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ABSTRACT 

 

The mammalian brain is composed of millions to billions of cells that are organized into 

numerous cell types with specific spatial distribution patterns and structural and functional 

properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a 

catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution 

transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was 

created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-

cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved 

transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically 

organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 

supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and 
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immature neuronal cell types across the brain and identified a high degree of correspondence 

between transcriptomic identity and spatial specificity for each cell type. The results reveal 

unique features of cell type organization in different brain regions, in particular, a dichotomy 

between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet 

highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types 

that are more closely related to each other. We also systematically characterized cell-type 

specific expression of neurotransmitters, neuropeptides, and transcription factors. The study 

uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide 

expression and co-expression patterns in different cell types across the brain, suggesting they 

mediate a myriad of modes of intercellular communications. Finally, we found that transcription 

factors are major determinants of cell type classification in the adult mouse brain and identified a 

combinatorial transcription factor code that defines cell types across all parts of the brain. The 

whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference 

atlas and a foundational resource for deep and integrative investigations of cell type and circuit 

function, development, and evolution of the mammalian brain.  

 

 

INTRODUCTION 

 

The mammalian brain is arguably the most complex system in life, controlling a wide variety of 

organism’s activities including vitality, homeostasis, sleep, consciousness, sensation, innate 

behavior, goal-directed behavior, emotion, learning, memory, reasoning, and cognition. These 

activities are governed by highly specialized yet intricately integrated neural circuits in the brain. 

These circuits are composed of millions to billions of neurons and non-neuronal cells 

interconnected through a vast array of synaptic and non-synaptic intercellular communication 

machineries and molecules. These brain cells can be classified into numerous cell types based on 

various phenotypic measurements1-5. To understand how the variety of brain functions emerge 

from this complex system, it is essential to gain comprehensive knowledge about the cell types 

and circuits that constitute the molecular and anatomical architecture of the brain.  

 

The anatomical architecture of the mammalian brain has been defined by its developmental plan 

and cross-species evolutionary ontology6-8. The entire brain is composed of telencephalon, 

diencephalon, mesencephalon (midbrain, MB), and rhombencephalon (hindbrain, HB). 

Telencephalon consists of five major brain structures: isocortex, hippocampal formation (HPF), 

olfactory areas (OLF), cortical subplate (CTXsp) and cerebral nuclei (CNU). The first four brain 

structures, isocortex, HPF, OLF and CTXsp, constitute the developmentally derived pallium 

structure and are also collectively called cerebral cortex, whereas CNU derives from subpallium 

and is further divided into striatum (STR) and pallidum (PAL). Diencephalon consists of 

thalamus (TH) and hypothalamus (HY). Together telencephalon and diencephalon are also 

collectively referred to as forebrain. Hindbrain (HB) is divided into pons (P), medulla (MY), and 
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cerebellum (CB). Within each of these major brain structures, there are multiple regions and 

subregions, each comprising many cell types.  

 

Functionally, the mammalian brain is organized into four major systems: sensory, motor, 

cognitive and behavioral state8. Each of these systems contains multiple subsystems, which are 

organized in parallel and/or hierarchical manner across the above brain structures. The sensory 

system receives and processes sensory information from the periphery via multiple parallel 

ascending subsystems specific to different sensory modalities, i.e., visual, auditory, olfactory, 

taste, somatic, visceral, hormonal, and nociceptive. The motor system controls body function 

through the somatic, autonomic, and neuroendocrine subsystems. The motor system is generally 

organized in a hierarchical manner, with pools of motor neurons as the outputs that are controlled 

by several levels of central pattern generators, initiators, and controllers across the upstream 

regions of the brain. The cognitive system drives thinking and voluntary control of behaviors. It 

is also hierarchically organized, with cerebral cortex at the top followed by striatum and 

pallidum, all three levels interconnected via sequential descending projections. The cerebral 

cortex consists of multiple functionally specialized areas that form parallel circuit pathways with 

downstream regions. The behavioral state system comprises a series of localized cell groups, 

distributed in the ventral parts of the brain from cerebral nuclei to medulla, that control sleep and 

wakefulness and modulate behavioral states, often through the release of modulatory 

neurotransmitters and neuropeptides.  

 

Cell types are considered the basic functional units of metazoan organs including the brain4, and 

they exhibit extraordinary diversity in their molecular, anatomical, physiological and functional 

properties. Significant progress has been made in characterizing these cellular properties and 

using them to classify cell types throughout the brain1,3-5,9,10. Efforts have been dramatically 

accelerated by the advance of high-throughput single-cell genomics technologies over the past 

decade4,5. Single-cell transcriptomics by single-cell or single-nucleus RNA sequencing (scRNA-

seq or snRNA-seq) provides unprecedented depth of profiling and scalability, enabling 

comprehensive quantitative analysis and classification of cell types at scale4,5,11-13. This approach 

has been used to categorize cell types from many different regions of the mouse nervous system, 

such as cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum, spinal cord, and 

retina14-29, and increasingly more in human and non-human primate brains30-38. The BRAIN 

Initiative Cell Census Network (BICCN) and the Human Cell Atlas (HCA) are representative 

community efforts using single-cell transcriptomics to create cell type atlases for the brain and 

body of human and other mammals12,39-42.  

 

These studies have revealed important organizing principles of cell types in different parts of the 

brain, such as the hierarchical organization of cell types and the coexistence of discrete and 

continuous variation4,39, as well as key gene networks related to cell type identities and 

structural/functional properties. In many cases, these studies have recapitulated previous sporadic 
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knowledge about specific cell types, and further organized cell type information in an unmatched 

systematic and comprehensive manner. Furthermore, single-cell transcriptomic studies carried 

out in developing brains43-52 and in different species30,32,38,53-57 have demonstrated that the 

transcriptomic cell type framework is a strong basis for elucidating the relationships between cell 

types that are rooted in their developmental and evolutionary origins.  

 

An essential next step is to create a comprehensive and high-resolution transcriptomic cell type 

atlas for the entire adult brain from a single mammalian species. The mouse (Mus musculus) is 

the most widely used mammalian model organism and therefore a natural first choice for a 

comprehensive definition of mammalian brain composition and architecture. To define the 

anatomical context for cell types, another critical requirement is to obtain the precise spatial 

location of each cell type using single-cell-level spatial transcriptomics analysis58-61 covering the 

entire mouse brain. In addition to describing a complete, brain-wide cell type atlas of a 

mammalian brain, this analysis will provide essential knowledge about the cell type composition 

of different regions and circuits of the brain. The result is a foundational resource for conducting 

connectional and functional studies to understand how cell types interact to form neural circuits 

and what functional roles these cell types play, and for building additional cell type atlases across 

lifespan and for other species including human, to unravel the developmental and evolutionary 

bases of cell type organization and function.  

 

As part of the BRAIN Initiative Cell Census Network (BICCN, www.biccn.org), we set out to 

build a comprehensive, high-resolution transcriptomic cell type atlas for the whole adult mouse 

brain, as a reference brain cell atlas for the neuroscience community. We generated a large-scale 

scRNA-seq dataset, with ~7 million cells profiled across the entire mouse brain using the 10x 

Genomics Chromium platform, and several multiplexed error-robust fluorescence in situ 

hybridization (MERFISH)62 datasets covering the whole mouse brain. We conducted large-scale 

computational analysis of these datasets and derived a transcriptomic cell type taxonomy and 

atlas with ~5,200 clusters organized into a hierarchical tree. The spatial locations of all the cell 

types were mapped in a cell atlas registered to the 3D Allen Mouse Brain Common Coordinate 

Framework version 3 (CCFv3)63 (Supplementary Table 1 provides the anatomical ontology 

with full names and acronyms of all brain regions). We systematically characterized the 

distributions and relationships of all neuronal and non-neuronal cell types, identifying a high 

degree of correspondence between cell-type molecular profiles and their spatial distribution 

patterns. An investigation of transcription factor genes and related modules with specific 

expression at different hierarchical levels revealed their importance in defining cell types64,65.  

 

RESULTS 

 

Creation of a high-resolution whole mouse brain transcriptomic cell type atlas 
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To create a high-resolution transcriptomic and spatial cell type atlas covering the entire mouse 

brain, we systematically generated two types of large-scale single-cell-resolution transcriptomic 

datasets for all mouse brain regions, by single-cell RNA-sequencing (scRNA-seq) and by 

MERFISH62, a spatially resolved transcriptomic method. We used the scRNA-seq datasets to 

generate a transcriptomic cell type taxonomy, and the MERFISH datasets to visualize and 

annotate the spatial location of each cluster in this taxonomy.  

 

We first generated 781 scRNA-seq libaries (using 10x Genomics Chromium v2 or v3) from 

anatomically defined, CCFv3-guided (Supplementary Table 1) tissue microdissections 

(Methods), resulting in a dataset of ~7.0 million single-cell transcriptomes (Supplementary 

Table 2, 3). We developed a set of stringent quality control (QC) metrics guided by pilot 

clustering results that informed us on characteristics of low-quality single-cell transcriptomes 

(Methods, Supplementary Table 4, Extended Data Figure 1a-c). We then conducted iterative 

clustering analysis on ~4.3 million QC-qualified cells using custom software (scrattch.bigcat 

package developed in-house). The 10xv3 and 10xv2 cells were first clustered separately, and 

then integrated with methods we developed previously28, resulting in an initial joint 

transcriptomic cell type taxonomy with 5,283 clusters (Extended Data Figure 1a).  

 

By performing all pair-wise cluster comparisons in this initial transcriptomic taxonomy, we 

derived 8,108 differentially expressed genes (DEGs, Supplementary Table 5) differentiating all 

pairs of clusters. We then designed two sets of gene panels for the generation of MERFISH data, 

with each gene panel containing a selected set of marker genes with the greatest combinatorial 

power to discriminate among all clusters. The first gene panel contained 1,147 genes and was 

used by the Zhuang lab to generate MERFISH datasets from several male and female mouse 

brains (see companion manuscript Zhang et al. for details) using a custom imaging platform. The 

second gene panel contained 500 genes (Supplementary Table 6) and was used to generate a 

MERFISH dataset from one male mouse brain at the Allen Institute for Brain Science (AIBS) 

using the Vizgen MERSCOPE platform (Extended Data Figure 2). The AIBS MERFISH 

dataset contained 59 serial full coronal sections at 200-µm intervals spanning the entire mouse 

brain, with a total of ~4.3 million segmented and QC-passed cells (Extended Data Figure 2), 

subsequently registered to the Allen CCFv3 (Methods).  

 

To hierarchically organize the transcriptomic cell type taxonomy and better delineate the 

relationship between clusters, we computationally grouped the clusters into 306 subclasses 

(Methods). We used the AIBS MERFISH dataset and one of Zhuang lab’s MERFISH datasets to 

annotate the spatial location of each subclass and each cluster. To do this, we first mapped each 

MERFISH cell to the transcriptomic taxonomy and assigned the best matched cluster identity 

along with a correlation score to each MERFISH cell (Methods). The spatial location of each 

cluster was subsequently obtained by the collective locations of majority of the cells assigned to 

that cluster with high correlation scores. We annotated each subclass with its most representative 
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anatomical region(s) and incorporated these annotations into subclass nomenclature for easier 

recognition of their identities. In this way, the high-level distribution of cell types across the 

entire mouse brain is described. As the anatomical annotations at subclass level are largely 

consistent between the Zhuang lab and the AIBS MERFISH datasets, in the subsequent sections 

of this manuscript, the AIBS MERFISH dataset is used to illustrate our results and findings.  

 

To finalize the transcriptomic cell type taxonomy and atlas, we conducted detailed annotation 

and analysis of all the subclasses and clusters. During this process, we identified and removed an 

additional set of ‘noise’ clusters (usually doublets or mixed debris, see Methods) that had 

escaped the initial QC process, resulting in a final set of 5,200 high-quality clusters containing a 

total of ~4.1 million high-quality single-cell transcriptomes (Extended Data Figure 1a,d,e). 

Thorough analysis revealed extraordinarily complex relationships among transcriptomic clusters 

and their associated regions. Thus, to organize these complex molecular relationships, we 

derived a hierarchical representation of transcriptomic cell types (Methods). Overall, we defined 

a high-resolution transcriptomic and spatial cell type atlas for the whole mouse brain with 5 

nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes, and 

5,200 clusters/types (Table 1, Figure 1, Extended Data Figure 3). Supplementary Table 7 

provides the cluster annotation, including the identity of the division, class, subclass and 

supertype assignment for each cluster, as well as full names of all levels of cell types and various 

metadata information. We provide several representations of this atlas for further analysis: a) a 

dendrogram at subclass resolution along with bar graphs displaying various metadata 

information (Figure 1a, Extended Data Figure 3d), b) UMAPs at single-cell resolution colored 

with different types of metadata information (Figure 1b-e, Extended Data Figure 3c), and c) a 

constellation diagram at subclass resolution to depict multi-dimensional relationships among 

different subclasses (Extended Data Figure 4).  

 

The high quality of the scRNA-seq data included in the final taxonomy is indicated by the high 

gene and UMI counts across the cell divisions (Extended Data Figure 3a,b). To test the 

robustness of the clustering results, we first performed 5-fold cross-validation using all 8,108 

markers as features for classification to assess how well the cells could be mapped to the cell 

types they were originally assigned to. The median classification accuracy is 0.86 ± 0.10 (median 

± SD) and 0.97 ± 0.03 for all clusters and all subclasses respectively. Next, we evaluated the 

integration between 10xv2 and 10xv3 transcriptomes. The UMAP shows good inter-mixing of 

10xv2 and 10xv3 transcriptomes overall (Extended Data Figure 5a-c). For cell types/clusters 

containing many cells, we observed separation of 10xv2 and 10xv3 data in the UMAP space, but 

not at the cluster level. For each of the 5,383 marker genes shared between 10xv2 and 10xv3 

datasets, we computed the Pearson correlation of its average expression in each cluster for all 

overlapping clusters between the 10xv2 and 10xv3 data (Extended Data Figure 5d). The 

median correlation is 0.89 ± 0.09, suggesting a majority of the marker genes show consistent 

relative expression levels across clusters between the two 10x platforms. We manually inspected 
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several genes with poor correlation and found them to have poor gene annotation or show 

relatively small variations across clusters. Lastly, we examined consistency of gene expression 

between 10xv3 and MERFISH data in corresponding cell types in a similar way and found high 

median Pearson correlation at 0.91 ± 0.15 (Extended Data Figure 5d). Most genes with low 

correlations are *Rik genes that are more likely to be poorly annotated, and the MERFISH 

probes selected for them might not work well. The MERFISH dataset can resolve the vast 

majority of clusters due to strong correlation of DEG expression between 10xv3 and MERFISH 

clusters (Extended Data Figure 5e-g). On the other hand, a few hundred pairs of clusters with 

fewer than two DEGs on the MERFISH gene panel remain unresolvable in the MERFISH data, 

and they are usually sibling clusters with indistinguishable spatial distribution.  

 

Organization of neuronal cell types across the mouse brain 

Neuronal cell types constitute a large proportion of the whole brain cell type atlas, including 4 

divisions, 27 classes (84%), 283 subclasses (92%), 1,000 supertypes (95%) and 5,101 clusters 

(98%; Table 1, Supplementary Table 7). Neuronal types are distributed across all major brain 

structures, have high regional specificity, and exhibit highly variable degrees of similarities and 

differences amongst each other. Of the 4 neuronal divisions, glutamatergic neurons from all 

pallium structures, including isocortex, hippocampal formation (HPF), olfactory areas (OLF) and 

cortical subplate (CTXsp), form a distinct “Pallium glutamatergic” division (Table 1, Figure 1a, 

Extended Data Figure 4). Similarly, a set of developmental subpallium-derived GABAergic 

neuronal subclasses, including all GABAergic neurons found in pallium structures and those in 

the subpallial cerebral nuclei (CNU), including dorsal and ventral striatum (STRd and STRv), 

lateral septal complex (LSX), and dorsal, ventral and medial pallidum (PALd, PALv and 

PALm), form a second “Subpallium GABAergic” division (Table 1, Figure 1a, Extended Data 

Figure 4). We also identified a variety of distinct neuronal subclasses, including those from the 

main olfactory bulb (MOB) and cerebellar cortex (CBX), and tentatively grouped them into a 

mixed “CBX-MOB-other neuronal” division (Table 1, Figure 1a, Extended Data Figure 4). 

Interestingly, in contrast to these highly distinct neuronal subclasses, the large set of remaining 

neuronal subclasses spanning the middle parts of the brain, including the striatum-like amygdala 

nuclei (sAMY) and pallidum (PAL) parts of CNU, thalamus (TH), hypothalamus (HY), midbrain 

(MB) and hindbrain (HB), exhibit a high degree of similarity and continuity, and hence were 

grouped into a single large “PAL-sAMY-TH-HY-MB-HB neuronal” division (Table 1, Figure 

1a, Extended Data Figure 4).  

 

To further investigate the neuronal diversity within each major brain structure, we generated re-

embedded UMAPs for subsets of neuronal types within divisions and brain structures. The 

process of subdivision and UMAP re-embedding (in 2D and 3D) was iteratively applied at more 

detailed levels to reveal fine-grained relationships between neuronal types within and between 

brain regions. We name the various re-embedded groups of cell types ‘neighborhoods’ and use 

them for visualization and analysis purposes. The results shown in Figure 2 reveal a striking 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.531121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/


 
 

correspondence between transcriptomic specificity and relatedness and spatial specificity and 

relatedness among the different neuronal subclasses.  

 

In the Pallium glutamatergic division (subclasses 1-35, total 494 clusters), each neuronal 

subclass exhibits layer and/or region specificity (Figure 2a,f). We found that the homologous 

relationships of the different subclasses of glutamatergic neurons between isocortex and HPF we 

had reported previously28 extended to other pallium structures, i.e., OLF and CTXsp. We also 

observed that the NP-CT-L6b-like (NP: near-projecting, CT: corticothalamic, L6b: layer 6b) 

subclasses emerged as a group highly distinct from the IT-ET-like (IT: intratelencephalic, ET: 

extratelencephalic) subclasses25,27,28,39. Thus, we defined two classes, IT-ET and NP-CT-L6b, for 

this division.  

 

Based on the molecular signature and regional specificity of each subclass, the Subpallium 

GABAergic division (subclasses 36-62, total 565 clusters) was divided into four classes that are 

likely related to their distinct developmental origins66,67 (Figure 2b,g): CGE GABA (containing 

cortical/pallial GABAergic neurons derived from the caudal ganglionic eminence), MGE GABA 

(containing cortical/pallial GABAergic neurons derived from the medial ganglionic eminence), 

CNU GABA (containing striatal/pallidal GABAergic neurons derived from the lateral ganglionic 

eminence, LGE, as well as from MGE and the embryonic preoptic area), and LSX GABA 

(containing lateral septum GABAergic neurons derived from the embryonic septum68).  

 

We divided the large PAL-sAMY-TH-HY-MB-HB neuronal division (containing subclasses 63-

262 and 282, excluding 77, total 3873 clusters) into several neighborhoods to illustrate cell type 

organization in each major brain structure. The PAL-sAMY-HY neighborhood contains a set of 

closely related neuronal subclasses from the entire hypothalamus24,69, as well as the sAMY and 

caudal PAL regions of CNU that are also known as the extended amygdala (Figure 2c,h). Both 

glutamatergic and GABAergic neuronal subclasses in this neighborhood exhibit a gradual 

anterior-to-posterior transition, and thus were grouped into five classes: CNU-HYa GABA, HY 

GABA, CNU-HYa Glut, HY Glut and HY MM Glut (MM standing for medial mammillary 

nucleus). Neuronal types in the most anterior part of HY, i.e., the preoptic area, are highly 

similar to neuronal types in sAMY and PAL. Some of the CNU-HYa GABA subclasses are also 

included in the Subpallium GABA neighborhood to show their relatedness and continuity with 

the striatal/pallidal types (Figure 2b,g). On the other hand, the more posterior HY GABA class 

also includes GABAergic neurons from the thalamic reticular nucleus (RT; subclass 81) and the 

ventral part of the lateral geniculate complex (LGv; subclass 126), which are closely related to 

zona incerta (ZI) neurons in HY (subclass 111), revealing a relationship of GABAergic types 

between hypothalamus and thalamus.  

 

The TH-EPI neighborhood (Figure 2d,i) contains all glutamatergic neuronal subclasses from the 

thalamus, as well as the medial and lateral habenula (MH and LH) which collectively compose 
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the epithalamus (EPI). These subclasses were grouped correspondingly into TH Glut and MH-

LH Glut classes, except for one subclass with neurons found in several posterior thalamic nuclei, 

159_SPA-SPFm-SPFp-POL-PIL-PoT Glut, which belongs to the MB Glut class, revealing a 

relationship of glutamatergic types between thalamus and midbrain.  

 

Finally, we show an example large neighborhood (Figure 2e,j) containing all the glutamatergic 

and GABAergic neuronal subclasses from MB and HB, which contains pons (P), medulla (MY) 

and cerebellum (CB; thus also including the CBX subclasses from the CBX-MOB-other 

neuronal division). In this highly complex neighborhood, we defined the following 10 classes 

based on transcriptomic relatedness and regional specificity: MB Glut, P Glut, MY Glut, MB 

GABA, P GABA, MY GABA, MB dopa, MB-HB Sero, CB GABA and CB Glut 

(Supplementary Table 7). We found that the glutamatergic and GABAergic subclasses, 189 and 

220, from the cerebellar nuclei (CBN) are more closely related to those from the medulla than 

those from the cerebellar cortex.  

 

The analysis presented thus far provides a high-level overview of the extraordinary complexity 

of neuronal cell types across the brain. These data and the whole brain atlas will allow for more 

in-depth analyses to understand the relationship of neuronal types in different brain structures. 

Here, we also highlight a small set of remarkable neuronal types (defined at subclass level) that 

are transcriptomically highly distinct from all the other subclasses (Extended Data Figure 6, 

also marked with orange dots in Figure 1a and with red circles in Extended Data Figure 4). 

These highly distinct neuronal subclasses are found in all parts of the brain, each at a very 

specific anatomical location (Extended Data Figure 6). For example, subclass 21 is a L4 

neuronal type with mixed IT and ET transcriptomic signatures in the retrosplenial cortex (RSP). 

Subclass 35 is a highly distinct IT-ET type located in the nucleus of the lateral olfactory tract 

(NLOT). Subclass 79 is located in the triangular nucleus of septum (TRS) specifically. Subclass 

125 is located in the lateral hypothalamic area (LHA) and specifically expresses the neuropeptide 

gene Pmch. Subclass 230 is a superior colliculus (SC) glutamatergic type highly distinct from all 

the other SC neuronal types. Subclasses 234 and 235 are located in the posterodorsal tegmental 

nucleus (PDTg) specifically. Subclass 238 is primarily located in interpeduncular nucleus (IPN). 

Subclass 252 is specific to inferior olivary complex (IO). Subclass 263 is predominantly located 

in pontine gray (PG). Subclass 271 is the hypothalamic Gnrh1 neuronal type developmentally 

originated from the embryonic olfactory epithelium70. Subclass 281 is the cerebellar Purkinje 

neurons.  

 

Neurotransmitter identities and neuropeptide expression patterns in neuronal cell types 

We systematically assigned neurotransmitter identity to each cell cluster based on the expression 

of canonical neurotransmitter transporter genes (Figure 3, Extended Data Figure 3c-d, 

Supplementary Table 7), i.e., Slc17a7 (also known as Vglut1), Slc17a6 (Vglut2) and Slc17a8 

(Vglut3) for glutamatergic, Slc32a1 (Vgat) for GABAergic, Slc6a5 for glycinergic, Slc18a3 
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(Vacht) for cholinergic, Slc6a3 (Dat) for dopaminergic, Slc6a4 (Sert) for serotonergic, and 

Slc6a2 (Net) for noradrenergic. The only exception was the use of the Hdc gene to identify 

histaminergic cells since there is no known high-affinity reuptake system for histamine71. We 

used a stringent expression threshold of log(CPM) > 3.5 of these genes to assign 

neurotransmitter identity to each cluster. We also used two commonly used marker genes, Chat 

for cholinergic neurons and Dbh for noradrenergic neurons, to further qualify or disqualify the 

assignments. For example, we found a few clusters that are Slc6a2-positive but Dbh-negative, 

and thus did not assign them the noradrenergic identity.  

 

Based on these marker genes, the majority of neuronal clusters express a single neurotransmitter, 

either glutamate or GABA. Many GABAergic neuronal clusters in MB and HB co-express 

glycine. We identified 49 clusters with glutamate-GABA dual-transmitters (Glut-GABA), most 

of which utilize Slc17a6 or Slc17a8 as the glutamate transporter (Supplementary Table 7, 

Figure 3a-d,i,j). These clusters are widely distributed in different parts of the brain. They 

include 4 clusters in the isocortex and hippocampus and 3 clusters in globus pallidus, internal 

segment (GPi), which likely correspond to previously well-characterized glutamate-GABA co-

releasing neuronal types in these regions72,73. They also include a few clusters each in the cortical 

amygdala areas, STRv, ventral PAL, posterior HY, several MB areas including the ventral 

tegmental area (VTA), pedunculopontine nucleus (PPN) and interpeduncular nucleus (IPN), 

areas in pons such as superior central nucleus raphe (CS), nucleus raphe pontis (RPO) and 

laterodorsal tegmental nucleus (LDT), etc. (Figure 3a-d,i,j). Interestingly, except for the 3 

glutamate-GABA clusters that form an exclusive subclass in GPi, the other Glut-GABA clusters 

are present in subclasses that also contain closely related single-neurotransmitter (glutamate or 

GABA) clusters (Figure 3a-d, Supplementary Table 7), and our QC process determined that 

this was not due to data quality issues (doublets or low-quality cells).  

 

We also systematically identified all clusters producing modulatory neurotransmitters (Figure 

3e-j, Supplementary Table 7). Cholinergic neurons74,75 are found mainly in subclass 49 in the 

ventral PAL (10 clusters), but also include 1 cluster in LSX, 7 clusters in MH, 6 clusters in PPN 

and cuneiform nucleus (CUN), 6 clusters in dorsal motor nucleus of the vagus nerve (DMX), and 

3 clusters scattered in other subclasses in MY. We also found Slc18a3 expression in several 

clusters in the Vip GABA subclass, but its expression at cluster level did not cross our threshold 

to label these clusters as cholinergic. Cholinergic neurons often co-express glutamate (18 out of 

34 clusters) or sometimes GABA (5 out of 34).  

 

Dopaminergic neurons18 are found predominantly in subclass 250, which is the sole member of 

the MB Dopa class, located in substantia nigra, compact part (SNc), VTA and midbrain raphe 

nuclei (RAmb) areas. This subclass displays the most heterogeneous neurotransmitter content, 

consistent with previous findings76. It contains 34 dopaminergic clusters, as well as 9 

glutamatergic, GABAergic or dual glutamate-GABA clusters. Some (18) of the 34 dopaminergic 
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clusters also co-express glutamate, or GABA, or both glutamate and GABA. Dopaminergic 

neurons are also found in 6 clusters in arcuate hypothalamic nucleus (ARH) and ventral 

premammillary nucleus (PMv) of HY (co-expressed with GABA or glutamate) and in 4 clusters 

in MOB (co-expressed with GABA).  

 

Serotonergic neurons19 all belong to the distinct MB-HB Sero class, which contains a single 

subclass, 146. This subclass consists of 19 serotonergic clusters and 13 glutamatergic (Slc17a8) 

clusters that are all closely related to each other. Some (14) of the 19 serotonergic clusters also 

co-express glutamate (Slc17a8). All these clusters reside in the various raphe nuclei within MB 

or MY. Thus, the serotonergic neuron class/subclass is highly heterogeneous in both 

neurotransmitter content and spatial localization.  

 

Noradrenergic neurons77,78 are mainly found in subclass 247. This subclass contains 9 

noradrenergic clusters and 16 glutamatergic clusters, with all but one of the noradrenergic 

clusters also co-expressing glutamate (Slc17a6). All but two clusters in this subclass are located 

in the nucleus of the solitary tract (NTS), whereas the two exceptions (one noradrenergic and one 

glutamatergic cluster) are located in locus ceruleus (LC). Histaminergic neurons are found 

exclusively in the tuberomammillary nucleus, dorsal and ventral parts (TMd and TMv) of HY (5 

clusters), two of which co-express GABA71. We found that ependymal and hypendymal cells, as 

well as monocytes may also be histaminergic (Extended Data Figure 3d).  

 

Overall, an intriguing pattern emerged where nearly all subclasses with a dominant modulatory 

neurotransmitter contain clusters expressing glutamate and/or GABA only, as well as various 

forms of co-expression, indicating a high degree of heterogeneity in neurotransmitter release and 

co-release among closely related neuronal types that may have common developmental origins. 

Again, our QC process excluded the possibility of doublet or low-quality cell contamination. 

While many of these transmitter co-release patterns had been documented previously76,79,80, our 

study defined a comprehensive set of cell types with unique and differing neurotransmitter 

content that can be tracked with marker genes.   

 

Neuropeptides are also major agents for intercellular communications in the brain81,82. We 

examined cell type-specific expression patterns of dozens of main neuropeptide genes and their 

receptors in our datasets (Supplementary Table 7). We measured the cell type specificity of 

expression of these genes using the Tau score83 and found a wide range of variation (Extended 

Data Figure 7a-b). Some neuropeptides are widely expressed in many cell types/clusters and at 

high levels (e.g., Cck, Adcyap1, Pnoc, Penk, Sst and Tac1), some are expressed at high levels in 

a moderate number of clusters (e.g., Cartpt, Nts, Pdyn, Gal, Tac2, Grp, Vip, Crh, Trh and Cort), 

whereas others are highly expressed specifically in only one or few clusters (e.g., Avp, Agrp, 

Pomc, Pmch, Oxt, Rln3, Npw, Nps, Ucn, Hcrt, Gnrh1, Gcg and Pyy; Extended Data Figure 7c-

f). More than 80% of all clusters express at least one neuropeptide gene, and there are numerous 
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co-expression combinations of different neuropeptides in many clusters, with high degrees of 

variations within subclasses (Supplementary Table 7). Our datasets provide a rich resource for 

the exploration of neuropeptide ligand/receptor interactions across the entire brain. However, we 

also note that the relationships between mRNA levels, the post-translationally processed peptide 

levels, and the functional levels are unknown for most neuropeptides, thus, it is difficult to 

predict what mRNA levels would lead to sufficient functional expression of a given neuropeptide 

(Extended Data Figure 7c-d).  

 

Non-neuronal cell types and immature neuron types across the mouse brain 

The whole-brain transcriptomic cell type atlas describes the taxonomy of non-neuronal cell 

types, classifying them into 3 divisions (Neuroglial, Vascular and Immune), 5 classes, 23 

subclasses, 45 supertypes and 99 clusters (Table 1, Supplementary Table 7), which can be 

distinguished by highly specific marker genes at all levels of hierarchy (Figure 1a, Figure 4a-b, 

Extended Data Figure 8a-f). The Neuroglial division comprises three classes, Astro-Epen, 

Oligo and OEG. The Astro-Epen class is the most complex, containing ten subclasses, four of 

which represent astrocytes that are specific to different brain regions: Astro-OLF, Astro-TE (for 

telencephalon), Astro-NT (for non-telencephalon) and Astro-CB, while the other six subclasses 

are astrocyte-related cell types: astroependymal cells, ependymal cells, tanycytes, hypendymal 

cells, choroid plexus (CHOR) cells, and Bergmann glia (Figure 4a-d). The Oligo class contains 

two subclasses, oligodendrocyte precursor cells (OPC) and oligodendrocytes (Oligo). The Oligo 

subclass is further divided into four supertypes corresponding to different stages of 

oligodendrocyte maturation: committed oligodendrocyte precursors (COP), newly formed 

oligodendrocytes (NFOL), myelin-forming oligodendrocytes (MFOL), and mature 

oligodendrocytes (MOL) (Extended Data Figure 8h). The OEG class corresponds to olfactory 

ensheathing glia (OEG). The Vascular division (and class) consists of five subclasses: arachnoid 

barrier cells (ABC), vascular leptomeningeal cells (VLMC), pericytes (Peri), smooth muscle 

cells (SMC), and endothelial cells (Endo). The Immune division (and class) is composed of five 

subclasses: microglia, border-associated macrophages (BAM), monocytes, dendritic cells (DC), 

and lymphoid cells, which contains B cells, T cells, NK cells and innate lymphoid cells (ILC).  

 

We identified transcription factors (TFs) that potentially serve as master regulators for many of 

these non-neuronal cell types (Figure 4a, Extended Data Figure 8d), many of which were well 

documented in the literature29,84-88. For example, Sox2, a well-known radial glia marker, is 

widely expressed in neuroglia, Sox9 is specific to the Astro-Epen class, Sox10 is specific to the 

Oligo class, Foxd3 and Hey2 are specific to OEG, Foxc1 is specific to the Vascular division, and 

Ikzf1 is specific to the Immune division. Within each division and class, additional TFs mark 

finer groupings29 (Extended Data Figure 8d-f). For example, Astro-TE cells express Foxg1 and 

Emx2, which are key regulators of neurogenesis in the telencephalon89,90. Likewise, Astro-CB 

cells express Pax3, which is also highly expressed in the CB GABAergic neurons. These 

observations are consistent with the notion that astrocytes and neurons are derived from common 
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regionally distinct progenitors and share the common TFs for spatial patterning. Among other 

astrocyte-related subclasses, Nkx2-2 is specific to Bergmann glia, Rax to tanycytes, Myb to 

ependymal cells, Spdef to hypendymal cells, and Lef1 to CHOR. Some TFs are widely expressed 

but display specific expression patterns among related cell types. For example, Tshz2 has much 

higher expression in Astro-OLF than in other astrocytes (Extended Data Figure 8d). 

 

The spatial distribution of all non-neuronal cell types in the mouse brain was confirmed and 

further refined by the MERFISH data. For example, we observed an inside-outside spatial 

gradient in MOB among the four OEG clusters (Extended Data Figure 8g). In addition to being 

widely distributed across the brain, oligodendrocytes are also highly concentrated in white-

matter fiber tracts (Extended Data Figure 8h-j). In contrast, the 1024 OPC NN_2 supertype is 

found mostly in gray-matter areas (Extended Data Figure 8i).  

 

Of all the non-neuronal cell types, the Astro-Epen class exhibits the most diverse spatial 

patterns91,92. Region-specific astrocytes Astro-OLF, Astro-TE, Astro-NT and Astro-CB are 

arranged in the UMAP in an anterior-to-posterior order (Figure 4c), consistent with their spatial 

patterning. Astro-TE cluster 5115, located in the lateral ventricle bordering rostral dorsal 

striatum, and clusters belonging to the Astro-OLF subclass (5119, 5120, 5118, 5116 and 5117) 

match the path of the rostral migratory stream (RMS)93-95. The trajectory of these astrocyte 

clusters on the UMAP matches well with the corresponding spatial gradients. Astro-TE cluster 

5110 is located at the pia of telencephalon (Figure 4c) and has high expression of Gfap 

(Extended Data Figure 8e), consistent with the definition of interlaminar astrocytes (ILA)96. 

Other clusters (5104, 5105, 5106, 5107) in the Astro-NT subclass are also localized at the pia 

with high expression of Gfap, which we hypothesize to be ILAs outside telencephalon. Besides 

Gfap, these clusters also have specific expression of Atoh8 and Myoc (Extended Data Figure 

8e). Other astrocyte-related subclasses, Astroependymal, Tanycyte, Hypendymal, Ependymal, 

and CHOR, line different parts of the ventricles throughout the brain (Figure 4d).  

 

VLMC types29,97 also show highly specific spatial and colocalization patterns. Clusters 5174, 

5175, 5176 and 5177 are located at the pia, in contrast to clusters 5179 and 5178 which are 

scattered widely in the brain (Figure 4e). Interestingly, we found highly specific spatial 

colocalization between VLMC cluster 5181 and Tanycyte clusters (Figure 4f), between VLMC 

cluster 5180 and Ependymal/CHOR clusters (Figure 4g), and between pia specific VLMC 

clusters and ILAs (Figure 4h). Marker genes for VLMC clusters are enriched in extracellular 

matrix components and transmembrane transporters, including collagens and solute carriers with 

distinct cell type specificity (Extended Data Figure 8f). Interactions between various VLMC 

and astroependymal cell clusters, together with arachnoid barrier cells (ABC), likely regulate the 

movement of nutrients across the blood brain barrier97. The tanycyte-interacting VLMC cluster 

5181 does not express many markers present in other VLMC types but has specific expression of 
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transmembrane genes Tenm4 and Tmtc2. This interaction may play roles in the brain-

cerebrospinal fluid (CSF) barrier at the median eminence (ME)98. 

 

Cell proliferation and neuronal differentiation continue in adulthood only in restricted areas of 

the brain99. The two main adult neurogenic niches are the dentate gyrus (DG) and the 

subventricular zone (SVZ) lining the lateral ventricles. The first gives rise to the excitatory DG 

granule cells, whereas the second produces migrating cells that follow the rostral migratory 

stream (RMS) and in the MOB differentiate into inhibitory granule cells95,100,101. We identified 

two subclasses of immature neurons, 278_MOB-STR-CTX Inh IMN and 279_DG-PIR Ex IMN, 

and grouped them with GABAergic neuron subclasses in MOB102 and glutamatergic granule 

cells in DG to form the MOB-DG-IMN class (Table 1, Supplementary Table 7, Extended 

Data Figure 4). We also uncovered relatedness between the Cajal-Retzius (CR) cells mostly 

found in HPF (subclass 280) and the MOB glutamatergic subclass (subclass 77) which are likely 

mitral and tufted cells102, and grouped them into the MOB-CR Glut class (Table 1, 

Supplementary Table 7, Extended Data Figure 4).  

 

The scRNA-seq data show a trajectory from immature neurons to mature neurons in DG, and the 

MERFISH data corroborate that the immature neurons are located in the subgranular zone of 

DG, whereas the mature neurons reside in the dentate granular cell layer (Figure 4i,j). It seems, 

however, that the scRNA-seq data might not have captured all cell states along the maturation 

trajectory based on the gaps between clusters in the UMAP. Various studies have tried to capture 

the transitional states between neural stem and neuronal progenitor cells in the DG with most 

making use of transgenic mice to isolate specific states103,104.  

 

The migrating neurons in the RMS are separated from the parenchyma by astrocytes that form 

tunnels through which the cells migrate94,105. RMS astrocytes (Figure 4c, cluster 5115 and the 

Astro-OLF subclass identified here) are molecularly distinct – they create a migration-permissive 

environment by providing soluble and non-soluble cues to the migrating neurons93,94. In this 

well-orchestrated process, the neuroblasts, in turn, prevent astrocytic processes from invading the 

RMS by secreting Slit1, which acts on astrocytic Robo receptors to repel astrocytic processes out 

of the migratory path94. Our data showed two main cell populations arising from RMS into 

MOB; clusters that populate the inner granule and mitral cell layers (Figure 4i,k, trajectory 2), 

and clusters that populate the outer glomerular layer (Figure 4i,l, trajectory 3). Immature 

neurons in the SVZ and RMS are marked by the expression of cell cycle-associated genes like 

Top2a and Mki67 (Extended Data Figure 9). As the MOB neurons exit the RMS, they express 

markers like Sox11 and S100a6 genes106, whereas the mature neurons in the MOB are marked by 

the expression of Frmd7. 

 

Transcription factor modules across the whole mouse brain 
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Transcription factors are considered key regulators of cell type identity64,65. To evaluate the 

correspondence of TF expression to transcriptomic cell types, we calculated the number of 

differentially expressed (DE) TFs between each pair of divisions, classes, subclasses, or pairs of 

clusters within a subclass (Figure 5a). We then compared cross-validation accuracy of class, 

subclass and cell type recall using classifiers built based on all 8,108 DEGs, randomly selected 

499 DEGs, or 499 TF marker genes (Supplementary Table 8, Figure 5b). The median cluster 

recall accuracy of cross-validation with TFs is between that of all DEGs and the random subset 

of DEGs. The cross-validation accuracy of subclass recall with TFs is 0.93, which is very similar 

to the accuracy with all DEGs (0.97), whereas the accuracy using the random subset of DEGs is 

much lower. The confusion matrix between the assigned and predicted subclasses in cross 

validation using classifiers trained on the 499 TF markers shows a high degree of concordance 

(Figure 5c). These results quantify the strong role of TFs in determining cell type identities.  

 

We identified a large set of TF co-expression modules (Methods) that are selectively expressed 

in specific groups of cell types at all hierarchical levels and hence may define identities of these 

groups of cell types (Figure 5d,e, Supplementary Table 8). A pallium glutamatergic specific 

module includes Tbr1 and Satb2. Immediate early genes Egr3 and Nr4a1 are also highly 

expressed in pallium glutamatergic neurons, while Fos and Fosb have more uniform expression. 

The bHLH transcription factors including Neurod1, Neurod2, Neurod6 and Bhlhe22 are widely 

expressed in many types of neurons but have highest expression in pallium glutamatergic cells. 

The Dlx1, Dlx2, Dlx5, Dlx6, Arx, Sp8 and Sp9 module is specific to GABAergic neurons in 

telencephalon, while the Gata3, Gata2 and Tal1 module is specific to GABAergic neurons in 

MB and pons. Interestingly, the latter gene module is best known as master regulator of 

hematopoietic development107, and is an example of re-purposing the same transcription factor 

module for specifying cell types in different systems. Gbx2, Shox2 and Tcf7l2 are highly 

expressed in thalamus glutamatergic neurons, while Shox2 and Tcf7l2 are also expressed in MB. 

Hox genes are specific to MY GABAergic and glutamatergic neurons. We also identified a TF 

module for the Astro-Epen cell class, including Sox9, Gli2, Gli3, and Rfx4, and several distinct 

modules for other non-neuronal cell subclasses.  

 

For most other modules, each module consisted of a few TFs that are homologs, e.g., Nfia/b/x, 

the Zic family, the Irx family, the Ebf family, En1/2, Lhx6/8, Six3/6, and Pou4f1/2/3. Some of 

these homologs are located next to each other on the same chromosome, such as Dlx1/2, Dlx5/6, 

Irx1/2, Irx3/5, Zic1/4, Zic2/5, and Hoxb2-8. These homologs are likely located within the same 

chromatin domains, regulated by the same enhancers, and have highly similar expression 

patterns. Many co-expressed homologs show subtle but interesting distinctions. Consistent with 

the well-studied roles of Hox genes in regulating A-P Axis in development108, Hoxb2/3 have 

broader expression than Hoxb4/5, and Hoxb8 has the most restricted expression pattern in 

posterior lateral MY, in the order that is consistent with their locations on the chromosome. 

While not very close on the chromosomes, Nfia/b/x regulate cell type differentiation in many 
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tissues109-111, function as homo- or hetero-dimers, and bind to largely common targets112. Similar 

interactions between homologs have been reported for many other families, such as Ebf113 and 

Irx114. Finally, we identified a set of TFs such as Meis1/2 and Nr2f1/2 that are widely expressed 

but delineate neighboring subclasses and clusters and show local spatial gradients.  

 

We further identified specific TFs that could define each node and branch in the dendrogram. 

Most subclasses could be uniquely specified by a combination of TFs located at all upper-level 

nodes, and some nodes and branches could be defined by one or just a few TFs (Extended Data 

Figure 10a). For example, transcription factor Otp marks several distinct populations in CNU, 

HY, MB and HB. We identified additional TFs to further distinguish these populations 

(Extended Data Figure 10b). Otp+ subclasses express Foxg1 in CNU and anterior HY, Ebf1, 

Ebf2, Irx2, En1 and En2 in various MB areas, and Pax3 in HB areas (Extended Data Figure 

10c). Additional TFs provide finer separation. For example, subclasses 200/201 both express 

En1/2, but Pax7 specifically in 201 and Pax8 in 202. Both subclasses are located at ventral MB 

bordering pons, but 201 is more lateral, consistent with the spatial expression pattern of Pax7 

and Pax8. Similarly, subclasses 194/195 both express Ebf1/2, but St18 specifically in 195 and 

Evx2 in 194. Subclass 195 is located posteriorly at gigantocellular reticular nucleus (GRN) in 

MY while 194 is located more anteriorly at pontine reticular nucleus (PRNr) in pons. Together, 

these TF combinations delineate all the Otp+ subclasses.    

 

While many TF homologs are co-expressed (Figure 5e), they can also show distinct expression 

patterns. We studied systematically the expression patterns of several TF families (Extended 

Data Figure 11), including forkhead box (Fox), Krüppel-like factor (Klf), LIM Homeobox 

(Lhx), NKX-homeodomain (Nkx), Nuclear Receptors (Nr), Paired box (Pax), POU domain 

(Pou), Positive Regulatory Domain (Prdm), SRY-related HMG-box (Sox), and T-box (Tbx), all 

of which have been shown to play important roles in spatial patterning, cell type specification 

and differentiation during development115-122. In each family, only the TF markers identified in 

this study are included here. Members of the same TF family evolved from common ancestors, 

have strong sequence conservation, and very similar DNA binding motifs. Revealing their 

distinct cell type specificity provides deeper insights into the evolution of these TF families. 

Particularly intriguing is the LIM Homeobox family, which can be split into multiple groups 

with complementary expression patterns that together cover most cell types in the brain. Lhx2 

and Lhx9 are co-expressed in TH and MB glutamatergic types, but Lhx2 is also specifically 

expressed in the pallium IT-ET types. Lhx6 and Lhx8 are co-expressed in some CNU/HY 

GABAergic types, but Lhx6 is also specifically in MGE types. Lhx1 and Lhx5 are co-expressed 

in HY MM, MB and HB cell types, and much more highly in GABAergic than glutamatergic 

types. Lmx1a and Lmx1b are co-expressed in HB glutamatergic and MB dopaminergic cell types, 

but Lmx1b is also specifically in MB/HB serotonergic types. Lhx3 and Lhx4 are co-expressed in 

very specific glutamatergic types in pons and pineal gland.  Isl1 is widely expressed in HY/CNU, 

and much more highly in GABAergic than glutamatergic types. Interestingly, the grouping of 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.531121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Lhx members based on the gene expression patterns exactly matches their phylogeny tree based 

on their coding sequences121 and aligns with the sub-family definition.  

 

Brain region-specific cell type features 

Characterizing the global features of cell type composition of regions across the brain 

complements our study of cell type diversity. We found that the numbers of cell types/clusters 

identified in different regions do not correlate with the numbers of cells profiled (Figure 6a). 

Rather, region-specific characteristics dominate. The hypothalamus, midbrain and hindbrain 

regions contain the largest numbers of clusters, indicating a high degree of cell type complexity, 

consistent with these regions having many small and heterogeneous subregions. Thalamus and 

cerebellum, on the other hand, contain the smallest numbers of clusters, suggesting lower 

complexity. Surprisingly, despite orders of magnitude more cells profiled in the pallium due to 

the many subregions contained within it (including isocortex, HPF, OLF and CTXsp, each 

containing multiple subregions) and its overall 4-15× larger volume compared to other major 

brain structures (Supplementary Table 1), we found an intermediate number of clusters for the 

entire pallium, similar to the other telencephalic structure, the subpallial CNU (Figure 6a).  

 

The numbers of all genes or all transcription factors detected above a threshold per neuronal 

cluster are similar across all brain structures. However, when examining the homeobox TF gene 

family specifically, more homeobox TFs per neuronal cluster are detected in HB compared to all 

other structures, consistent with the unique roles these TFs play in hindbrain development108 

(Figure 6b). We calculated the numbers of DEGs between each pair of clusters within a brain 

region, divided the numbers into nine quantiles based on similarities (i.e., higher similarity 

would yield fewer number of DEGs) and plotted their distribution by quantiles (Figure 6c). 

Interestingly, we found that in regions with larger numbers of clusters, i.e., HY, MB and HB, 

their clusters are more similar to each other within each region, suggesting that cell types in these 

regions have lower diversity and are less hierarchical. In contrast, in regions with smaller 

numbers of clusters, i.e., CB, TH and Pall, there are wide differences in similarities between cell 

types, thus, cell types in these regions may be more diverse and hierarchical. CNU exhibits an 

intermediate level of diversity. The results show that HY, MB and HB have more numerous cell 

types, but the cell types are more like each other. We also calculated the 3D spatial span of each 

cluster based on the MERFISH dataset and aggregated the spans of all clusters within each brain 

region (Figure 6d). Each region shows its own unique characteristics, with clusters in pallium 

having much larger spans suggesting sharing across subregions, and clusters in HY having much 

smaller spans suggesting more restricted localization.  

 

In addition to regional specificity of cell types, we also observed continuity across major brain 

regions by identifying a specific set of cell types that are shared or transitioning between brain 

regions (Figure 6e-g). For example, cells belonging to glutamatergic subclasses 12, 98 and 99 

are found in both pallial OLF (e.g., cortical amygdala area, COA) and subpallial sAMY (e.g., 
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medial amygdala nucleus, MEA) regions. The GABAergic subclass 46 contains neurons in both 

isocortex (the Sst Chodl cells25,28) and dorsal and ventral striatum (STRd and STRv). Subclass 54 

is shared between STR and PAL. Subclass 56 is a transitional type between LSX and PAL. 

Subclasses 86 and 92 are shared between sAMY and PAL. GABAergic subclasses 102-105 and 

glutamatergic subclasses 128 and 129 are shared between PAL and anterior HY. Subclass 149 is 

transitional between HY and MB. Glutamatergic subclasses 158 and 159 and GABAergic 

subclasses 213 and 214 are transitional between TH and MB. Glutamatergic subclasses 153 and 

154 and GABAergic subclasses 201, 209, 210, 223 and 237 are transitional between MB and 

pons.  

 

We investigated sex differences in the whole mouse brain transcriptomic cell type atlas. We 

identified 28 clusters across 13 subclasses with a skewed distribution of cells derived from the 

two sexes (Figure 1a, Supplementary Table 7). Of these, 5 are small, sex-specific clusters: 

clusters 211, 1402, 2536 and 2538 are male-specific and cluster 2207 is female-specific. The 23 

sex-dominant clusters include 1404, 2058, 2062, 2065, 2088, 2089, 2154, 2196, 2204 and 3612, 

which contain mostly cells from female donors, and clusters 1396, 1407, 1409, 1781, 1843, 

2048, 2057, 2061, 2150, 2195, 3359, 3716 and 3952, which contain mostly cells from male 

donors. Based on the MERFISH data, these clusters mostly reside in specific regions of PAL, 

sAMY, HY and HB.  

 

Within the whole mouse brain scRNA-seq dataset, we also collected a complete subset of data 

covering all brain regions from the dark phase of the circadian cycle (Supplementary Table 2, 

total 1,121,542 10xv3 cells). All the dark-phase transcriptomes were included in the overall 

clustering analysis. In all but one subclass, they are found commingled with the corresponding 

light-phase transcriptomes (the exception being subclass 253, with only 22 cells that are all from 

the light phase) (Extended Data Figure 3, Supplementary Table 7). Out of all 5,200 clusters, 

there are 271 clusters that do not contain dark-phase cells, while none contain dark-phase cells 

only. Detailed gene expression analysis at class and subclass levels revealed widespread 

expression differences of canonical circadian clock genes between the light and dark phases 

(Extended Data Figure 12). Across many neuronal and non-neuronal classes and subclasses 

throughout the brain, nearly all clock genes show consistently higher expression levels in the 

dark phase than the light phase, except for Arntl which displays an opposite pattern. 

Interestingly, the 283_Pineal Crx Glut subclass, which is found located in the dorsal part of the 

third ventricle and on top of superior colliculus (SC) in the MERFISH data and likely represents 

the pinealocytes that evolved from photoreceptor cells and secret melatonin123, has particularly 

robust circadian gene expression fluctuations (Extended Data Figure 12b,c). Furthermore, in 

the 82_SCH Gaba subclass, which is specific to the suprachiasmatic nucleus (SCH), the 

circadian pacemaker of the brain, most clock genes (e.g., Per1, Per3, Dbp, Nr1d1, Nr1d2) have 

higher levels of expression in the light phase than the dark phase, suggesting that the pacemaker 

cells are at a different phase of the circadian cycle of gene expression from the rest of the brain, 
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consistent with previous findings124 (Extended Data Figure 12b,c). Intriguingly, the vascular 

297_ABC NN subclass also displays a similar phase shift. These results suggest that our whole 

mouse brain transcriptomic cell type atlas also captured circadian state-dependent gene 

expression changes. While supervised analysis can reveal these changes, our cell type 

classification is not significantly affected by the different circadian states.  

 

DISCUSSION 

 

In this study, we created a comprehensive, high-resolution transcriptomic cell type atlas for the 

whole adult mouse brain based on the combination of two whole-brain-scale datasets: a scRNA-

seq dataset of ~7 million cells and a MERFISH dataset of a similar scale (~4.3 million cells from 

the AIBS MERFISH brain). We used ~4.1 million high-quality single-cell transcriptomes after 

stringent QC to create a transcriptomic cell type taxonomy. We used the MERFISH data, which 

were generated using marker genes derived from the whole-brain transcriptomic taxonomy, to 

annotate the spatial location of each subclass and each cluster in the taxonomy. We then built a 

hierarchically organized transcriptomic and spatial cell type atlas with five nested levels: 7 

divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters (Figure 1). The 

neuronal cell type composition in each major brain structure were systematically analyzed 

(Figure 2) and distinct features in different brain structures identified (Figure 6). We discovered 

many sets of neuronal types with varying degrees of similarity with each other, including 

transitional neuronal types across regions as well as highly distinct neuronal types. We also 

systematically analyzed all divisions of non-neuronal cell types as well as immature neuronal 

types present in the adult brain, and identified their unique spatial distribution and spatial 

interaction patterns (Figure 4). Finally, we systematically characterized cell-type specific 

neurotransmitters, neuropeptides, and transcription factors, and discovered unique characteristics 

for each as discussed below. This large-scale study allowed us to delineate several principles 

regarding cell type organization across the whole mouse brain. It provides a benchmark reference 

cell type atlas as a resource for the community that will enable many more discoveries in the 

future.  

 

One of the most striking findings from our study is the high degree of correspondence between 

transcriptomic identity and spatial specificity. Every subclass (and all supertypes and many 

clusters within each) has a unique and specific spatial localization pattern within the brain. 

Furthermore, the relative relatedness between transcriptomic types (as revealed in 2D and 3D 

UMAPs) is strongly correlated with the spatial relationship between them. Transcriptomically 

related cell types are often found in the same region, or in some cases in related regions that have 

a common developmental origin. Transitioning cell types in the transcriptomic space are also 

found crossing regional boundaries. We believe that the strong correspondence between 

transcriptomic and spatial specificity and relatedness indicates the importance of anatomic 

specialization of cell types and lends strong support to the robustness and validity of our 
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transcriptomics-based cell type classification. Given that spatial organization of the brain is laid 

out during development, we further hypothesize that developmental origins and relationships 

may be inferred from the adult stage transcriptomic profiles of the cell types.  

 

Another striking finding is the distinct features of cell type organization between the major brain 

structures (Figure 6). The anterior and dorsal brain structures, including olfactory areas, 

isocortex, hippocampal formation, dorsal striatum, thalamus, and cerebellum, contain cell classes 

and types that are highly distinct from the other parts of the brain. Cell types in these structures 

also tend to be more widely distributed, often shared between neighboring regions or subregions. 

In contrast, cells from the ventral part of the brain, including striatum-like amygdala nuclei, 

ventral pallidum, hypothalamus, midbrain, pons and medulla, form numerous small clusters that 

are closely related to each other. And these cell types often have restricted spatial localization, 

forming the small nuclei characteristic of these regions. This dichotomy between the roughly 

dorsal and ventral parts of the brain may reflect the different evolutionary histories of these brain 

structures.  

 

There are several remarkable differences between neuronal and non-neuronal cell types. While 

neuronal types constitute the vast majority of cell types in the brain and exhibit high regional 

specificity, non-neuronal types are generally more widely distributed, except for astrocytes 

which have multiple subclasses with regional specificity. However, even for those widely 

distributed non-neuronal types, at the cluster level we observed a great degree of spatial 

specificity, especially for astrocytes, ependymal cells, tanycytes and VLMCs, indicating specific 

neuron-glia and glia-vasculature interactions (Figure 4a-h). We also identified several groups of 

immature neuronal types and could infer their trajectories to mature neuronal types in olfactory 

bulb and dentate gyrus based on their spatial localization and transitioning gene signatures 

(Figure 4i-l).  

 

As example case studies, we examined the discovered diversity in neurotransmitter and 

neuropeptide expression in cell types across the brain. We found a diverse set of neuronal 

clusters with glutamate-GABA dual transmitters from many brain regions (Figure 3a-d). We 

identified all cell types expressing different modulatory neurotransmitters and found that they 

often co-release glutamate and/or GABA. Intriguingly, the neuromodulatory cell types are 

usually not completely segregated from other neuronal types, but often have closely related 

glutamatergic and/or GABAergic clusters within the same subclass, showing a high degree of 

heterogeneity in neurotransmitter content in these cell populations (Figure 3e-h). Our 

assignment of neurotransmitter types based on the most specific transporter genes is 

conservative; there may be even more diversity in neurotransmitter co-release patterns if 

alternative transmitter release routes are considered76,79,80. Similarly, there is a wide spectrum of 

expression patterns among the different neuropeptide genes, some widely expressed in many cell 

types while others highly specific to one or few cell types (Extended Data Figure 7). 
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Furthermore, there are myriad co-expression combinations of two or more neuropeptide genes in 

many neuronal clusters (Supplementary Table 7). These results support the extraordinary 

diversity in intercellular communications in the brain.  

 

We found that transcription factors are highly predictive in determining cell type classification. 

Transcription factors are known to play major roles in patterning brain regions, defining neural 

progenitor domains and specifying cell type identities during development. Here, we found that 

in the adult mouse brain, transcription factors also are major determinants in defining cell types 

across all regions of the brain. Out of the 8,108 marker genes we identified for the 5,200 cell 

clusters, 499 are TF genes. In cross-validation tests, the 499 TF genes predicted cell subclass and 

cluster identities nearly as well as all the marker genes together (Figure 5a-c). A hierarchical 

tree derived from hierarchical clustering using the 499 TF genes alone better recapitulated the 

existing knowledge about cell types and their spatial relationships at class and subclass levels 

than using all the marker genes, and thus we used the TF-derived tree to represent the cell type 

taxonomy (Figure 1a). We identified TF genes and co-expression modules specific to top 

hierarchical levels and most branches of the cell type taxonomy (Figure 5e, Extended Data 

Figure 10, 11). We also found several different modes of coordination among TFs. The first 

mode is the coordinated expression of different TFs (often pairs of TFs) within the same TF gene 

family in specific cell types. The second is the combination of TFs at different hierarchical 

branch levels to collectively define the identity of the leaf-node subclasses. The third represents 

the intersection between different sets of TFs that define molecular identity or spatial specificity, 

respectively, within a cell type. These findings reveal how transcription factors form the 

combinatorial code to lay out the highly complex cell type landscape.  

 

We must also emphasize the great computational challenges in analyzing these large and highly 

complex datasets and the two main caveats for the results presented here. First, due to the 

difficulty in dissociating and isolating intact cells from the adult brain tissue, especially in highly 

myelinated areas, our scRNA-seq dataset contains many kinds of low-quality cells, including 

damaged cells, debris, doublets or mixed debris of various cell type combinations. These low-

quality transcriptomes could be mistaken for real cell types, part of a cell type continuum, or 

transitional cell types in clustering results. They could also lead to wrong mapping of MERFISH 

cells as we discovered in our analysis. To generate a high-quality transcriptomic cell type atlas 

with precise spatial annotation, we developed a set of QC metrics that are more stringent than 

those widely used in the field and therefore we failed a high proportion of cells from our scRNA-

seq dataset (Extended Data Figure 1). During this process, it is likely that some cell types were 

more selectively depleted than others, especially large neurons that are more vulnerable to 

damage during tissue dissociation, e.g., Purkinje cells and large motor neurons in the midbrain 

and hindbrain. Thus, cell types in the midbrain and hindbrain may not be fully represented or 

fully resolved in our whole mouse brain transcriptomic cell type atlas. We observed that many of 

the QC-failed transcriptomes resemble single-nucleus transcriptomes; they might be still useful 
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for specific analysis purposes and could be rescued from our dataset to recover certain cell types 

in the future. These observations highlight the importance of collecting very large multimodal 

datasets in constructing cell type atlases that are complete, accurate, and permanent. 

 

Second, although we only used the selected high-quality single-cell transcriptomes to construct 

the cell atlas, the relationships between the large number of cell types across the entire brain are 

still highly complex and impossible to be fully captured by a one-dimensional hierarchical tree or 

two-dimensional UMAPs. The transcriptomic profile of each cell is multi-dimensional, 

containing not only information about the cell type identity, but also information about many 

other aspects of the cellular properties such as spatial location, connectivity, function, or a 

particular cell state. We conducted extensive iterative clustering to resolve all dimensions of 

variation at the cluster level. Thus, not every cluster may represent a true cell type; our 

categorization scheme may not be perfectly reflecting the brain-wide cell type organization either 

and will need to be revised in the future with better computational methods and/or more 

experimental evidence (especially developmental data). Finally, due to the sheer scale of the 

atlas, we have not extensively searched and utilized the vast amount of existing data and 

knowledge about cell types in many parts of the brain to help better annotate our cell type atlas. 

Moving forward, it will be critical to engage the neuroscience community to collectively 

annotate, refine and enhance this whole mouse brain cell type atlas, and an online platform to 

facilitate this will be needed.  

 

In conclusion, the whole-brain transcriptomic and spatial cell type atlas establishes a foundation 

for deep and integrative investigations of cell type and circuit function, development, and 

evolution of the brain, akin to the reference genomes for studying gene function and genomic 

evolution. The atlas provides baseline gene expression patterns that allow investigation of the 

dynamic changes in gene expression and cellular function in different physiological and diseased 

conditions. It enables creation of cell type-targeting tools for labeling and manipulating specific 

cell types to probe and modify their functions in vivo.  The atlas provides a foundational 

framework for organizing and integrating the vast knowledge about the brain structure and 

function, facilitating the extraction of new principles from the extraordinarily complex cell type 

and circuit landscape. It provides a starting point for generating similarly comprehensive and 

detailed cell type atlases for other species as well as across developmental times, enabling cross-

species comparative studies and gaining mechanistic insights on the genesis of cell types and 

circuits in the mammalian brain. Understanding the conservation and divergence of cell types 

between human and model organisms will have profound implications for the study of human 

brain function and diseases.  
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METHODS 

 

Mouse breeding and husbandry 

All procedures were carried out in accordance with Institutional Animal Care and Use 

Committee protocols at the Allen Institute for Brain Science. Mice were provided food and water 

ad libitum and were maintained on a regular 14:10 hour day/night cycle at no more than five 

adult animals of the same sex per cage. Mice were maintained on the C57BL/6J background. We 

excluded any mice with anophthalmia or microphthalmia.  

 

We used 95 mice (41 female, 54 male) to collect 2,492,084 cells for 10xv2 and 222 mice (112 

female, 110 male) to collect 4,466,283 cells for 10xv3. Animals were euthanized at P53-59 (n = 

141), P50-52 (n = 3), or P60-71 (n = 173). No statistical methods were used to predetermine 

sample size. All donor animals used in this study are listed in Supplementary Table 2.  

 

Transgenic driver lines were used for fluorescence-positive cell isolation by FACS to enrich for 

neurons. Most cells were isolated from the pan-neuronal Snap25-IRES2-Cre line crossed to the 

Ai14-tdTomato reporter125,126 (279 out of 317 donors) (Supplementary Table 2). A small 

number of Gad2-IRES-Cre/wt;Ai14/wt (6 donors) and Slc32a1-IRES-Cre/wt;Ai14/wt mice (4 

donors) were used for fluorescence-positive cell isolation to enrich for the sampling of 

GABAergic neurons in HIP, OLF and CB. For unbiased sampling without FACS, we used either 

Snap25-IRES2-Cre/wt;Ai14/wt or Ai14/wt mice.  

 

The number of mice contributing to each cluster varies between 2 and 266, with an average of 19 

and median of 14. There are 19 clusters that have fewer than 4 donor animals each. Thus, 

individual mouse variability should not affect cell type identities (Extended Data Figure 3). 

 

For cell collection during the dark phase of the circadian cycle, mice were randomly assigned to 

circadian time groups at time of weaning and housed on the reversed 12:12 hour light/dark cycle. 

Brain dissections for all groups took place in the morning. From 267 donors, 5,836,825 cells 

were collected during the light phase of the light-dark cycle. For 50 donors, 1,121,542 cells 

across the whole brain were collected during the dark phase of the light-dark cycle 

(Supplementary Table 2).  

 

Single-cell RNA-sequencing 

 

Single-cell isolation   

We used the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID: 

SCR_002978) ontology63 (http://atlas.brain-map.org/, Supplementary Table 1) to define brain 

regions for profiling and boundaries for dissection. We covered all regions of the brain using 

sampling at top-ontology level with judicious joining of neighboring regions (Supplementary 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.531121doi: bioRxiv preprint 

http://atlas.brain-map.org/
https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Table 3, Extended Data Figure 1d-e). These choices were guided by the fact that 

microdissections of small regions were difficult. Therefore, joint dissection of neighboring 

regions was sometimes necessary to obtain sufficient numbers of cells for profiling. 

 

Single cells were isolated by adapting previously described procedures28,127. The brain was 

dissected, submerged in ACSF, embedded in 2% agarose, and sliced into 350-μm coronal 

sections on a compresstome (Precisionary Instruments). Block-face images were captured during 

slicing. Regions of interest (ROIs) were then microdissected from the slices and dissociated into 

single cells as previously described28. Fluorescent images of each slice before and after ROI 

dissection were taken at the dissection microscope. These images were used to document the 

precise location of the ROIs using annotated coronal plates of CCFv3 as reference.  

 

Dissected tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30 

minutes at 30°C. Due to the short incubation period in a dry oven, we set the oven temperature to 

35°C to compensate for the indirect heat exchange, with a target solution temperature of 30°C. 

Enzymatic digestion was quenched by exchanging the papain solution three times with 

quenching buffer (ACSF with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 

minutes before trituration. The tissue pieces in the quenching buffer were triturated through a 

fire-polished pipette with 600-µm diameter opening approximately 20 times. The tissue pieces 

were allowed to settle and the supernatant, which now contained suspended single cells, was 

transferred to a new tube. Fresh quenching buffer was added to the settled tissue pieces, and 

trituration and supernatant transfer were repeated using 300-µm and 150-µm fire polished 

pipettes. The single cell suspension was passed through a 70-µm filter into a 15-ml conical tube 

with 500 µl of high BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help 

cushion the cells during centrifugation at 100 x g in a swinging bucket centrifuge for 10 minutes. 

The supernatant was discarded, and the cell pellet was resuspended in the quenching buffer. We 

collected 1,508,284 cells without performing FACS. The concentration of the resuspended cells 

was quantified, and cells were immediately loaded onto the 10x Genomics Chromium controller. 

 

To enrich for neurons or live cells, cells were collected by fluorescence-activated cell sorting 

(FACS, BD Aria II) using a 130-μm nozzle. Cells were prepared for sorting by passing the 

suspension through a 70-µm filter and adding Hoechst or DAPI (to a final concentration of 2 

ng/ml). Sorting strategy was as previously described28, with most cells collected using the 

tdTomato-positive label. 30,000 cells were sorted within 10 minutes into a tube containing 500 

µl of quenching buffer. We found that sorting more cells into one tube diluted the ACSF in the 

collection buffer, causing cell death. We also observed decreased cell viability for longer sorts. 

Each aliquot of sorted 30,000 cells was gently layered on top of 200 µl of high BSA buffer and 

immediately centrifuged at 230 x g for 10 minutes in a centrifuge with a swinging bucket rotor 

(the high BSA buffer at the bottom of the tube slows down the cells as they reach the bottom, 

minimizing cell death). No pellet could be seen with this small number of cells, so we removed 
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the supernatant and left behind 35 µl of buffer, in which we resuspended the cells. Immediate 

centrifugation and resuspension allowed the cells to be temporarily stored in a high BSA buffer 

with minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples were 

collected, usually within 30 minutes. Samples from the same ROI were pooled, cell 

concentration quantified, and immediately loaded onto the 10x Genomics Chromium controller.  

 

cDNA amplification and library construction   

For 10x v2 processing, we used Chromium Single Cell 3’ Reagent Kit v2 (120237, 10x 

Genomics). We followed the manufacturer’s instructions for cell capture, barcoding, reverse 

transcription, cDNA amplification, and library construction128. We targeted sequencing depth of 

60,000 reads per cell; the actual average achieved was 54,379 ± 34,845 (mean ± SD) reads per 

cell across 299 libraries. 

 

For 10x v3 processing, we used the Chromium Single Cell 3′ Reagent Kit v3 (1000075, 10x 

Genomics). We followed the manufacturer’s instructions for cell capture, barcoding, reverse 

transcription, cDNA amplification and library construction129. We targeted a sequencing depth of 

120,000 reads per cell; the actual average achieved was 83,190 ± 85,142 reads per cell across 

482 libraries. 

 

Sequencing data processing and QC  

Processing of 10x Genomics libraries was performed as described previously28. Briefly, libraries 

were sequenced on the Illumina NovaSeq6000, and sequencing reads were aligned to the mouse 

reference transcriptome (M21, GRCm38.p6) using the 10x Genomics CellRanger pipeline 

(version 6.1.1) with default parameters.  

 

To remove low quality cells, we developed a stringent QC process. Cells were first classified 

into broad cell classes after mapping to an existing, preliminary version of taxonomy, and cell 

quality was assessed based on gene detection, qc score, and doublet score. The qc score was 

calculated by summing the log transformed expression of a set of genes whose expression level 

is decreased significantly in poor quality cells. These are housekeeping genes that are strongly 

expressed in nearly all cells with a very tight co-expression pattern that is anti-correlated with the 

nucleus localized gene Malat1 (Supplementary Table 4). Out of the 62 such genes chosen, 30 

are annotated as mitochondrial inner membrane category based on GO ontology cellular 

component, although they are not located on the mitochondrial chromosome. Some evidence 

suggests the mRNAs of some of these genes or their homologs are translocated to the 

mitochondrial surface130,131. We used this qc score to quantify the integrity of cytoplasmic 

mRNA content, which tended to show bimodal distribution. Cells at the low end were very 

similar to single nuclei, which we removed for downstream analysis. Doublets were identified 

using a modified version of the DoubletFinder algorithm132 and removed when doublet score > 

0.3. Using thresholds that were tailored to different cell classes, we filtered out 43% and 29% of 
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cells and kept 2,546,319 cells and 1,769,304 cells for 10xv3 and 10xv2 data, respectively 

(Extended Data Figure 1). Threshold parameters and number of cells filtered are summarized in 

Supplementary Table 4.  

 

Clustering single cell RNA-seq data 

Clustering for both 10xv2 and 10xv3 datasets was performed independently using the in-house 

developed R package scrattch.bigcat (available via github 

https://github.com/AllenInstitute/scrattch.bigcat ), which is a scaled-up version of R package 

scrattch.hicat25,28 to deal with the increased size of datasets. Scrattch.bigcat adopted the parquet 

file format for storing sparse matrix, which allows for manipulation of matrices that are too large 

to fit in memory through memory mapping to files on disk. The whole gene count matrices were 

chunked to smaller parquet files with bin size of 50,000 for cells, and 500 for genes, which could 

be loaded efficiently and concurrently using the arrow package 

(https://github.com/apache/arrow/, https://arrow.apache.org/docs/r/).  

 

We provide utility functions to convert and concatenate sparse matrices in R to this format, and 

functions for conversion between this format and other commonly used file formats such as h5, 

h5ad and Zarr. We also provide a function that loads any sub-matrix into the memory given the 

cell IDs and gene IDs. The choice of parquet format is based on its great performance in R, 

which allows continual usage of our legacy codebase. The major functions of scrattch.hicat 

package were rewritten and made available in scrattch.bigcat. We used the automatic iterative 

clustering method, iter_clust_big, which performed clustering in top down manner into cell types 

of increasingly finer resolution without any human intervention, while ensuring that all pairs of 

clusters, even at the finest level, were separable by stringent differential gene expression criteria 

as follows: for 10v2, q1.th = 0.4, q.diff.th = 0.7, de.score.th = 150, min.cells = 10; for 10xv3, 

q1.th = 0.5, q.diff.th = 0.7, de.score.th = 150, min.cells = 4. These criteria translated to at least 8 

binary DEGs between any pair of clusters (each DEG’s contribution to de.score was capped at 

20, so at least 8 genes were needed to exceed de.score.th of 150). Binary DEGs were defined as 

genes expressed in at least 40% cells in the foreground cluster in 10xv2, and 50% in 10xv3 

(q1.th parameter), log2FC > 1, adj Pval < 0.01, and difference between the fraction of cells 

expressing the gene in foreground and background divided by the foreground fraction was 

greater than 0.7 (q.diff.th parameter).  

 

To enhance scalability, a randomly subsampled set of cells to be clustered were loaded into 

memory to compute high variance genes and perform PCA, then projected to all the cells to 

obtain their reduced dimensions. Then Jaccard-Leiden clustering proceeded as before28.  

 

Differential gene expression analysis 

We performed differential gene expression both at the clustering step for each iteration, and after 

clustering between all pairs of clusters. In our original scrattch.hicat package, we applied limma 
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package133 to perform this analysis. Given the significant increase of data size and complexities 

of the taxonomy, we re-implemented this method that provides essentially identical results, but 

drastically improves performance and scalability. The method first scanned the whole log 

transformed cell-by-gene matrix once to compute, for each cluster and each gene, the average 

expression, the fraction of cells expressing the gene, and the sum of square of gene expression of 

all the cells within the cluster. These cluster level summary statistics were then used in the linear 

model equivalent to the one used in limma to compute the pvalue, adjusted pvalue, log fold 

change, and the contrast between foreground and background based on the fraction of cells 

expressing the gene. This process was massively parallelized. Clusters were grouped into bins, 

and the DEG analysis results were stored on disk in chunked parquet files, split based on which 

bin the foreground and background clusters belonged to. In this way, we were able to compute 

DEGs between ~13.5 million pairs of clusters within a day on a single Linux server. Using the 

arrow package, we were able to query DEGs between any pairs of clusters very efficiently.  

 

Excluding noise clusters  

Before proceeding with integration between 10xv2 and 10xv3 datasets, we first needed to 

remove noise clusters. The presence of such clusters can confuse the integration algorithm and 

reduce the cell type resolution. There are two main categories of noise clusters: clusters with 

significantly lower gene detection due to extensive drop out, and clusters due to doublets or 

contamination.  

 

We first identified doublet clusters based on the co-expression of any pair of broad class marker 

genes using find_doublet_by_marker function in scrattch.bigcat package. To identify other 

doublet clusters, we searched for triplets of clusters A, B and C, wherein A was the putative 

doublet cluster, such that up-regulated genes of A relative to B largely overlapped with up-

regulated genes in C relative to B, and up-regulated genes in A relative to C largely overlapped 

with up-regulated genes of B relative to C. This criterion ensured that A included the most 

distinguished signature of B and C. To rule out the possibility that A was a transitional type 

between B and C, we required that B and C could not be closely related types based on the 

correlation of their average gene expression of marker genes. After we systematically produced 

the list of all the candidate triplet clusters, the final determination was an iterative process that 

involved setting different thresholds and manual inspection of borderline cases.  

 

After removing all doublet clusters, we then identified clusters with lower gene detection. To do 

that, we identified pairs of clusters such that one cluster with at least 50% fewer UMIs or >100 

lower QC score, smaller size, and no more than one up-regulated gene relative to another cluster 

was identified as the low-quality cluster. In these cases, one cluster was a degraded version of 

another cluster and therefore removed.  
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We identified 933 noise clusters with 153,598 cells in 10xv3, and 201 noise clusters with 38,073 

cells in 10xv2. 10xv3 noise clusters were removed from integration analysis but 10xv2 noise 

clusters were included accidentally. Fortunately, most of the cells from 10xv2 noise clusters 

were excluded in further QC steps after integration.  

 

Joint clustering 10xv2 and 10xv3 datasets 

To provide one consensus cell type taxonomy based on both 10xv2 and 10xv3 datasets of ~2M 

cells each, we scaled up the integrative clustering method28 and made it available via 

scrattch.bigcat package which extends the clustering pipeline described above to integrate 

datasets collected by different transcriptomic platforms. Analysis was performed as described 

before28 with minor modifications. To build the common graph that incorporates samples from 

all the datasets, both 10xv2 and 10xv3 were used as the reference datasets. The key steps in the 

pipeline are: 1) select anchor cells for each reference dataset, 2) select high variance genes in 

each reference dataset, prioritizing shared high variance genes, 3) compute K nearest neighbors 

(KNN) both within modality and cross modality, 4) compute Jaccard similarity based on shared 

neighbors, 5) perform Leiden clustering based on Jaccard similarity, 6) merge clusters based on 

total number and significance of conserved DEGs across modality between similar cell types, 7) 

repeat steps 1–6 for cells within a cluster to gain finer-resolution clusters until no clusters can be 

found, 8) concatenate all the clusters from all the iterative clustering steps and perform final 

merging as in step 6. For step 6, if one cluster had fewer than the minimal number of cells in a 

dataset (4 cells for 10xv3 and 10 cells for 10xv2), then this dataset was not used for DE gene 

computation for all pairs involving the given cluster. This step allows detection of unique 

clusters only present in some data types.  

 

Compared to the previous version, the key improvement is step 3 for computing KNN. We used 

BiocNeighbor package (https://github.com/LTLA/BiocNeighbors) for computing KNN using 

Euclidean distance within modality and Cosine distance across modality using the Annoy 

algorithm (https://github.com/spotify/annoy). The Annoy index was built based on anchor cells 

for the reference dataset, and KNNs were computed in parallel for all the query cells. Due to 

significantly increased dataset sizes, the Jaccard similarity graph can be extremely large, 

impossible to fit in memory. The method down-samples the datasets based on a user specified 

parameter, and if the cluster membership of each modality is provided as input for integration 

algorithm, we down-sample cells by within-modality clusters, ensuring preservation of rare cell 

types. All the anchor cells were added to the down-sampled datasets. The Jaccard-Leiden 

clustering was performed on the down-sampled datasets, and the cluster membership of other 

cells were imputed based on KNNs computed in step 3.  

 

The integration algorithm generated 5,283 clusters, which were used to build cell type taxonomy. 

During this process, additional noise clusters were identified by manual inspection, which 

exhibited abnormal QC statistics, abnormal expression of canonical markers, or absence in 
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MERFISH dataset. Most of these clusters were very small, likely doublets of damaged cells. 

After removing these additional noise clusters, the final taxonomy had 5,200 clusters with 

4,058,049 cells.  

 

Marker gene selection 

For each pair of clusters, we computed conserved DEGs (at least significant in one dataset, and 

at least 2-fold change in the same direction in the other datasets). We selected the top 15 DEGs 

in each direction and pooled such genes from all pairwise comparisons to generate a total of 

8,108 gene markers (Supplementary Table 5).   

 

Assessing concordance of joint clustering between 10xv2 and 10xv3  

We first compared the joint clustering result with the independent clustering result from each 

dataset. We then calculated the cluster means of marker genes for each dataset. For each marker 

gene, we computed the Pearson correlation between its average expression for each cluster 

across two different datasets to quantify the consistency of its expression at the cluster level 

between datasets (Extended Data Figure 5d). We performed a similar analysis between 10xv3 

and MERFISH datasets.  

 

Imputation  

To facilitate direct comparisons, we projected gene expression of the 10xv2 dataset to the 10xv3 

dataset using the impute_knn_global function in the scrattch.bigcat package28.  To achieve this, 

we leveraged the KNN matrices computed iteratively at each level of the cell type hierarchy. 

During each iteration of the joint clustering, we used the average gene expression of the K 

nearest neighbors among the 10xv3 anchor cells as the imputed expression for each 10xv2 cell. 

At the top-level clustering, we imputed the expression for all genes. For each following iteration, 

we only imputed the expression of the DEGs computed for the cells involved in the given 

iteration. We used this iterative approach for imputation because the nearest neighbors, based on 

the genes chosen at the top level, may not reflect the distinction between the finer types, and the 

imputed values for the DEGs that define the finer types consequently are not accurate based on 

these nearest neighbors. Therefore, we deferred imputation of the DEGs between the finer types 

to the iteration when these types were defined. The key improvement of this function is 

parallelization of KNN computation and storing the output imputed matrix as file backed matrix 

(FBM) for scalability.  

 

UMAP projection 

We performed PCA based on the imputed gene expression matrix of 8,108 marker genes using 

the 10xv3 reference. We down-sampled up to 100 cells per cluster, and further down-sampled up 

to 250K cells if the total exceeded this number, so that PCA could proceed without any memory 

issues. Again, the PCs based on sampled cells were projected to the whole datasets. We selected 

the top 100 PCs, then removing one PC with more than 0.7 correlation with the technical bias 
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vector, defined as log2(gene count) for each cell. We used the remaining PCs as input to create 

2D and 3D UMAPs134, using parameters nn.neighbors = 25 and md = 0.4. To prevent some of 

the big clusters taking up too much space, we down sampled up to 1000 cells per cluster to build 

the UMAP and impute the UMAP coordinates of the other cells based on KNN neighbors among 

the sampled cells in the PCA space.  

 

Building cell type hierarchy 

To make the cell type complexity tractable at each level, we organized the 5,200 clusters into a 

hierarchy with 5 levels: division, class, subclass, supertype and cluster. After clusters were 

computed as descripted in Joint clustering section, we first defined subclasses by clustering the 

clusters. This was performed by Jaccard-Leiden clustering using the average expression of 499 

TF marker genes of all the cells in each cluster, using 5 K nearest neighbors, and varying the 

resolution index of Leiden algorithm at 0.1, 0.2, 1, 5, and 8. We tried clustering using either all 

8,108 marker genes or 499 TF marker genes only, and found the result based on TF marker list 

recapitulate existing knowledge of cell types including spatial distribution and lineage 

relationships better. The Leiden algorithm generated 32 groups at resolution index 0.2, which 

generated the initial version of “classes”, and 195 groups at resolution index 8, which generated 

the initial version of “subclasses”. 

 

The initial fully automatically generated versions of classes and subclasses were visualized 

together with all the other metadata on UMAPs and on MERFISH sections using the single-cell 

data visualization tool cirrocumulus (https://cirrocumulus.readthedocs.io/en/latest/) for manual 

examination. We finetuned the borderline cases, and further split or merged some putative 

subclasses to reach the final definition of subclasses. We applied a similar process to define 

classes, and to achieve strict hierarchy, assigned all the clusters in one subclass to the same class. 

The classes were then grouped into divisions, informed by prior knowledge and the subclass 

taxonomy tree (see below). Finally, we applied the same Jaccard-Leiden algorithm to all the 

clusters within each subclass separately to define supertypes, using the union of the top 20 DEGs 

between all pairs of clusters within the subclass as features. Again, they were adjusted based on 

manual inspection of UMAPs and MERFISH sections after visualization on cirrocumulus to 

increase the consistency of supertype definitions between subclasses.  

 

Building subclass taxonomy tree 

We built the subclass taxonomy tree using the average expression of 499 TF marker genes at 

subclass level, using the build_dend function in the scrattch.bigcat package as described 

previously28. Branches with length < 0.01 were removed from the tree, and the children of any 

removed node were re-assigned as children of the parent of the removed node. The tree captured 

relationships between closely related subclasses, but the hierarchy is not fully consistent with the 

“class” definition, as hierarchical clustering is not capable of capturing the continuous variations 

in multi-dimensional space. We used the cell type hierarchy, the taxonomy tree, the 2D and 3D 
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UMAPs and the constellation plot all together to understand the overall cell type landscape and 

relationships between cell types.   

 

Constellation plot 

The global relatedness between cell types was visualized using a constellation plot (Extended 

Data Figure 4). To generate the constellation plot, each transcriptomic subclass was represented 

by a node (circle), whose surface area reflected the number of cells within the subclass in log 

scale. The position of nodes was based on the centroid positions of the corresponding subclasses 

in UMAP coordinates. The relationships between nodes were indicated by edges that were 

calculated as follows. For each cell, 15 nearest neighbors in reduced dimension space were 

determined and summarized by subclass. For each subclass, we then calculated the fraction of 

nearest neighbors that were assigned to other subclasses. The edges connected two nodes in 

which at least one of the nodes had > 5% of nearest neighbors in the connecting node. The width 

of the edge at the node reflected the fraction of nearest neighbors that were assigned to the 

connecting node and was scaled to node size. For all nodes in the plot, we then determined the 

maximum fraction of “outside” neighbors and set this as edge width = 100% of node width. The 

function for creating these plots, plot_constellation, is included in scrattch.bigcat. 

 

Defining neighborhoods 

We identified highly prevalent transitions between cell types at almost all levels.  To study these 

transitions not captured by the strict hierarchical 5-level taxonomy, we defined multiple 

overlapping neighborhoods. For example, the transition cell types between CNU and Pallium 

Glut cell types were included in both Pallium Glut neighborhood and PAL-sAMY-HY 

neighborhood.  

 

Assigning subclass, supertype and cluster names  

We first annotated each subclass with its most representative anatomical region(s) and named the 

subclass using the combination of its representative region(s), major neurotransmitter, and in 

some cases one or two marker genes. We then ordered the subclasses based on the taxonomy tree 

and assigned subclass IDs accordingly. Supertype names within each subclass were defined by 

combining the subclass name and the grouping numbers of supertypes within the subclass. 

Supertype IDs were assigned sequentially based on the taxonomy tree order of subclasses and the 

group order of supertypes within each subclass. Cluster IDs were also assigned sequentially 

based on the ordering of subclasses and supertypes. And the final cluster names were assigned by 

combining each cluster’s ID with the name of the supertype the cluster belongs to. Based on the 

Allen Institute proposal for cell type nomenclature135, we also assigned accession numbers to cell 

types, as included in Supplementary Table 7.  

 

Assigning cell type identities within a modality (for cross validation) and across modalities 
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We performed 5-fold cross validation using different sets of marker genes: all 8,108 marker 

genes (Marker gene selection section), 499 TF marker genes, and 20 sets of 499 randomly 

sampled marker genes from the 8,108-marker list. We defined the cluster centroid in each 

modality as the average gene expression for all the training cells within the cluster and built the 

Annoy KNN indices based on user specified distance metrics (cosine by default) using the 

chosen marker list. For the testing cells in each modality, we assigned their cell type identities by 

mapping them to the nearest cluster centroid using the corresponding Annoy index. This process 

is implemented in map_cells_knn_big function from scrattch.bigcat package, and mapping can 

be performed very efficiently by massive parallelization. We also used this approach for 

assigning cell type identities for MERFISH or any external datasets to the 10xv3 dataset as 

reference, using different gene lists based on the contexts. When mapping confidence was 

needed, we sampled 80% genes from the marker list randomly, and performed mapping 100 

times. The fraction of times a cell is assigned to a given cell type is defined as the mapping 

probability.  

 

Defining transcription factor (TF) co-expression gene modules  

To identify TF gene modules that are involved in regulating major cell types, we performed 

WGCNA analysis136 on 499 TF marker genes (Supplementary Table 8) based on their average 

expression at the subclass level with power = 6 and TOMType = “signed”, and detectCutHeight 

= 0.998. Genes in “grey” module were removed, which had poor correlation with all the other 

genes, and genes that were generally enriched in neurons were excluded. Genes in some modules 

clearly had distinct patterns and were thus further split, and they were re-ordered for better 

visualization.   

 

Defining transcription factor (TF) code along the taxonomy tree 

For each node along the taxonomy tree, we computed the most discriminative TFs distinguishing 

all the subclasses under this node from all the subclasses under any sibling nodes, and other 

subclasses that also express the same combo of markers along the path from the root.  If all the 

TF markers along the path from the root together were not specific to the given node, additional 

TF markers were selected to provide more specificity. We also required all selected markers at 

any nodes to be expressed in at least 70% of clusters within the corresponding subtree at logCPM 

> 2. Given such constraint, it is possible that a TF was chosen for more than one sibling nodes, in 

which case, we tried to select more TFs for further discrimination.  

 

MERFISH   

 

Brain dissection and freezing 

Standard procedures were developed to isolate, cut, fix and pre-treat tissue to preserve macro and 

cellular morphology and to produce the best signal to noise ratio for MERFISH. Mice were 

transferred from the vivarium to the procedure room with efforts to minimize stress during 
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transfer. If mouse body weight fell outside of the normal range (18.8 to 26.4 g), the brain was not 

used in the MERFISH process. Mice were anesthetized with 0.5% isoflurane. A grid-lined 

freezing chamber was designed to allow for standardized placement of the brain within the block 

in order to minimize variation in sectioning plane. Chilled OCT was placed in the chamber, and a 

thin layer of OCT was frozen along the bottom by brief placement of the chamber in a dry ice 

ethanol bath. The brain was rapidly dissected and placed into the OCT. The orientation of the 

brain was adjusted using a dissecting scope, and the freezing chamber containing OCT and brain 

were frozen in a dry ice/ethanol bath. Brains were stored at -80°C. 

 

Cryosectioning 

The fresh frozen brain was sectioned at 10 µm on Leica 3050 S cryostats. The OCT block 

containing a fresh frozen brain was trimmed in the cryostat until reaching the desired starting 

section. Sections were collected every 200 µm to evenly cover the brain from anterior to 

posterior and each section was mounted onto a functionalized 20-mm coverslip treated with 

yellow green (YG) fluorescent microspheres (VIZGEN, #2040003) 

 

Fixation and dehydration  

After air drying on the coverslips for 10-15 minutes, the tissue sections were loaded into a Leica 

Autostainer XL (Leica ST5010). They were washed in 1x PBS for 1 minute, fixed in 4% PFA for 

15 minutes, washed in 1x PBS for 5 minutes 3 times, washed in 70% ethanol and then stored in 

70% ethanol at 4°C. They were stored for at least one day and no more than 6 weeks before 

proceeding.  

 

Hybridization  

For staining the tissue with MERFISH probes a modified version of instructions provided by the 

manufacturer was used. All solutions were prepared according to the instruction provided by the 

manufacturer. For hybridization samples were removed from the 70% ethanol and washed in a 

petri dish containing VIZGEN Sample Prep Buffer (VIZGEN, #20300001). Sample Prep Buffer 

was aspirated, and the samples were equilibrated with 5mL of VIZGEN Formamide Wash Buffer 

(VIZGEN, #20300002) in a humidified incubator at 37°C for 30 minutes. Formamide Wash 

Buffer was removed via aspiration and a 50-μl droplet of MERSCOPE Gene Panel Mix was 

added onto the center of the tissue section. Next, the tissue section was covered with parafilm 

and stored in a humidified 37°C cell culture incubator for 36-48 hours. 

 

Gel embedding 

Parafilm covering the sections was removed and 5ml of the VIZGEN Formamide Wash Buffer 

was immediately added. Sections were incubated at 47°C for 30 min. Formamide Wash Buffer 

was aspirated and the previous step repeated. Sections were washed with VIZGEN Sample Prep 

Wash Buffer after the second formamide wash for 2 min. 110 µl of VIZGEN gel embedding 
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solution (VIZGEN #20300004) with APS and TEMED was added onto the center of a Gel Slick-

coated microscope slide and any excess embedding solution was gently removed.  

 

To allow for the gel to fully polymerize the sections were incubated at room temperature for 1.5 

hours. To clear the tissue the section was incubated in 5 ml of VIZGEN Clearing Solution 

(VIZGEN #20300003) with Proteinase K (NEB P8107S) according to the Manufacturer’s 

instructions for at least 24 hours or until it was clear in a humidified incubation oven at 37ºC.  

 

Imaging 

Following clearing, sections were washed twice for 5 min in Sample Prep Wash Buffer 

(VIZGEN, #20300001). VIZGEN DAPI and PolyT Stain (VIZGEN, 20300021) was applied to 

each section for 15 min followed by a 10 min wash in Formamide Wash Buffer. Formamide 

Wash Buffer was removed and replaced with Sample Prep Wash Buffer during MERSCOPE set 

up. 100 µl of RNAse Inhibitor (New England BioLabs M0314L) was added to 250 µl of Imaging 

Buffer Activator (VIZGEN, #203000015) and this mixture was added via the cartridge activation 

port to a pre-thawed and mixed MERSCOPE Imaging cartridge (VIZGEN, #1040004). 15 ml 

mineral oil (Millipore-Sigma m5904-6X500ML) was added to the activation port and the 

MERSCOPE fluidics system was primed according to VIZGEN instructions. The flow chamber 

was assembled with the hybridized and cleared section coverslip according to VIZGEN 

specifications and the imaging session was initiated after collection of a 10X mosaic DAPI 

image and selection of the imaging area. For specimens that passed the minimum count 

threshold, imaging was initiated, and processing completed according to VIZGEN proprietary 

protocol. 

 

Data analysis 

Cell segmentation was performed as described previously137. Briefly, cells were segmented 

based on DAPI and PolyT staining using Cellpose138. Segmentation was performed on a median 

z-plane (4th out of 7) and cell borders were propagated to z-planes above and below. The 

resulting cell-by-gene table was filtered to keep cells with a volume > 100 µm3 and < 3,000 µm3, 

that have at least 15 genes detected and contain a minimum of 40 but no more than 3,000 mRNA 

molecules (red dashed lines in Extended Data Figure 2d-e) and remove low quality cells and 

doublets that are outside of these ranges. Overall counts of genes were normalized by cell 

volume and log2 transformed. To assign cluster identity to each cell in the MERFISH dataset, we 

mapped the MERFISH cells to the scRNA-seq reference taxonomy. For this, the 10xv3 scRNA-

seq data was subsetted to only genes common to both datasets. Our mapping method (as 

described in Assigning cell type identities section) finds the nearest cluster centroid in the 

scRNA-seq reference dataset for a query data point with the correlation of shared genes as 

distance metric. The cluster label of the nearest neighbor was assigned as mapped label. 

Bootstrapping was conducted with 80% subsampling of marker genes to make label assignment 

robust.  
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CCF registration 

To facilitate alignment of MERFISH sections to the CCF, we assigned each cell from the 

scRNA-seq dataset to one of these major regions: CB, CTXsp, HB, HPF, HY, isocortex, LSX, 

MB, OLF, PAL, sAMY, STRd, STRv, TH and HB. This delineation was driven by the level of 

region-specific dissection for the scRNA-seq experiments as well as the cell type specificity of 

regions. Because of the more gradient transition of cell type composition between cortical 

regions, the specificity of cortical plate regions is limited to isocortex, OLF and HPF despite 

more granular dissection regions. Each cluster in the scRNA-seq dataset was assigned to the 

region the majority of cells were derived from. We identified anchor clusters we used for region 

annotation of the MERFISH data. These clusters were defined as a) having more that 30% of all 

cells in one region and b) more than 20 cells in a MERFISH section. In addition to that we used 

ependymal and choroid plexus cells to label the ventricles and identified specific clusters of 

oligodendrocytes that were enriched in white matter tracts. To account for clusters that were 

found at low frequency in regions outside its main region we calculated for each cell its 50 

nearest neighbors in physical space and reassigned each cell to the region annotation dominating 

its neighborhood. Next, we used that same approach to assign each cell mapped to a non-anchor 

cluster to the region annotation dominating its immediate surrounding. The resultant label maps 

were used as input to our registration tool to find for each section its approximate location along 

the anterior to posterior axis of the brain as well as any offsets in pitch and yaw introduced 

during sectioning.  

 

Registration was performed at 10-µm in-plane resolution. For each section, an anatomical 

reference image was created by aggregating the number of detected spots within a 10x10 µm 

grid for each gene probe. A single image was created across all probes by taking the maximum 

count for each grid unit. The midline was manually determined by annotating the most dorsal 

and most ventral point. These points were then used to compute a rigid transform to rotate the 

section upright and center in the middle. This set of rectified images were stacked in sequencial 

order to create an initial configuration for registration. 

 

Alignment to the Allen CCFv3 was performed by matching the above-mentioned scRNA-seq 

derived region labels to their corresponding anatomical parcellation of the CCF. A label map was 

generated for each region by aggregating the cells assigned to that region within a 10x10 µm 

grid, transformed to the initial configuration using the computed rigid transforms. Using the 

corresponding anatomical labels, the ANTS registration framework was used to establish a 2.5D 

deformable spatial mapping between the MERFISH data and the CCF via three major steps: 1) A 

3D global affine (12 dof) mapping was performed to align the CCF into the MERFISH space. 

This generated resampled sections from the CCF that provided section-wise 2D target space for 

each of the MERFISH sections. Since the CCF is a continuous label set with isotropic voxels, 

this avoids interpolation artifacts that can result if resampling is performed on the MERFISH 
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data instead, which has large section gaps, and can contain missing sections. 2) After 

establishing a resampled CCF section for each MERFISH section, 2D affine registrations were 

performed to align each MERFISH section to match the global anatomy of the CCF brain. This 

addressed misalignments from the initial manual stacking of the MERFISH sections using the 

midline and provided a global mapping to initialize the local deformable mappings. 3) Finally, a 

2D multi-scale, symmetric diffeomorphic registration (step size = 0.2, sigma = 3) was used on 

each section to map local anatomic differences between the corresponding MERFISH and CCF 

structures in each section. Global and section-wise mappings from each of these registration 

steps were preserved and concatenated (with appropriate inversions) to allow point-to-point 

mapping between the original MERFISH coordinate space and the CCF space.  
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Table 1. Summary of the whole mouse brain cell type atlas. Major cell divisions (Pallium 

glutamatergic, Subpalium GABAergic, PAL-sAMY-TH-HY-BM-HB neuronal, CBX-MOB-

other neuronal, Neuroglial, Vascular, Immune), cell classes under each division, and the numbers 

of subclasses, supertypes, and clusters under each class are listed. Each level of the hierarchy is 

color coded consistently with the taxonomy.   
Cell Class No. of Subclasses No. of Supertypes No. of Clusters 

Pallium glutamatergic 

IT-ET Glut 26 101 402 

NP-CT-L6b Glut 8 27 83 

Subpallium GABAergic 

CGE GABA 4 19 101 

MGE GABA 4 16 106 

CNU GABA 13 50 212 

LSX GABA 6 30 146 

PAL-sAMY-TH-HY-MB-HB neuronal 

MH-LH Glut 2 9 35 

TH Glut 8 35 113 

CNU-HYa GABA 18 83 379 

HY GABA 18 72 425 

CNU-HYa Glut 13 42 236 

HY Glut 19 84 337 

HY MM Glut 2 3 13 

MB Glut 30 102 657 

P Glut 11 38 235 

MY Glut 22 59 411 

MB GABA 26 87 472 

P GABA 12 23 141 

MY GABA 18 54 347 

MB Dopa 1 8 43 

MB-HB Sero 1 7 32 

CBX-MOB-other neuronal 

CB GABA 6 12 27 

CB Glut 2 3 9 

HY Gnrh1 Glut 1 1 1 

MOB-DG-IMN 9 28 121 

MOB-CR Glut 2 6 16 

Pineal Glut 1 1 1 

Neuroglial 

Astro-Epen 10 22 41 

Oligo 2 6 24 

OEG 1 1 4 

Vascular 

Vascular 5 8 19 

Immune 

Immune 5 8 11 
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Figure 1. Transcriptomic cell type taxonomy of the whole mouse brain. (a) The 

transcriptomic taxonomy tree of 306 subclasses organized in a dendrogram (10xv2: n = 

1,708,450 cells; 10v3 n = 2,349,599 cells). The color blocks divide the dendrogram into major 

cell divisions. From left to right, the bar plots represent class, major neurotransmitter type, region 

distribution of profiled cells, number of clusters, number of RNA-seq cells, and number of 

MERFISH cells per subclass. The subclasses marked with orange dots represent highly distinct 

subclasses and ones marked with grey dots represent subclasses containing sex-dominant 

clusters. For each cell, 15 nearest neighbors in reduced dimension space were determined and 

summarized by subclass. Highly distinct subclasses were identified as those with no nearest 

neighbors assigned to other subclasses and/or those that formed a highly distinct branch on the 

taxonomy dendrogram. Sex-dominant clusters within a subclass were identified by calculating 

the odds and log P value for Male and Female distribution per cluster. Clusters with odds < 0.2 

and logPval < -10 were marked as sex-dominant. (b-e) UMAP representation of all cell types 

colored by division (b), class (c), subclass (d), and brain region (e).  
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Figure 2. Neuronal cell type classification and distribution across the brain. UMAP 

representation (a-e) and representative MERFISH sections (f-j) of Pallium glut (a,f), Subpallium 

GABA (b,g), PAL-sAMY-HY (c,h), TH-EPI (d,i), and MB-HB-CB (e,j) neighborhoods colored 

by subclass. Each subclass is labeled by its ID and shown in the same color between UMAPs and 

MERFISH sections. Outlines in (a-d) show cell classes. For full subclass names see 

Supplementary Table 7.  
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Figure 3. Neurotransmitter types and their distribution throughout the mouse brain. (a-c) 

UMAP representation of neuronal subclasses containing clusters releasing glutamate-GABA 

dual transmitters. UMAPs are colored by subclass (a), neurotransmitter type (b), and cluster (c). 

Glutamate-GABA co-releasing clusters include clusters 559, 560, 563 in subclass 37, cluster 566 

in subclass 38, clusters 1249, 1250, 1251 in subclass 80, clusters 1498, 1499 in subclass 93, 

clusters 1571, 1592, 1593 in subclass 99, clusters 2307, 2308 in subclass129, clusters 2716, 

2717, 2721 in subclass 148, clusters 3469, 3480, 3482 in subclass 175, cluster 3609 in subclass 

178, cluster 4073 in subclass 201, cluster 4089 in subclass 202, clusters 4496, 4498, 4499, 4501, 

4502, 4505, 4506, 4514 in subclass 224, clusters 4526, 4528, 4529 in subclass 225, cluster 4653 

in subclass 238, and cluster 5041 in subclass 275. Clusters in italic are shown in MERFISH 

sections in (j). (d) UMAPs representing the expression of neurotransmitter transporter genes for 

glutamate, GABA and glycine. (e-g) UMAP representation of neuronal subclasses containing 

clusters releasing modulatory neurotransmitters and their various combinations of co-releasing 

with glutamate and/or GABA. UMAPs are colored by subclass (e), neurotransmitter type (f), and 

cluster (g). Cholinergic neurons include clusters 795 (co-release w/ GABA), 796, 797 (w/ 

GABA), 798 (w/ GABA), 799 (w/ glut), 800 (w/ GABA), 801, 802, 803-805 (all w/ glut) in 

subclass 49; cluster 958 (w/ GABA) in subclass 59; clusters 1060-1063, 1070, 1071 and 1075 

(all w/ glut) in subclass 63; clusters 3322, 3346, 3347, 3348, 3349, 3350 (all w/ glut except 3349) 

in subclass 170; cluster 3939 (w/ glut) in subclass 188; clusters 4847-4852 in subclass 248; and 

cluster 5100 in subclass 282. Dopaminergic neurons include clusters 1221-1224 (all w/ GABA) 

in subclass 75; clusters 2536 and 2537 (both w/ glut) in subclass 139; clusters 4856 (w/ glut-

GABA), 4857 (w/ glut-GABA), 4860 (w/ glut-GABA), 4862 (w/ glut), 4863-4865, 4866 (w/ 

glut), 4867, 4868 (w/ glut), 4869 (w/ glut), 4870 (w/ GABA), 4871-4875, 4876 (w/ GABA), 

4877-4880 (all w/ glut), 4881, 4883-4886 (all w/ glut), 4887-4890, 4891 (w/ glut-GABA), 4892, 

4893 in subclass 250; and clusters 5047, 5048, 5050, 5055 (all w/ GABA) in subclass 277. 

Histaminergic neurons include clusters 1225 (w/ GABA), 1226 (w/ GABA), and 1227-1229 in 

subclass 76. Noradrenergic neurons include clusters 4823, 4824, 4826-4829, 4832 and 4840 (all 

w/ glut), as well as 4845 in subclass 247. Serotonergic neurons include clusters 2658, 2659, 

2660-2662 (all w/ glut), 2663, 2664, 2665-2667 (all w/ glut), 2674 (w/ glut), 2680, 2681-2685 

(all w/ glut), 2688 (w/ glut), and 2689 (w/ glut) in subclass 146. Clusters in italic are shown in 

MERFISH sections in (j). (h) UMAPs representing the expression of genes for glutamate, 

GABA and modulatory neurotransmitters. (i-j) Representative MERFISH sections showing the 

location of neuronal types with glutamate-GABA dual transmitters and those with modulatory 

neurotransmitters. Cells in (i) are colored and labeled by subclasses. Cells in (j) are colored by 

neurotransmitter/neuromodulator types and labeled by cluster IDs. See Supplementary Table 7 

for detailed neurotransmitter assignment for each cluster.   
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Figure 4. Non-neuronal cell types and immature neuronal types. (a) Dot plot showing the 

transcription factor marker gene expression in non-neuronal subclasses. Dot size and color 

indicate proportion of expressing cells and average expression level in each subclass, 

respectively. (b) UMAP representation of non-neuronal cell types colored by subclass. Three 

subpopulations are highlighted and further investigated: astrocytes (c), ependymal cells (d), and 

VLMC (e). (c-e) UMAP representation and representative MERFISH sections of astrocytes (c), 

ependymal cells (d), and VLMC (e) colored and numbered by cluster. Outlines in (c-d) UMAPs 

show subclasses. (f) Co-localization of VLMC cluster 5181 with Tanycyte cluster 5133 on the 

MERFISH section. (g) Co-localization of VLMC cluster 5180 with CHOR cluster 5142 and 

Ependymal clusters 5137 and 5138. (h) Co-localization of VLMCs with Interlaminar astrocytes 

(ILA). (i) UMAP representation of immature neuron populations colored by supertype. 

Maturation trajectories in dentate gyrus (DG) (j), inner main olfactory bulb (k), and outer main 

olfactory bulb (l) are highlighted. (j-l) Representative MERFISH sections showing location of 

immature neuronal supertypes from the three trajectories.   
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Figure 5. Transcription factor modules across the whole mouse brain. (a) Distribution of the 

number of differentially expressed TFs between divisions (pink), between classes (apple green), 

between subclasses (sea green), and within subclasses (dark blue). (b) Cross validation accuracy 

for each cluster (top panel) or subclass (bottom panel) using classifiers built based on all 8,108 

marker genes (pink), randomly selected 499 marker genes (sea green), or 499 TF marker genes 

(dark blue). (c) Confusion matrix between the assigned and predicted subclasses using classifiers 

trained on 499 TF markers in cross validation. The size of the dots corresponds to the number of 

overlapping cells, and the color corresponds to the Jaccard similarity score between the assigned 

and predicted subclasses. (d) Expression level of TFs (logCPM) per cluster. For each TF along 

the Y axis, clusters are sorted from the highest to lowest mean gene expression level along the X 

axis. (e) Expression of key TFs for each subclass in the taxonomy tree, organized in gene 

modules (mod) shown as color bars on the right. The color blocks divide the dendrogram into 

major cell divisions. The color bars below the dendrogram denote classes.   
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Figure 6. Region specific features and transitional cell types. (a) Scatterplot showing the 

number of neuronal clusters identified per region vs. the number of neuronal cells profiled within 

the corresponding region.  Each neuronal cluster is assigned to the most dominant region. (b) 

Distribution of the number of genes detected per neuronal cluster per region with logCPM > 3. 

The top panel shows the number of Homeobox TFs per cluster per region, the middle panel 

shows the number of all TFs expressed per cluster per region, and the bottom panel shows the 

number of any gene expressed per cluster per region. (c) Distribution of the number of DEGs 

between every pair of neuronal clusters within each region, split at quantiles of 0.1, 0.2, …, and 

0.9. The curves show the spread of the number of DEGs between more similar types at 0.1 

quantile vs. the more distinct types at 0.9 quantile. (d) Scatterplot showing the number of cells 

mapped to a given neuronal cluster vs. the standard deviation of their 3D coordinates along the X 

(medial-lateral), Y(dorsal-ventral), and Z (anterior-posterior) axis based on the MERFISH 

dataset, stratified by the regions. The plot shows how localized the clusters are within each 

region along each spatial axis. (e-g) UMAP representation (e-f) and representative MERFISH 

sections (g) of subclasses shared between broad regions, (e,g) colored by subclass, and (f) 

colored by region. In (g) the best matching CCF reference atlas is shown on the left side of the 

MERFISH sections.      
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Extended Data Figure 1. scRNA-seq data analysis workflow. (a) Number of cells at each step 

in the scRNA-seq data analysis pipeline. The identification of doublets and low-quality clusters 

is described in more detail in Methods. The 10xv2 and 10xv3 data were first QC-ed and analyzed 

separately. After initial clustering the datasets were combined and QC-ed again before and after 

joint clustering. (b-c) Gene count and qc score thresholds used for each of the four major cell 

populations (neuroglial cells, neurons, immature neurons and granule cells, and other) on the 

10xv2 (b) and 10xv3 (c) datasets. (d-e) Number of cells isolated from dissection ROI’s (pre-QC) 

and number of cells passing QC (post-QC) for 10xv2 (d) and 10xv3 (e) datasets. We didn’t 

profile LSX, STR, sAMY, PAL, Pons, MY, and CB by 10xv2. Some regions were collected 

using different dissections between 10xv2 and 10xv3, but all regions were covered by 10xv3.   
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Extended Data Figure 2. MERFISH data generation, data processing and summary of 

results. (a) Workflow for generating and processing MERFISH data. (b) Correlation of gene 

detection between MERFISH and bulk RNA-sequencing for four different brain regions. (c) 

Histogram displaying the distribution of gene detection correlation between adjacent MERFISH 

sections. (d-f) Violin plots displaying distribution of cell volumes (d), gene detection (e), and 

mRNA molecule detection (f) for individual sections ordered from anterior to posterior (left 

panel) or cumulative distribution for the whole brain (right panel). Red dashed lines indicate 

cutoff for filtering. (g) Cumulative histogram showing the relative contribution of each subclass 

to each section ordered from anterior to posterior. (h) Pie chart showing the proportion of cells in 

each major division across the whole brain.  

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.531121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/


215 SC Otx2 Gcnt4 Gaba
PAG Lef1 Emx2 Gaba

PAG Cdh23 Gaba
218 SCs Dmbx1 Gaba
219 SC Lef1 Otx2 Gaba
220 CBN Dmbx1 Gaba
221 SCs Pax7 Nfia Gaba

O
223 LDT Fgf7 Gaba

Pax6 Gaba
226 RPA Pax6 H
227 SCig Tfap2b Ch nb3 Glut

P
229 SCsg Pde5a Glut

231 SC Tnnt1 Gli3 Gaba
232 SCs Lef1 Gli3 Gaba

235 PDTg Otp Olig3 Gaba

Pax3 Gaba
isp1 Gaba

243 P
P
P

247 NTS Dbh Glut

249 PAG Ucn Glut
T F

251 MA3 F xd2 Glut

fa Meis2 Glut
255 SPVO Mafa Meis2 Glut

fa Glut
257 SPVC Ccdc172 Glut
258 SPVC Nmu Glut
259 MDRNd Bves Glut
260 NTS C p Glut
261 R PA Pkd2l1 Gaba

Fat2 Glut

269 CB G anule Glut
270 DCO UBC Glut

272 MOB Meis2 Gaba
273 MOB T

md7 Gaba
md7 Gaba

md7 Gaba

280 HPF CR Glut
kinje Gaba

290 Tanycyte NN
291 Ependymal NN
292 Hypendymal NN
293 CHOR NN
294 OPC NN

296 OEG NN
297 ABC NN
298 VLMC NN
299 Pe i NN
300 SMC NN

303 BAM NN

305 DC NN
306 L

A

012 MEA Slc17a7 Glut
013 CO

PA Glut
015 CO

017 CA3 Glut

ACA Glut

024 L5 PPP Glut
025 L6b EPd Glut
026 L6b/CT ENT Glut

029 CT SUB Glut

031 NP SUB Glut
032 NP PPP Glut

034 DG Glut
035 NLO
036 Vip Gaba
037 Sncg Gaba

OA Ndnf Gaba
039 Lamp5 Gaba
040 Lamp5 Lhx6 Gaba
041 Pv
042 Pvalb Gaba
043 Sst Gaba

x1 Lhx6 Gaba
045 STRv Lhx8 Gaba

048 GPe S x6 Cyp26b1 Gaba
049 P
050 OT D3 F
051 MSN D1 Gaba
052 MSN D2 Gaba
053 MSN D1 Sema5a Gaba

PAL Chst9 Gaba

Pax6 Gaba

ve Gaba

063 MH Tac2 Glut
064 LH P x1 Glut
065 AD Se pinb7 Glut
066 A

k1 Glut

069 TH P kcd G in2c Glut
x4 Glut

072 PF Fzd5 Glut
F xb1 Glut

074 MM F xb1 Glut
075 PV

079 TRS Sln Glut
080 GPi Sk
081 R
082 SCH Gaba

x6 Gaba

Avp Gaba

093 A

097 PVHd Gsc Gaba
O

099 CO P

105 BST Tac2 Gaba
106 PVR Six3 Gaba

x1 Gaba

110 AHN Onecut3 Gaba
Pax6 Gaba

115 TMd F xd2 Gaba

117 DMH Hmx2 Gaba

119 DMH Hmx2 Glut

123 VMH Fezf1 Glut

125 LHA Pmch Glut
126 LGv Otx2 Gaba

T p73 Glut
k

PAG Pax6 Glut
131 MEA Otp Glut

134 PV

139 PM Pitx2 Glut
140 PH Pitx2 Glut
141 PB Lmx1a Glut

F xb1 Glut
F xb1 Glut

144 PAG Dm ta2 Glut
PA

F xa1 Glut
F xa1 Glut

150 PA
151 PAG P
152 CUN Evx2 Lhx2 Glut
153 PB Pax5 Glut

155 APN C1ql2 Glut
156 APN C1ql4 Glut
157 PA P

PAG Tcf7l2 Glut
159 SP P
160 PA P
161 PAG Tfap2b Glut
162 PAG P
163 PAG P
164 PAG P
165 PA P
166 SCig F xb1 Glut
167 SCdg Tfap2b Glut

ve Pitx2 Glut
fap2d Maf Glut

178 NTS Ph x2b Glut
P xb5 Glut

180 MB/HB Lhx1 Glut

F xb1 Glut
185 PSV Glut

x2b Ebf3 Lmx1b Glut
x2b Ebf3 Lbx1 Glut

189 CBN Glut

193 P

196 MV P
197 PA

T x Gaba

Pax8 Gaba
Pax5 Cdh23 Gaba

T Pax5 Npas1 Gaba
PAG Pax5 S x21 Gaba

PAG F xa2 Gaba

x2 Gaba
211 PA

PA
213 PRT Tcf7l2 Gaba

Su
bc

la
ss

C
la

ss
N

T 
ty

pe Se
x

M
et

ho
d

Li
gh

t c
yc

le

N
um

 o
f 

do
no

rs
 p

er
su

bc
la

ssSl
c1

7a
7

Sl
c1

7a
6

Sl
c1

7a
8

Sl
c3

2a
1

Sl
c6

a5
Sl

c1
8a

3
Sl

c6
a3

Sl
c6

a4
Sl

c6
a2

H
dc

0 5 25 50 10
0

15
0

Sex

F
M

Method

10xv2
10xv3

Light cycle

Dark
Light

Division
Pallium glutamatergic
Subpallium GABAergic
PAL−sAMY−TH−HY
−MB−HB neuronal
CBX−MOB−other neuronal
Neuroglial
Vascular
Immune

NT type
Glut
GABA
Glut−GABA
GABA−Glyc
Chol
Dopa
Sero
Nora
Hist
NA

Class
IT−ET Glut
NP−CT−L6b Glut
MOB−DG−IMN
CGE GABA
MGE GABA
CNU GABA
LSX GABA
MH−LH Glut
TH Glut
HY MM Glut
HY GABA
MOB−CR Glut
CNU−HYa Glut
CNU−HYa GABA
HY Glut
MB Glut
P Glut
MB−HB Sero
MY Glut
P GABA
MY GABA
MB GABA
MB Dopa
CB GABA
CB Glut
HY Gnrh1 Glut
Pineal Glut
Astro−Epen
Oligo
OEG
Vascular
Immune

Min

Max

Gene 
expression

10xv3

10xv2

Pa
lliu

m
gl

ut
am

at
er

gi
c

Su
bp

al
liu

m
G

AB
Ae

rg
ic

P

V Im
m

1000

10000

100000

1000

10000

100000

10xv3

10xv2

Pa
lliu

m
gl

ut
am

at
er

gi
c

Su
bp

al
liu

m
G

AB
Ae

rg
ic

P

V Im
m

2500

5000

7500

10000

2500

5000

7500

10000

12500

Yao Extended Data Fig. 3

a d

b

c

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.531121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531121
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Extended Data Figure 3. Transcriptomic cell type taxonomy of the whole mouse brain with 

additional metadata information. (a-b) Number of genes (a) or number of UMI’s (b) detected 

per cell in 10xv2 (top) or 10xv3 (bottom) datasets for each major cell division. The data shown is 

post-QC. (c) UMAP representation of all cell types colored by neurotransmitter (NT) type. NT 

type color code is the same as shown in (d). (d) The transcriptomic taxonomy tree of 306 

subclasses organized in a dendrogram (same as Figure 1a). The color blocks divide the 

dendrogram into major cell divisions. From left to right, the bar plots represent cell class 

assignment, NT type assignment, heatmap showing expression of major neurotransmitter marker 

genes, sex distribution, platform distribution, light-dark distribution of profiled cells, and number 

of donors that contributed to each subclass.  
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Extended Data Figure 4. Constellation plot of the global relatedness between subclasses. 

Each subclass is represented by a disk, labeled by the subclass ID and positioned at the subclass 

centroid in UMAP coordinates shown in Figure 1d. The size of the disk corresponds to the 

number of cells within each subclass, and the edge weights correspond to the fraction of shared 

neighbors (see Methods) between subclasses. Each subclass is colored by the class it belongs to. 

Curved line bubbles drawn around subclasses outline the major divisions. Distinct subclasses are 

highlighted by the red rings around the disks.   
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Extended Data Figure 5. Validation of data integration across 10xv2, 10xv3, and 

MERFISH datasets. (a-c) UMAP representation of all cell types colored by profiling platform 

(a), region (b), and subclass (c). Other than the regions only profiled by 10xv3 (LSX, STR, 

sAMY, PAL, Pons, MY), the cells from both platforms integrate very well. Cell types in 

isocortex and HPF have a lot more 10xv2 cells, consistent with our sampling plan. (d) 

Correlation of gene expression between 10xv2 and 10xv3 and between 10xv3 and MERFISH. 

For each gene, we computed the Pearson correlation of its average expression in each cluster 

across clusters between 10xv2 and 10xv3, and the correlation between 10xv3 and MERFISH. 

For 10xv3 and MERFISH comparison, distribution of the correlation values of all 500 genes in 

the MERFISH panel is shown. For 10xv3 and 10xv2 comparison, we show the correlation of 

5383 marker genes based on 10xv2, and 466 10xv2 marker genes that are also present on the 

MERFISH gene panel (the 34 MERFISH genes not shown are expressed in clusters not profiled 

by 10xv2). (e) 2D density plot showing on the X-axis the number of DEGs (based on 10xv3 

dataset) present on the MERFISH gene panel between all pairs of clusters, and on the Y-axis the 

number of such DEGs showing the same direction of changes between corresponding pairs of 

mapped MERFISH clusters. Almost all the DEGs between all pairs of clusters show the same 

direction of changes between 10xv3 and MERFISH. (f) 2D density plot showing on the X-axis 

the number of DEGs (based on 10xv3 dataset) present on the MERFISH gene panel between all 

pairs of clusters, and on the Y-axis the number of such DEGs showing the same direction of 

changes, and logFC > 1 between corresponding pairs of mapped MERFISH clusters. About 60% 

of DEGs between all pairs of clusters based on 10xv3 show significant fold change (FC) in 

MERFISH. (g) Similar analysis as in (f) but shown as violin plot by binning the number of 

10xv3 DEGs present on the MERFISH gene panel on the X-axis, with better resolution on 

closely related pairs with four or fewer DEGs present on MERFISH gene panels.   
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Extended Data Figure 6. Highly distinct neuronal types across the brain. UMAP representation 

(a) and representative MERFISH sections (b) of highly distinct subclasses across the brain, 

colored by subclass.   
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Extended Data Figure 7. Neuropeptide distribution across the whole mouse brain. (a) 

Scatter plot of Tau score over the number of clusters each neuropeptide is expressed in at the 

level of logCPM > 3. The Tau score is a measurement of cell type specificity, which varies from 

0 to 1 where 0 means uniformly expressed and 1 means highly specific to one type. (b) Scatter 

plot of Tau score over the number of clusters each peptide-liganded G-protein coupled receptor 

(GPCR) gene is expressed in at the level of logCPM > 3. (c) Expression level of neuropeptide 

(logCPM) per cluster. For each neuropeptide along the Y axis, clusters are sorted from the 

highest to lowest mean gene expression level along the X axis. (d) Expression level of 

neuropeptide (logCPM) per cluster. For each neuropeptide along the Y axis, clusters are sorted 

from the highest to lowest mean gene expression level along the X axis. For each gene, only the 

top 200 highest-expressing clusters out of 5,200 clusters are shown. (e) Representative 

MERFISH sections highlighting the spatial location of clusters expressing each of the 20 highly 

cell-type-specific neuropeptide genes (expressed in 8 or fewer clusters). (f) Representative 

MERFISH sections showing the expression of the neuropeptides present on the MERFISH gene 

panel that are widely expressed.   
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Extended Data Figure 8. Additional non-neuronal UMAPs and marker genes. (a-c) UMAP 

representation of non-neuronal cell types colored by subclass (a), region (b), and cluster (c). (d) 

Dot plot showing marker gene expression in non-neuronal subclasses. Dot size and color indicate 

proportion of expressing cells and average expression level in each subclass, respectively. (e) 

Dot plot showing marker gene expression in all clusters in the Astro-Epen class. Dot size and 

color indicate proportion of expressing cells and average expression level in each cluster, 

respectively. (f) Dot plot showing the marker gene expression in VLMC clusters. Dot size and 

color indicate proportion of expressing cells and average expression level in each cluster, 

respectively. (g) Representative MERFISH sections showing the spatial gradient of OEG 

clusters. (h) UMAP representation of OPCs and oligodendrocytes colored and labeled by 

supertype. (i-j) Representative MERFISH sections showing the spatial distribution of OPC (i) 

and Oligo (j) supertypes.  
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Extended Data Figure 9. Gene expression patterns in immature neuron populations. (a) 

Heatmap showing the gene expression changes as immature neurons transition to mature cell 

types, conserved between DG and MOB cell type development. Key markers at each stage of 

development are highlighted. (b) Heatmap showing the gene expression changes as immature 

neurons transition to mature cell types, specific to MOB cell types. (c) Heatmap showing the 

gene expression changes as immature neurons transition to mature cell types, specific to DG cell 

types.   
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Extended Data Figure 10. Transcription factor code. (a) The transcriptomic taxonomy tree of 

306 subclasses organized in a dendrogram (same as Figure 1a). The color blocks divide the 

dendrogram into major cell divisions. The color bars denote classes. Key transcription factors are 

annotated for nodes and subclasses on the tree. Red dots mark the Otp expressing subclasses 

described in panels (b) and (c). (b) Gene expression dot plot of Otp expressing subclasses. Dot 

size and color indicate proportion of expressing cells and average expression level in each 

subclass, respectively. (c) Representative MERFISH sections highlighting the Otp expressing 

subclasses.  
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Extended Data Figure 11. Transcription factor families. Expression of key TFs for each 

subclass in the taxonomy tree, organized by TF gene families. The color blocks divide the 

dendrogram into major cell divisions. The color bars denote classes.  
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Extended Data Figure 12. Circadian cycle associated expression changes in clock genes. (a-

b) Dot plot showing the expression of clock genes in light-phase and dark-phase cells within 

each cell class (a) or selected subclasses that have any clock genes with fold change logFC > 1 

between light and dark phases (b). Dot size and color indicate proportion of expressing cells and 

average expression level in each class or subclass, respectively. (c) Heatmap showing the logFC 

difference between light and dark phases for clock genes in selected subclasses as in (b).   
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Supplementary Table 1. Allen Mouse Brain Common Coordinate Framework version 3 

(CCFv3) regional ontology. Adopted from Wang et al, 2020.   

 

Supplementary Table 2. RNA-seq specimen information. All donors used in this study are 

listed, with associated metadata including sex, age, genotype, light/dark cycle phase, etc. From 

one donor multiple regions could be dissected (“roi.1”, “roi.2”, “roi.3”) or multiple FACS gating 

plans (“facs_population_plan.1-3”) were used.   

 

Supplementary Table 3. RNA-seq cell sampling per region. Number of cells sampled for each 

dissected region using 10xv2 or 10xv3 platform. ROI (region of interest) is the brain region 

combination for the 10x profiling.   

 

Supplementary Table 4. RNA-seq quality control thresholds used for each cell class. The 

first tab has the gene count and qc score thresholds for each cell class, the second tab has the list 

of genes used to calculate the qc score.  

 

Supplementary Table 5. Marker gene list. The list of 8,108 differentially expressed genes 

(DEGs) combined from the top 15 differentially expressed genes in both directions between all 

pairs of clusters, which was used for imputation, PCA dimensionality reduction and 2D/3D 

UMAP computation.  

 

Supplementary Table 6. MERFISH 500-gene panel used in Vizgen MERSCOPE platform.  

 

Supplementary Table 7. Cell type annotation. Detailed information for each cluster, including 

membership in broader categories (supertype, subclass, class, division and neighborhood), NT 

type, NT type combo, major NT marker genes, major neuropeptides, main dissection region, 

tentative anatomical annotation, number of 10xv2 and 10xv3 cells, relative proportions between 

sexes and light/dark conditions, accession numbers to cell types, and marker genes. Note that the 

tentative anatomical annotations are tentative and incomplete, and they will need to be refined in 

the future.  

 

Supplementary Table 8. Transcription factor marker gene list. The first tab shows the 499 

TF marker genes contained within the 8,108 DEG list. The second tab shows the TF gene 

modules shown in Figure 5d.  
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