spring effect and damping in similar zipper

cavity devices [10].

The Supplementary Information of Ref. [10] gives a detailed derivation of the renormalized oscillator frequency and damping

rate under the influence of optomechanical and thermo-optical coupling. The system of differential equations that describes the
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time evolution of the intra-cavity field a, the oscillator position x, and the cavity temperature shift ∆T is given by

ȧ = − [i∆− (gOMx+gth∆T )]a− κ

2
a+

√

κe

2
ain (A20)

ẍ = −γ ẋ−ω2
mx− h̄gOM

m
|a|2 (A21)

∆̇T = −γth∆T +κabscthh̄ωc |a|2 , (A22)

where gth =−(dn/dT )(ωc/n) is the thermo-optical tuning coefficient, dn/dT is the thermo-optic coefficient of the material, κabs

is the optical loss rate due to material absorption, cth is the thermal heat capacity, and γth is the decay rate of the temperature.

Linearizing these equations yields the static solutions

a0 =

√

κe

2

1

i∆′+κ/2
, x0 =

h̄gOM

mω2
m

|a0|2 , ∆T0 =
κabs

γth

cthh̄ωc |a0|2 (A23)

with the renormalized detuning ∆
′ = ∆−gOMx0 −gth∆T0 arising from the static optomechanical and thermo-optical shift. Using

a perturbation ansatz x(t) = x0 + ε cos(ωmt) one arrives after some algebraic manipulation at a modified harmonic oscillator

equation for x with a renormalized frequency ω ′
m and damping rate γ ′ given by

ω ′2
m = ω2

m − h̄ωcncavg2
OM

ωcm
Im [g(ωm)] , (A24)

γ ′ = γ +
h̄ωcncavg2

OM

ωmωcm
Re [g(ωm)] , (A25)

where the transfer function g(ω) is defined as

g(ω) = f
1+ f ′∗ f ∗

|1+ f ′ f |2 (A26)

with

f (ω) =
1

i(ω +∆′)+κ/2
− 1

i(ω −∆′)+κ/2
(A27)

and

f ′(ω) =−i
∆thγth

iω + γth

, (A28)

and ∆th = gth∆T0 is the static thermo-optical shift of the cavity resonance frequency. In the sideband unresolved regime where

ωm ≪ κ and for thermal decay rates γth smaller than the mechanical frequency, an approximation of g(ω) yields

ω ′2 = ω2 +
2h̄ncavg2

OM

m

∆
′

∆′2 +κ2/4

[

1+W

1+ s

]

, (A29)

γ ′ = γ +
2h̄ncavg2

OM

m

κ∆
′

(∆′2 +κ2/4)2

[

1+V

1+ s

]

, (A30)

with the correction factors

W = −
(

2∆th

κ

)(

γth

ωm

)2( κ∆
′

∆′2 +κ2/4

)

, (A31)

V =

(

2∆th

κ

)(

γth

ωm

)2(
∆
′

γth

)

(A32)

(A33)

and the saturation parameter

s =

(

2γth∆thh̄ωcncav

ωm

∆
′

∆′2 +κ2/4

)2(

1+
1

∆th

(

∆
′2 +κ2/4

∆′2 − ω2
mκ

∆′γth

))

(A34)
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FIG. A3: Demonstration of thermo-optomechanical damping and cooling. The green bullets show measured Q-factors of the mechanical

mode as function of the optical power, yielding thermo-optomechanical damping by a factor of ≈ 280. The blue bullets show the corresponding

optical power in the sideband generated by mechanical motion, proportional to the effective mode temperature. We observe cooling to

Teff ≈ 1 K. The dashed green curve corresponds to a theoretical model that includes optomechanical and thermo-optical back-action.

In the parameter regime of our devices, purely optomechanical back-action is a relatively weak effect due to the low optical Q-

factor. For the parameters given above and for a pump laser with an incident power of Pin = 116 µW half a linewidth red-detuned

from the cavity resonance, optomechanical back-action alone predicts a frequency shift of merely ω ′
m −ωm = −2π × 35.9 Hz

and a damping factor of γ ′m/γ = 1.01.

In order to study the influence of thermo-optical back-action, we measured the Q-factor of the mechanical mode as function

of the optical power launched into the cavity, shown as the green bullets in Fig. A3. When increasing the optical power to

Pin ≈ 300 µW, which corresponds to an intracavity photon number of ncav ≈ 1,100, the Q-factor shows strong damping and is

reduced by a factor of ≈ 200. Similarly, we measure the area of the mechanical resonance peak from the optically transduced

thermal noise PSD for a series of optical powers, and plot the inferred effective mode temperature as blue bullets in Fig. A3.

Clear in Fig. A3 is that the effective mode temperature is dropping with the measured mechanical Q-factor.

The observed mechanical damping is much larger than the value predicted by pure optomechanical back-action and can be

explained when including thermo-optical tuning. The green line in Fig. A3 was obtained by calculating the modified Q-factor

Q′
m = ωm/γ ′m using eq. (A25) with ∆th = −0.05κ and γth = 2π × 9.2 kHz. The latter value is in good agreement with the one

from [10] (γth = 2π × 10 kHz), which suggests that the time constant of thermo-optical tuning is dominated by heat-flow from

the zipper cavity region to the reservoir formed by the test-mass (or the bulk in the case of [10], respectively).

The obtained values for ∆th and γth result in correction factors of V = 12,400, W = −0.011, and a saturation parameter

of s ≈ 3× 10−36. Accordingly, we expect a significant thermo-optical correction to damping, as observed, but only a minor

modification of the optomechanical spring: ω ′−ω = 2π × 36.2 Hz for the pump power used in the experiment. Indeed, we

observed a frequency shift of 101 Hz, in reasonable agreement with the theoretical value.

Appendix I: Analysis of optical noise power spectral densities

As discussed above, noise power-spectral-densities (PSDs), such as those shown in Fig. 2b, arise from the contributions of

various noise sources. In the following we derive expressions for their magnitudes. Throughout the analysis below we work

with single-sided PSDs, unless otherwise stated, as these are the PSDs measured in our experiment.
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1. Noise from thermal Brownian motion

In contact with a heat-bath at room temperature, the test-mass oscillator is subjected to thermal Brownian motion. From the

equipartition theorem, the root-mean-square displacement of a harmonic oscillator is given by

xrms =

√

kBT

k
. (A35)

If we assume the acceleration-noise exerted by the bath to be white, i.e. frequency-independent, its power-spectral density Sth
aa

has to obey

x2
rms =

∫

∞

0
|χ(ω)|2 Sth

aa dω, (A36)

such that thermal test-mass motion corresponds to a noise-equivalent acceleration (NEA) of

ath =
√

Sth
aa =

√

4kBT ωm

mQm

=

√

4kBT γm

m
. (A37)

In the device presented in this work, we have ωm = 2π × 27.5 kHz, m = 10−11 kg, Qm = 1.4× 106, T = 295 K, and therefore

ath = 1.4 µg/
√

Hz. For a mass-on-a-spring oscillator with ωm =
√

k/m this corresponds to

ath =

√

4kBT

Qm

k
1/4

m
3/4

. (A38)

Driving the harmonic oscillator with susceptibility χ(ω), this NEA translates into frequency-dependent displacement noise

according to

Sth
xx(ω) =

4kBT ωm

mQm

1

(ω2 −ω2
m)

2 +
(

ωωm
Qm

)2
. (A39)

According to eq. (A17), the optical signal transduced by the cavity then exhibits a noise power-spectral density of

Sth
PP(ω) =

∣

∣

∣

∣

dT

d∆

∣

∣

∣

∣

2

η2
inP2

ing2
OMSth

xx (A40)

= (1−Td)
2 Q2

ω2
0

η2
inP2

ing2
OM

4kBT ωm

mQm

1

(ω2 −ω2
m)

2 +
(

ωωm
Qm

)2
. (A41)

Under the influence of thermo-optomechanical back-action discussed in appendix H, the dynamic parameters ωm and Qm have

to be replaced by the renormalized values ω ′
m and Q′

m. With the parameter values realized in this experiment, the optical noise

arising from thermal Brownian motion corresponds to

√

Sth
PP(0) = 0.96 pW/

√
Hz.

2. Optical shot noise

Photon shot noise arises from the quantum nature of light and from the destructive character of optical measurements using

photodiodes. The single-sided shot-noise power-spectral-density for light of frequency ω0 and power Pdet incident on a photo-

detector is frequency-independent and given by

SSN
PP =

2h̄ωoPdet

ηqe
, (A42)

where the quantum efficiency ηqe (=0.84) is linked to the photodiode responsivity R (=1 A/W) via

R =
eηqe

h̄ωo

. (A43)
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In our balanced detection scheme, we consider the shot noise of the difference photocurrent of the two detectors. Since photon

annihilation at the two detectors is uncorrelated, the total shot noise is given by the incoherent sum of the two individual power-

spectral-densities, such that

SSN
PP =

2h̄ωoPtot

ηqe
(A44)

with Ptot = Pdet1 +Pdet2 being the sum of the individual powers hitting the two photodiodes. In our balanced detection scheme,

Pdet1 = Pdet2 and Ptot = 2T ηinPin. While the balanced detection scheme used in our experiment is beneficial towards the suppres-

sion of technical laser amplitude noise, it hence comes with the disadvantage of introducing more shot noise into the system.

In this experiment, the noise-equivalent power corresponding to shot noise is 6.1 pW/
√

Hz. The noise-equivalent acceleration

corresponding to this noise background is given by

aSN(ω) =
√

SSN
aa =

1
∣

∣

dT
d∆

∣

∣ηinPingOM

1

|χ(ω)|

√

SSN
PP (A45)

=
ω0

(1−Td)QogOM

1

|χ(ω)|

√

2h̄ωo(1+Td)

ηqeηinPin

. (A46)

With the values given above, this yields aSN = 8.9 µg/
√

Hz around DC.

3. Detector noise

The electronic detector noise is usually quantified by the noise-equivalent-power (NEP), which for the Newport 2117 detector

and the transimpedance gain setting we use is on the order of 2.8 pW/
√

Hz. The optical noise power-spectral-density then is

SNEP
PP (ω) = NEP2. (A47)

In analogy to eq. (A46), the NEA corresponding to electronic detector noise can be derived as

aNEP =
ωo

(1−Td)QogOMηinPin

1

|χ(ω)|NEP. (A48)

Here, this is found to be aNEP = 4.1 µg/
√

Hz at DC.

4. Backaction noise

The extra noise aadd added by the optical field mentioned above arises from optical noise that exerts a random force on the

mechanical oscillator via radiation pressure. The optical noise arises from classical amplitude noise and from intrinsic shot

noise. In the following, we consider only quantum back-action noise aBA arising optical shot noise. With h̄gOM being the force

exerted per photon and for ncav photons in the cavity, the random acceleration created by optomechanical back-action has a

power spectral density of [22]

SBA
aa = 2

(h̄gOM)2

m2
ncav

4

κ
, (A49)

resulting in a noise-equivalent acceleration of aBA =
√

SBA
aa = 5.6 ng/

√
Hz. Here, owing to the low quality factor of the optical

cavity and the low mechanical frequency, the shot noise radiation pressure force is approximately white noise for frequencies

of relevance near the mechanical frequency. Note also that we are using single-sided PSDs, hence double the value of the

(approximately) symmetric double-sided PSD. This value is much smaller than the acceleration noise created by the other

sources discussed previously. The frequency-dependent displacement noise created by quantum back-action is

SBA
xx (ω) = 2

(

2h̄gOM

m

)2
ncav

κ
|χ(ω)|2 (A50)

On the mechanical resonance, and using eq. (A13), this yields

SBA
xx (ωm) = 2

(

2h̄gOMQm

mω2
m

)2
1−√

Td

κ2

Pin

h̄ωc

, (A51)



15

FIG. A4: Frequency response of acceleration noise and power-scaling. a, Frequency dependent contributions of different noise sources to

the noise-equivalent-acceleration (NEA). For this calculation, we used the same parameters as for the device shown in Fig. 2. b, Dependence

of the DC-NEAs as function of incident laser power. The dashed vertical line indicates the optical power used in measurements of Figs. 2b

and 3.

resulting in
√

SBA
xx (ωm) = 23 fm/

√
Hz for the device and experimental conditions described in Figs. 2 and 3 (Pin = 116 µW).

This should be compared to the fundamental standard quantum limited displacement noise given by

SSQL
xx (ω) = SSQL

aa |χ(ω)|2 (A52)

=
2h̄ωmγm

m
|χ(ω)|2, (A53)

which on resonance has the simple form

SSQL
xx (ωm) = x2

zpm

4

γm

, (A54)

with the zero-point motion given by

xzpm =

√

h̄

2mωm

. (A55)

For the device and experimental conditions described in Figs. 2 and 3, this yields an on-resonance SQL of

√

S
SQL
xx = 2.8 fm/

√
Hz.

5. General discussion

The dashed lines in Fig. 2b show the contributions of these noise terms to the PSD of the balanced photo-detector output,

where we neglected back-action noise. Figure A4a shows the corresponding frequency-dependent noise-equivalent acceleration

values corresponding to the different noise terms for the device studied here. Here, we include aBA, which can be seen to only

contribute negligibly to the NEA of the device. While ath (green) and aBA (gold) are frequency-independent, the NEAs of photon

shot noise aSN (red) and electronic detector noise aNEP (cyan) are colored by the frequency-dependent response of the oscillator

χ(ω).
While thermal noise arises as a fundamental property of a mechanical oscillator in contact with a heat bath at temperature T ,

the contributions of shot noise and detector noise are dependent on the efficiency of the optomechanical transduction mechanism.

From eq. (A46) and eq. (A44), one can see that aSN ∝ P
−1/2

in , while from eq. (A48) it follows that aNEP ∝ P−1
in . Similarly, back

action noise scales with the square-root of the number of photons in the cavity: aBA ∝ P
1/2

in . For illustration, Fig. A4b shows the

relative contributions of the individual noise terms at DC (ω = 0) as function of incident power. Here, we include the effects of

thermo-optomechanical back-action on the mechanical susceptibility, as discussed in appendix H. The thermal noise background

is not affected by cooling of the mechanical mode, since it follows from eq. (A37) that a2
th ∝ Teffγm = const under back-action
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damping/cooling of the mechanical mode. The roll-off of shot noise and detector noise for pump powers above 10 mW arises

from the decrease of the mechanical mode frequency ω ′
m due to the optomechanical spring effect. This results in an increase of

the DC acceleration sensitivity χ(0) = 1/ω ′
m

2
and thereby a reduction of the corresponding acceleration noise floors according

to eqs. (A46) and (A48).

As mentioned previously, for the power used in the experiment, the NEA is limited by photon shot noise. For two orders

of magnitude higher pump powers, the NEA starts being dominated by thermal noise of the test-mass oscillator. Alternatively,

according to eq. (A46), thermal-noise limited detection can be achieved by increasing gOM by one order of magnitude.

Appendix J: Linear Dynamic Range

A key requirement for any inertial sensor is linear response over a reasonable dynamic range. To check the linearity of the

response of the accelerometer presented in the text, we varied the amplitude of a sinusoidal signal sent to the shear piezo at

9.92 kHz and recorded the voltage corresponding to the peak height of the transduced modulation tone – shown in blue bullets

in Fig. A5. The sensor behaves linearly over a dynamic range of 41 dB, with the tone vanishing into the shot noise floor for

an applied acceleration of ≈ 10 µg at a resolution bandwidth of 1 Hz. The green bullets in Fig. A5 show data from a different

device with similar geometry but slightly lower mechanical Q-factor, which exhibits a linear response over 49 dB. This particular

measurement was limited by the maximum output voltage of the function generator. Ultimately, however, the linear dynamic

range ends when motion of the test mass shifts the optical resonance by a magnitude comparable to the optical cavity linewidth.

For this device, this is expected to occur for accelerations of ∼ 50 g for frequencies below ∼ 25 kHz.

FIG. A5: Demonstration of large linear dynamic range of typical devices. While varying the amplitude of the acceleration applied with the

calibrated shake table at 9.92 kHz, we measure the optical signal transduced via the mechanical mode. The blue bullets show the transduced

signal of the device presented in the text using the voltage corresponding to the peak height of the modulation tone on the ESA spectrum,

which exhibits linear response over 40 dB. The inset shows the corresponding PSD spectra from the ESA for modulation tones between 0.1 g

and 12.8 µg, taken at a resolution bandwidth of 1 Hz. The green bullets show data obtained from a different device with a larger thermal noise

background but very similar optomechanical coupling using the lock-in scheme depicted in Fig. 2a, which exhibits linear response over 49 dB

– limited by the maximum voltage output of our function generator, which corresponds to an acceleration of 8 g. The black lines are linear fits

to the data.
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