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A high-resolution wind damage 
model for Europe
E. E. Koks  1,2 ✉ & T. Haer.1

Extreme wind events are among the costliest natural disasters in Europe, causing severe damages 
every year. Despite the significant impact, damages related to windstorms are an understudied topic in 
academia. For damage estimates, the community mostly relies on post-disaster insurance data, which 
is often not publicly available. Few studies offer more generic tools, but again these are often based on 
non-disclosed insurance data. To offer a generic, high-resolution, reproducible, and publicly accessible 
tool, this study presents a wind damage model that is built around publicly available hazard, exposure, 
and vulnerability data. We apply the model to assess building damages related to extratropical storms 

in Europe, but the methodology is applicable globally, given data availability, and to other hazards 
for which similar risk frameworks can be applied. The results show that for Europe, coastal regions are 
affected the most, with the United Kingdom, Ireland, Germany, France, the Netherlands, and Denmark 
as most affected countries. We find that the modelled damage estimates are in line with reported 
damages for a series of historical storms. The model is distributed as an open-source model to offer a 
transparent and useable windstorm damage model to a broad audience.

Extreme weather events cause increasing havoc throughout the world. Between 2012 and 2017, extreme weather 
events accounted for over 55% of the overall global damage and 72% of the insured damage caused by natu-
ral disasters1. Recent studies have shown that the increased occurrence of these events, such as wind and hail 
storms, can be (causally) linked to climate change2,3. For example, the severity of storm Desmond in 20154 and the 
extreme precipitation event of 2014 in the Netherlands5 have both been partly attributed to a changing climate6. 
In the future, it is expected that the frequency and intensity of extreme weather events may increase further due 
to anthropogenic influences7,8.

In Europe, examples of damaging storms are numerous and occur on an almost yearly basis. In 1999, storm 
Lothar caused severe damages across France with total recorded damages of up to 8 billion USD9. More recently, 
in 2010, Storm Xynthia caused total damages of over 6 billion USD in large parts of western Europe1. Not sur-
prisingly, due to the large damages to (insured) assets, the impacts of windstorms are extensively recorded and 
modelled by the insurance industry. Most European academic studies in the field of disaster risk modelling, 
however, tend to focus on flood and earthquake damage assessments10,11. The few windstorm damage studies that 
are conducted have focused primarily on Central Europe12,13 or are quick damage assessments by the European 
Severe Weather Laboratory14. To our knowledge, only one study has assessed the European-wide consequences 
of insured wind storm damages15, but no models have been developed yet to assess damages on a building level. 
Moreover, most studies, such as Schwierz et al.15, use insurance data which is often not publicly accessible, limit-
ing reproducibility and usability. To fill these gaps, this study presents a high-resolution building-level windstorm 
damage model for the whole of Europe, developed with open-source data, and distributed as open source.

The model developed in this study evolves from building footprint data extracted from OpenStreetMap 
(OSM). In recent years, OSM has become ever more complete and is reliable enough to be used for risk assess-
ment tools16. To exemplify the use of the damage model, we estimate the damages for 53 historical windstorms 
for 21 countries in Europe. These countries are selected based on reported historic damages9. Those countries 
that show negligible damages for extratropical storms are not considered in this analysis9. Wind damages are esti-
mated by combining historical storm footprints with building type specific stage-damage curves. As this is one of 
the first studies to perform such an analysis on a continent scale, damages are validated using historical data and 
model parameters are tested through a global sensitivity analysis.
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Results
Single storm damage estimates. Figure 1 shows four examples of damage estimates aggregated for each 
Nomenclature of Territorial Units for Statistics (NUTS) 3 region in Europe. The storms are selected based on their 
distinctive different tracks, and the results are shown on a logarithmic scale to emphasize spatial differences. 
All results are presented as absolute values for each NUTS3 region, as prioritization of adaptation or insurance 
policies is commonly based on aggregate damages rather than damages normalized for spatial extent or building 
count of the NUTS3 region. Storm Erwin (Fig. 1A, also named Gudrun) developed as a low-pressure system, 
strengthening while moving over the north Atlantic towards the coast of Northern Ireland and Scotland in 2005. 
Major damages occurred in Cumbria in the United Kingdom. After passing over the United Kingdom, it moved 
towards Denmark and Sweden before passing into the Baltic Sea. Erwin caused major damages in the south of 
Sweden, and throughout Denmark with the northern regions affected the most17. Storm Klaus (Fig. 1B) was a 
windstorm that made landfall over (large) areas of Spain, central and southern France, and Italy in 2019. Reported 
peak gust were over 200 km/hour, with sustained winds of 170 km/hour. The storm caused major damages in the 
south of France and throughout Spain. Storm Ulli (Fig. 1C) developed of the coast of the United States, moving 
rapidly across the Atlantic, passing over Ireland, Northern Ireland, England, and Scotland in 2012. It travelled 
over the North Sea towards Denmark where it caused major damages, eventually reaching Sweden. Storm Xaver 
(Fig. 1D) developed off the coast of Iceland and affected large parts of Northern Europe in the winter of 2013. 
It moved mostly over southern Norway, Denmark, and southern Sweden, after which it affected large parts of 
Poland before dissipating.

Figure 1. Damage estimates (USD) for (A) storm Erwin, (B) storm Klaus, (C) storm Ulli, and (D) storm Xaver.

https://doi.org/10.1038/s41598-020-63580-w


3SCIENTIFIC REPORTS |         (2020) 10:6866  | https://doi.org/10.1038/s41598-020-63580-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

The modelled spatial distribution of the affected regions for each of the four storms are in line with the 
reported storm impacts in the Extreme Wind Storms (XWS) catalogue9, and several reports on the specific 
storms17–19. The XWS catalogue is a database of storm tracks, model-generated maximum 3-second gust foot-
prints and provides estimates of insured damages for each wind storm included in the database. Not only are 
the overall geospatial patterns in line with reported damages, but also the location of the most affected areas. For 
storm Erwin, we find the highest damages in Cumbria (UK) and Denmark17, southern France and northern Spain 
for storm Klaus18, northern Denmark for storm Ulli9, and southern Scandinavia, Denmark, and northern Poland 
for storm Xaver19.

The modelled damages for storm Erwin are 2.6 billion USD, for storm Klaus are 2.7 billion USD, for storm Ulli 
0.2 billion USD, and for storm Xaver 1.5 billion USD. The XWS catalogue reports 2.2, 3.5, 0.2, and 0.9 billion USD 
for the four storms, respectively. When we take into account that the XWS catalogue reports only insured dam-
ages, and that our wind damage model calculates all damages, the results are in line with reported values, giving 
us increased confidence in the methodology. Section 2.4 provides more validation of our results.

Total damage and risk estimates. Figure 2 provides an overview of the total historical damages for the 
most damaged countries in each year, as estimated through our damage model using the most recent exposure 
portfolio from OSM. The damages are estimated in dollar damage values of the year 2012 and as if the storm were 
to occur in the present day, similar to the XWS catalogue9 and comparable to the approach by Waisman (2015), 
as presented in Table S5. As becomes apparent from Fig. 2, Germany is, in absolute terms, the most vulnerable for 
extratropical storms, having a large share of the total damage for almost every year. Especially in the years 1990 
and 1999, when several big storms passed over central Europe and Germany. Those years also stand out as the 
most damaging between 1981 and 2013. In 1990, several big storms hit Europe, such as Herta, Wiebke, Vivan, and 
Daria. Daria alone caused reported insured damages of 8.2 billion USD, primarily in Belgium, France, Germany, 
the Netherlands, and the United Kingdom. In 1999, Europe was hit by Anatol, Martin and Lothar, where the latter 
caused reported insured damages of 8 billion USD. Fig. S4 presents the same damages as Fig. 2, but per sector. 
The results show that damage to buildings in residential areas (as indicated by the Corine Land Cover (CLC) clas-
sification) are dominating the total damages in each storm. Impacts on transport related buildings are relatively 
minor and damage to agricultural related buildings and industrial/commercial buildings are somewhat similar.

Figure 3 presents the historical average annual damages (AAD) over the forty years of storm data that is used 
in this study. The results show that coastal regions are most at risk to wind storm damage. This is not surprising, 
as most violent storms are generated over open sea, losing wind speed when making landfall. The British Isles 
face heightened risk throughout the countries, as they lay in the path of many extratropical storms moving from 
west to east. Other countries are mostly affected within their coastal areas, except for Denmark and countries 
surrounding the Baltic Sea, which face high risk also further inland. A few surprising results can be seen as well, 
such as the areas at risk in Italy and the eastern part of Spain. The same is the case for inland Poland and parts of 
the Czech Republic. However, major storms do tend to affect the central European countries, such as storm Kyrill 
in 2007 and storm Xaver in 2013 (see Fig. 1D).

Sensitivity and uncertainty analysis. To get a sense of the model’s performance, we test the influence of 
choosing different fragility curves and alternative assumptions concerning building use (see Methods). In this 
study, a fragility curve is defined as the relation between the intensity of the storm (the x-axis) and its relative 
impact to the building asset (the y-axis). The results of the uncertainty analysis show that the outcome of the 
windstorm damage model can vary substantially, with certain parameter settings resulting in substantially higher 
damages compared to other settings. This distribution indicates that one cannot simply assume a certain set of 
parameter settings, without validating the outcomes. The results show that for the smaller countries the mean of 

Figure 2. Historical damages per country per year.
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the outcomes is more comparable to the vendor model estimates20 than the mean of the outcomes for the larger 
countries. The larger countries show more quickly an overestimation of the damage, indicating that (i) a differ-
ent set of fragility curves should be tested for these countries and (ii) there is a large regional differentiation in 
building type and value, meaning that a one-size-fits-all curve will be difficult to implement for large countries.

Figure 4 shows histograms for Denmark, The Netherlands, Austria and Belgium, illustrating the range of 
damages estimated using the parameter set. All cases show a skew towards the right, indicating that a specific set 
of parameter values (i.e. steep fragility curve in an urban area, see Methods) may result in substantially higher 
damages compared to the mean. The results show a large variation in model outputs both within each case, and 
between cases. The upper left panel in Fig. 4, for instance, showing the outcomes of storm Anatol for Denmark, 
has estimates ranging from almost 0 up to 35 billion Euros of damage. The average total damage for Anatol, esti-
mated by the four vendor models, however, is only around 2.5 billion Euro, which is at the lower end of the range 
estimated in this analysis. When comparing the outcomes of Fig. 4 with the vendor model estimates in Table S5, 
there seems to be a higher tendency to overestimate for the larger countries, than for the smaller countries, such 
as Ireland and Luxemburg. For the smaller countries, the damages calculated through the damage model show 
an average that is very similar to the average estimated damages of the four vendor models20. This tendency can 
be explained by two reasons. Firstly, it indicates that there is a large regional differentiation in building types and 
reconstruction costs (value of housing) in the larger countries. This makes it difficult to find a correct ‘average’ 
curve to use for all the regions in a country. Secondly, it may indicate that for some countries, such as the larger 
countries, a fragility curve should be used which is less steep or starts at higher wind speeds.

Figure 5 shows circle diagrams for four combinations of country/storms, illustrating the relative influence of 
each of the parameters considered in the sensitivity analysis on the damage estimations. The higher the share of a 
specific parameter, the more it influences the damage outcomes when it changes to a different setting. As becomes 
apparent from Fig. 5, the steepest fragility curve considered (c2) has the highest influence on the damage model-
ling outcomes, following by c3 and c4, respectively. The ratio of residential & commercial to industrial in urban 
(lu1) and rural (lu2) have the least influence in all cases considered in this study. These results are not unexpected. 
The fragility curves determine the damage ratio for specific gust speeds. The steeper the curve, the higher the 
damage ratios are at lower gust speeds. A high share of curve ‘c2’ will result in high damages, whereas a low share 
of curve ‘c2’ will result in low damages.

Validation of results. Estimating each of the historical damages in line with other models, or as the 
observed damage from Swiss Re reported in the XWS catalogue9, has proven to be difficult. This, however, should 
not come as a surprise. Even within the different vendor models there is a wide range in the damage estimations 

Figure 3. Total average annual damages (AAD) per NUTS3 area in Europe.
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(in some cases a factor four difference between their estimates). This indicates that all models behave differently, 
use very different vulnerability curves (perhaps even different curves for different storms) and, most likely, each 
of the models has been calibrated on different portfolios. This makes it difficult to validate our methodology to 
the vendor models, as it is unclear which of these performs better.

When comparing our results to the XWS catalogue (Table 1), it becomes apparent that most storms show 
lower damage estimates compared to the XWS catalogue damages9. Others are in the same range, such as Daria, 
Herta, Vivian and Christian. Interestingly, most of these are 1990 storms. Especially the storms between 2007 and 
2010 show much lower estimates. This may indicate that several storms in this time-period, among which Kyrill, 
were storms with local convective behavior. Local convective behavior is often not properly captured in the hazard 
data due to the resolution of the input data, and is something which can be addressed when higher resolution 
windstorm footprints become available.

Another cause of lower estimates are the remaining gaps in building footprint coverage of OSM (see 
Methods). One of the core issues with OSM is the spatial variability in its completeness21. Where urban areas 
tend to be well-mapped and complete, rural areas are often still lagging behind. Still, several studies have shown 
the success of OSM over the last few years. Tian et al.22 show that building count in OSM increased by almost 20 
times between 2012 and 2017. Brovelli and Zamboni23 found for the region of Lombardy (Italy) a 57% overlay 
between OSM and an authoritative dataset. However, they also found that around 9% of the buildings in OSM 
were not in the reference dataset, indicating that OSM could help to fill in the missing gaps in authoritative maps. 
In our study, we find ~100% building coverage compared to the official statistics in, for instance, The Netherlands, 
France and Czech Republic (Table S2). Accounting for the current incompleteness in this analysis is not straight-
forward, as it is nearly impossible to analyze the completeness of the current building coverage for each region 
within the windstorm paths. It might very well be that coverage is (near) complete for areas where wind speeds 
are high, such as in urban coastal areas, even if the overall coverage in a country is low. We show an upper bound 

Figure 4. Four examples of the range in model outcomes as calculated with the damage model. Panel (A) shows 
the frequency of damages for storm Anatol in Denmark, panel (B) for storm Kyrill in The Netherlands, panel 
(C) for storm Lothar in Austria and panel (D) for storm Daria in Belgium.
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estimate for the damages in Table 1, by correcting the estimated damages with the OSM coverage ratio in Table S2. 
This brings some storms more in line with the XWS catalogue reports, while others appear to overestimate the 
damages. Note that the XWS catalogue shows insured damages, while our method produces overall damages, 
so an overestimation can be expected. With the continuous improvement of OSM, the estimates are expected to 
improve over time.

Discussion and conclusion
This study presents a first high-resolution damage model to estimate the damages to buildings due to extratropical 
windstorms in Europe. The approach provides flexibility in the derivation by developing the vulnerability curves 
from building level upwards. The approach is particularly valuable to support insurers’ and academic assessments 
for post-disaster quick-scans and estimates of potential wind damage towards the future, allowing them to use an 
open-source and transparent approach. While we demonstrates the methodology on a continental scale, it is not 
bound by a geographic region, and thus can be applied globally provided that data is available. Moreover, the risk 
framework applied is similar to those of other hazards, such as flooding24 or earthquakes25, which means our open 
source methodology using OSM data is transferable to other hazards.

The damage and risk estimates show that mainly the countries on the western part of Europe are heavily 
impacted by extra-tropical storms, of which the United Kingdom, Ireland, Germany, France, the Netherlands and 
Denmark are the most damaged countries. As soon as one moves inland, the damages become substantially lower 
for most countries. Outliers are Austria and the Czech Republic, which may be due to suboptimal vulnerability 

Figure 5. Outcomes of the sensitivity analysis for four storm/country combinations. Panel (A) shows the 
outcome of the sensitivity analysis for storm Anatol in Denmark, panel (B) for storm Kyrill in The Netherlands, 
panel (C) for storm Lothar in Austria and panel (D) for storm Daria in Belgium. Three fragility curves are 
represented by ‘c2’, ‘c3’ and ‘c4’. The ratio of residential & commercial to industrial in urban is represented by 
‘lu1’ and in rural by ‘lu2’.
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curves or exposure values. To calibrate, additional observed data is required to estimate the ‘optimal’ vulnerabil-
ity curves for these countries. As such, the estimates from this study can be interpreted as a baseline for further 
developed of an open-source windstorm damage model.

The sensitivity analysis shows that for each country/storm combination, the fragility curves are the most 
important driver of the results. This does not come as a surprise, as they define when we observe damage at cer-
tain wind speeds. The availability of fragility curves is, unfortunately, limited. Fragility curves are often estimated 
and calibrated using insurance data that is not publicly available. While this damage data could also be collected 
by governmental agencies, or through scale model experiments in wind tunnels, this would be an expensive 
enterprise. In contrast, insurance companies are uniquely positioned for fast and cost-effective data collection. 
Considering the dependency of risk modelling on insurance data, it should be debated whether this information 
needs to be made more publicly available to improve open access disaster risk reduction efforts.

The still incomplete parts of the OSM database coverage is not consistent throughout Europe, and it can be 
expected that some results are an underestimation. We account for this incompleteness in Table 1 by showing 
upper damage estimates. We expect these estimates to improve in the future as the OSM database is constantly 
evolving and growing. Especially if building stock data is made publicly available by more governments, such as 
done in The Netherlands and France, OSM data will significantly improve. Furthermore, remote sensing by satel-
lite imagery is improving rapidly with increasing resolution, which can serve as input for OSM data. Even taking 
the current caveats into account, a comparison with the observed damages from the XWS catalogue and estimates 
from four vendor models shows that the model performs well. Outliers exist, but overall, the estimates are in the 
same order of magnitude as previous estimates. Validation shows that the storms that occurred in the 1990s seem 
to be better estimated compared to the storms that occurred between 2007 and 2010. In conclusion, we suggest 
that future research should primarily focus on further calibration of the vulnerability curves and exposure values 
to improve wind damage estimates.

Methods
The damage estimates are calculated using a conventional risk modelling framework (Fig. S1), where we define 
risk as a function of hazard – the probability and strength of an event with potential to cause harm; exposure – 
the value of assets subject to the hazard; and vulnerability – the susceptibility of the asset to hazards of a given 
severity26,27.

Hazard data. The storm footprints are developed by the UK Met Office and are made publicly available 
within the WISC project28. The footprints are maximum 3-second gust footprints over a 72-hour period and are 
developed using the ERA Interim and ERA-20C re-analyses. These re-analyses are dynamically downscaled using 
the UK Met Office Unified Model29, covering Western Europe and the North-East Atlantic. The 72-hour period 
is centered on the time the tracking algorithm identified as the maximum 925 hPa wind speed over land within 
three degrees of the track center. Each footprint describes the maximum 3-second gust in m/s at each grid point 
in the downscaled model domain over a 72-hour period. Footprints are available in NetCDF and TIFF format 
for each storm28. Grid points are located on a regular grid in a Cartesian coordinate system, with horizontal grid 
spacing of 0.04 degrees (approximately a 4.4 km resolution). This provides clear footprints and emphasizes the 

Storm name Date

Observed Insured 
damage (USD, 
indexed to 2012)

Damage estimated 
through damage 
model

Damage estimated through 
damage model (corrected for 
OSM coverage ratio in Table S2)

Great Storm of 87 16-10-1987 6.3bn 1.9bn 3.3bn

Daria (Burns’ Day 
storm)

25-1-1990 8.2bn 8.1bn 13.5bn

Herta 3-2-1990 1.5bn 1.6b 2.2bn

Vivian 26-2-1990 5.6bn 5.6b 10.5bn

Wiebke 28-2-1990 1.4bn 0.6bn 1.7bn

Anatol 3-12-1999 2.6bn 6bn 9.9bn

Lothar 26-12-1999 8.0bn 2.8bn 5.6bn

Martin 27-12-1999 3.3bn 2.3bn 4bn

Erwin (Gudrun) 8-1-2005 2.2bn 2.6bn 6.6bn

Gero 11-1-2005 0.6bn 0.3bn 1bn

Kyrill 18-1-2007 6.7bn 0.4bn 0.6bn

Klaus 24-1-2009 3.5bn 2.7bn 5.6bn

Xynthia 27-2-2010 2.9bn 0.7bn 2.2bn

Dagmar (Patrick) 26-12-2011 0.04bn 0.05bn 0.2bn

Ulli 3-1-2012 0.2bn 0.2bn 0.9bn

Christian (St Jude) 28-10-2013 1.3bn 2.0bn 3.3bn

Xaver 5-12-2013 0.9bn 1.5bn 3.7bn

Table 1. Comparison of estimated damages with Swiss Re observed insured damages reported in the XWS 
catalogue.
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higher spatial resolution provided by the WISC project compared to the earlier XWS database, as well extending 
the timeline into the past using ERA-20C. The selection of storms for downscaling used a similar approach to the 
selection for the XWS catalogue, which involved taking the known ‘insurance events’, plus some strong events 
exceeding a wind speed threshold along the storm track. See Table S1 for an overview of all wind storms included 
in this study.

Exposure data. All building footprint data are extracted from OSM, which has proven to be the most exten-
sive dataset of publicly available building footprints for Europe. Table S2 shows an overview of the number of 
buildings per country that are included in this analysis. For several countries, such as the Netherlands, Czech 
Republic and France, OSM data provides us with an almost complete nationwide coverage. For some countries, 
such as Belgium and Denmark, buildings are missing but coverage is still sufficient for the scales required. Full 
coverage for a certain region or country is primarily driven by the responsible public authority in a given region 
or country. If they decide to publish the building database publicly, it is only a matter of time before it will be 
included into OpenStreetMap. This happened, for instance, in the Netherlands and France. For countries where 
the building database is not publicly shared, such as the United Kingdom, the OSM database primarily depends 
on users who geo-reference buildings manually. It should be noted that using present-day exposure estimates to 
assess the impacts of an event is a common practice in the insurance industry20. This may result in an overestima-
tion of the damages due to increased building exposure over time.

To get a sense of the completeness of the OSM building stock, we compare the OSM building count with the 
reported building stock from the EU building database30. This database contains information on dwellings and 
non-residential buildings. Dwellings are places of residence such as a house, flat or an apartment. Table S2 shows 
that countries like Austria, the Netherlands, France, Switzerland, and Poland have good coverage, while Spain, 
Portugal, and the United Kingdom have a low coverage. Besides the previously mentioned argument with regards 
to the public sharing of data by authorities, another explanation for low(er) coverage in a country compared to 
the EU building database, is that the OSM database shows building footprints, and the EU building database 
reports on dwellings, of which many can be in the same building. This means that the actual coverage of building 
footprints can be expected to be better than reported here. Countries like the Netherlands and Austria seem 
‘overcomplete’, which can be explained by a growth in building stock from 2013, and the inclusion of sheds and 
other similar outhouse building types in the OSM database. Overall, it is important to acknowledge the limita-
tions of the incomplete database, which likely results in underestimation of damages, while also acknowledging 
its strength as a consistent database for large-scale windstorm analysis. Overall, we consider the OSM dataset as a 
good starting point that provides building coverage in an open access dataset with coverage on an EU-wide level. 
Additionally, due to its almost real-time updates, the dataset will only further improve in the future.

As the OSM data does not provide EU-wide coverage of building types, other datasets have to be used to fill 
this gap. The first step is to identify the potential use of the building. As of now, the best European data set to 
do so is the Corine Land Cover (CLC) dataset, developed by the European Environmental Agency31. This data 
set distinguishes 45 different land-use classes, varying from high-density residential areas to several different 
agricultural land-use classes. One benefit of using the CLC dataset is the transparency of its creation. For each 
land-use class, it is known what percentage of each cell consists of residential, commercial, industrial and various 
other land uses. This is consistent for the whole of Europe and country-specific. These percentages are used to 
identify the relative share of each of these potential building uses for every footprint (see Fig S2). By combining 
the footprint data with CLC data, we can assign use categories to buildings based on their location; i.e. buildings 
are categorized as low/high density residential, commercial/industrial or agricultural.

The PAGER database32 is used to add additional exposure characteristics to the buildings. This global database 
provides information on the main construction types for buildings in each country. More specifically, the database 
provides information on the specific use of building types for (i) urban residential, (ii) urban non-residential, 
(iii) non-urban residential and (iv) non-urban non-residential. The database differentiates between 106 different 
building types. In practice, it means that we assume that the building type of high-residential urban area in the 
Netherlands relates to the building types specified as urban residential for the Netherlands in the PAGER database.

Vulnerability data and damage estimates. Using the building characteristics as a starting point, we can 
estimate the potential damages. By applying the methods and fragility curves proposed by Feuerstein et al.12, we 
use fragility curves for different building construction types as shown schematically in Fig. S2. Linking between 
the fragility curves proposed by Feurenstein et al.12 and the damage per building type is done by aggregating the 
106 different building types of the PAGER database to the six different building types considered in Feuernstein 
et al.12. These building types are (i) weakest outbuildings, (ii) outbuilding, (iii) strong outbuilding, (iv) weak brick 
structure, (v) strong brick structure and (vi) concrete building. It should be noted that most of the European 
buildings fall in the last two categories.

To estimate damages, we need to move from fragility curves to vulnerability curves and thus add a mone-
tary value to the potential damages. The first step in moving from the fragility to the vulnerability curves is to 
use estimated maximum reconstruction costs per building type/construction type. The estimated reconstruction 
costs are taken from the study performed by Huizinga et al.33. In their study, they have estimated the maximum 
reconstruction costs for several building types for each country in the world. From their study, we have taken the 
values for the European countries considered in this project for (i) residential, (ii) commercial, (iii) industrial and 
(iv) agriculture. Taking this, and by using GDP levels for each NUTS3 region, we can regionally differentiate the 
reconstruction costs.

Figure S2 illustrates how the entire damage assessment works in practice. The initial step is a simple spatial 
overlay between all the datasets. This allows us to extract the relevant values from the land-use data and storm 
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footprints for each individual building. By combining the land-use value (and the corresponding detailed per-
centages of land-use shares (as illustrated in Fig. S2) with the PAGER building construction types, the damage 
ratio for a given building can be estimated. To estimate the damage in monetary terms, the damage ratio is multi-
plied by the reconstruction cost of this building type. Finally, damages are adjusted for the relative level of wealth 
in a region in comparison with the national level. More specifically, the damages are multiplied by the ratio of 
regional GDP versus the national GDP.

Uncertainty and Sensitivity Analysis
By performing a sensitivity analysis (SA), it is possible to identify the effect of each parameter on the model 
output. Parameters that have a large effect should receive additional attention to cope with the uncertainty they 
introduce, whereas it is justified to keep parameters that have little effect constant34. Since both UA and SA require 
a large amount of repeated model evaluations, we carry them out in a Monte Carlo modelling framework. Within 
this study, we follow the approach described by Crosetto et al.35 and Helton36 to investigate the uncertainty and 
sensitivity related to input parameters. They distinguish the following steps: (1) assigning distributions to input 
parameters, (2) generating samples of different combinations of input parameters, (3) evaluating the model using 
the generated combinations of input parameters, and (4) analysing the results for uncertainty and sensitivity.

The SA enables us to explore the variation in model output and to allocate the variation in this output to 
different input parameters, considering the interaction between these parameters. Using SAlib, a publicly avail-
able Python library37, we perform a Delta Moment-Independent Measure (DMIM) analysis, as developed by 
Borgonovo38 and Plischke et al.39. This type of sensitivity analysis can be interpreted as a global sensitivity indi-
cator which looks at the influence of input uncertainty on the entire output distribution without reference to a 
specific moment of the output (moment independence) and which can be defined also in the presence of corre-
lations among the parameters38. For a detailed explanation of the DMIM method and its performance we refer to 
Borgonovo38 and Plischke et al.39.

The main reason for choosing this specific sensitivity analysis method over the more common methods, such 
as Sobol, is that it allows for a presence of correlation. In this SA, we specifically want to focus on the influence of 
using different fragility curves and different ratios of residential/non- residential land-use (Table S6). Only fragil-
ity curve 2, 3, 4 (Fig. S2) are included, as manual testing shows that the steepest fragility curve (curve 1) almost 
always results in damages that are too high, whereas the least steep curves (curve 5 and 6) almost always results in 
damages that are much lower compared to observed damages.

The parameters listed in Table S6 have a close correlation with each other. The sum of the share of the curves, 
for instance, should always be 100%. More specifically, the total damage calculated per building is based on a 
specific share of each of the curves. Each curve represents a specific building type, with a specific relation between 
wind speed and damage. Unfortunately, there is no publicly available dataset containing the exact building type 
of each building in Europe and the values included in the PAGER database are countrywide. One can, however, 
imagine that this is in reality not homogenous over a country. As such, we want to identify the extent to which 
the damage change if we change the building construction type (e.g. change the fragility curve). As we only have 
a small set of fragility curves, it is interesting also to allow for a combination of fragility curves. Combining these 
curves effectively creates a new fragility curve, based on a specific share of each of the existing curves in this new 
curve. This total share of all curves combined, should be 100%. To illustrate this, Table S7 presents a few examples 
of potential combinations.

As well as varying the share of fragility curves, we are also interested in identifying to what extent the ratio of 
residential/commercial versus industry influences the total damage. As shown in Huizinga et al. (2017), maxi-
mum damage for residential and commercial building types are similar and much higher compared to the maxi-
mum damage for industrial building types. The similarity between the residential and commercial reconstruction 
cost is an outcome of the survey data, used to estimate the reconstruction costs33. Because the maximum damages 
vary between residential/commercial and industrial building types, it is essential to identify the influence of 
changing this ratio (and thus changing the damages). We are interested in this ratio for both urban and rural 
areas. In total, we set up a set of 5000 different combinations of parameter values.

It should be noted that these five parameters are not the exhaustive list of all the potential uncertainty in the 
model. The value of the elements at risk (the reconstruction costs) are a potential source as well. There are, how-
ever, two reasons why we focus on the fragility curves. Firstly, according to De Moel et al.40, the shape of the curve 
accounts for up to 45 per cent of the total sensitivity in damage modelling outcomes. The value of the elements at 
risk, on the other hand, only accounted for up to 10 per cent of the total model sensitivity. Secondly, we expect that 
the fragility curves are more likely to be adopted by the end-users than the potential value of the elements at risk.

Calibration process. The outcomes of the sensitivity analysis provide an opportunity to calibrate the param-
eters that are tested. By comparing the 5000 outcomes of the sensitivity analysis with the average damage esti-
mates of four vendor models20, we can identify which specific set of parameter settings provides us with the best 
match. It should be noted, however, that it may well be that the ‘best’ parameter setting for a country to estimate 
the impacts of one storm may not be the ‘best’ parameter setting for another storm. This is particularly a problem 
with storm Kyrill, where a lot of local convective activity was observed during the storm. This local activity is not 
modelled in our storm footprints, but caused the highest damages during storm Kyrill. Hence, the ‘best’ settings 
for storm Kyrill are most likely quite far off from the other storms. To deal with this issue, we aim to identify the 
parameter settings that produce the most sensible outcomes for as many storms as possible for a specific coun-
try. A one-size-fits-all approach is unfortunately impossible to achieve in such damage modelling frameworks. 
Tables S3 and S4 in the Supplementary materials show the outcome of the calibration process and the parameter 
settings used in the results presented in the this paper.
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Data availability
The full code of the model is available through https://wisc.readthedocs.io/en/latest/. All building footprints can 
be extracted from OpenStreetMap. The date of extraction for this study is July 1, 2018. All hazard data can be 
obtained through the Copernicus WISC Windstorm Information Service: https://wisc.climate.copernicus.eu/
wisc/.
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