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Targeted at high-energy physics research applications, our special-purpose analog neural 
processor can classify up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 70 dimensional vectors within 50 nanoseconds. The decision- 
making process of the implemented feedforward neural network enables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype of 
computation to tolerate weight discretization, synapse nonlinearity, noise, and other non- 
ideal effects. Although our prototype does not take advantage of advanced CMOS technology, 
and was fabricated using a 2.5-pm CMOS process, it performs 6 billion multiplications per 
second, with only 2W dissipation, and has as high as 1.5 Gbyte/s equivalent bandwidth. 

lthough neural networks offer excep- 
tionally powerful parallel computation 
performance, most current applica- 
tions focus on exploiting their leam- 

ing capabilities. The ability of neurai networks to 
learn from examples has given rise to several 
quite successful experiments. Those involving 
handwritten character recognition, speech recog- 
nition, and similar challenges in which biologi- 
cal systems overshadow artificial intelligence 
come to mind. 

Still, the benefits of unique parallel process- 
ing that neural networks afford warrant our atten- 
tion as well. With fully parallel neural hardware, 
processing time is independent of the data-size 
the network must process. Only a few comput- 
ing steps require serial processing, making com- 
putation time extremely short. The inner product 
computation involved does present one major 
challenge for realizing the hardware of neural 
nets. Therefore, if an application does not 
demand high precision, the compact, high-speed 
analog approach provides great advantages. 

Analog techniques let us create single-chip 
architectures of complex neural networks, fea- 
turing low cost and low power dissipation. Such 
hardware, offering processing times as low as 
several microseconds for as large as 128 dimen- 
sional input vectors, is already commercially 
available.' Still, solving for application domains 
that demand tens of nanoseconds of processing 

delayzt3 for similarly large input vectors is almost 
impossible. The new architecture this article 
describes provides precisely this sort of high- 
computing performance, offering one solution 
for a number of demanding applications. 

Nuclear research applications 
To help understand the behavior of funda- 

mental particles and forces, Hamburg's High 
Energy Physics (HEP) Institute Deutsches Elek- 
tronen Synchrotron (DESY) operates two large 
detectors installed within its hadron-electron ring 
accelerator (HEM). They are called H1 and 
Zeus. The two detectors contain different com- 
ponents, each specialized for detecting track, 
momentum, or energy of particles coming from 
the interaction region, where electrons and pro- 
tons collide. 

These detectors provide tremendous amounts 
of information through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200,000 analog channels, 
sampled at a rate of 10 million times a second 
and producing 10l6 bytes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata per second. The 
resulting data flow, which requires real-time pro- 
cessing, imposes a great challenge for the data- 
acquisition system, far exceeding the capabilities 
even of available supercomputers. 

The data-acquisition system must preselect 
and store physics events-those generated by 
the electron-proton collisions-on an off-line 
database for extensive off-line analysis. It dis- 
cards background events-those generated by 
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incidental collision of atomic particles with surrounding 
objects-because they contain no relevant information. 
Background events exceed the physics rate 10,000-fold. 

To share the computational burden, designers of the data- 
acquisition system divided the decision-making process into 
several segments. Figure 1 shows a possible segmented archi- 
tecture. In it, every segment or processing element, desig- 
nated by a circle, processes only a fraction of the total 
information. Each segment makes a local decision that goes 
to the next level. The segment receiving all the local deci- 
sions from previous layers makes the final decision in each 
calculation. The neural hardware this article discusses pro- 
vides one segment in this scheme. Such a segment must deal 
with gigabytes of data each second. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Feedforward neural networks 

One of the most thoroughly researched network families 
is the feedforward neural network (FFNN) with inner prod- 
uct neurons. Using the popular back-propagation learning 
algorithm, the feedforward architecture has successfully 
solved a variety of problems. These include image process- 
ing, pattern classification and recognition, nonlinear control, 
optimizaiton, and forecasting. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 shows a feedforward neural network having eight 
inputs, four neurons in the first or hidden layer, and a sin- 
gle neuron in the output layer. Note that all inputs connect 
to all first-layer neurons. We characterize these connections, 
called synapses, by their weight. 

A single neuron has several inputs and one output. The 
inputs and synaptic weights form the input and weight vec- 
tors. The neuron computes the weighted sum of its inputs: 
that is, the inner product of the input and weight vectors. 
The inner product is also called neuron activation. The neu- 
ron output depends on the inner product and the activation 
function. Equation 1 presents the computation performed by 
a single neuron. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Decision making. 
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Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,,,,, is the neuron output andJ.1 denotes the acti- 
vation function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxt and w, are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi th element of the input 
and weight vectors; ~0 and wo are responsible for biasing. 
The output of the hidden layer neuron is the input of the 
next layer neuron. In Figure 2, the second-layer neuron is 
the output neuron, which performs the same type of com- 
putation as the first-layer neuron. 

Although there are several kinds of feedforward networks, 
differing mostly in their activation function and the vector 
operation performed by the neurons, we are interested here 
only in networks with sigmoid activation functions and inner- 
product neurons. 

Figure 2. An 8 x 4 ~ 1  feedforward neural net. 

Massively parallel pattern classification. Physics and 
background events each have a characteristic feature. We may 
not know these characteristic features in advance; finding them 
enables us to recognize and classlfy such events. The problem 
is twofold. We must find the characteristic feature, and we 
must also design an algorithm that performs classification. In 
our problem, the required high speed strictly limits the com- 
plexity of the algorithm, making parallelism essential. 

Neural networks offer an elegant solution for finding an 
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Input space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAing samples are available, a neural network 
develops its own decision rule. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis rule is lit- 
erally as parallel as possible. This uniquely par- 
allel algorithm bears a closer look, as does the 
decision-making process of feedforward neur- 
a1 networks. However, we omit discussion of 
the learning phase and learning algorithm, 
because there are other ways of developing the 

The input of the decision-making or classifi- 
cation process is one sample of the electronic 
channels of the detector installed within the 
particle accelerator. For simplicity, let's look at 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3. Two-dimensional input space (a); 2D space of color and size (b). 
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event's characteristic feature, while also provid- 
ing the suitable classification algorithm. If train- 

a simple, two-dimensional case having two pat- 
tern classes. In Figure 3a, a 2D vector repre- 

sents the input of the feedforward neural net in a 2D input 
space. It shows two sample vectors from different time 
instances. The characteristic feature of these vectors is actu- 
ally their location in the input space. Figure 3b uses more 
common objects to illustrate this idea. Here we can see apples 
and cherries in the 2D space of color and size. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Separating by a single line. Through its simple pro- 
cessing, a single neuron can separate the two regions, apples 
and cherries, of Figure 3b. As we have seen, a neuron com- 
putes the inner product of its weight and input vectors. The 
inner product, or activation, depends on the relative posi- 
tion of these vectors. If the training process positions the 
weight vector suitably, the neuron activation will be posi- 
tive for apples and negative for cherries. Classification thus 
can proceed based on the sign of neuron activation. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 explains this concept in greater detail. Residing 
in the 2D input space are the weight vector w and two input 
vectors x, , ~2 from two arbitrary pattern classes. $ is the angle 
between w and x. The activation of the neuron with weight 
vector w is negative if x/2<$<3n/2 and positive if 
x/2<$<-3~/2. The line perpendicular to the weight vector 
($=z/2> separates the positive and negative regions. 

Separating by multiple lines. Figure 5 shows physics 
samples, generated by DESY's H1 detector, in a 2D plane. 
The first-layer neurons of a suitably trained network actual- 
ly transformed these samples from a 200-dimensional space 
into 2D space. The neurons in the following layers of this 
network make the final decision based on this 2D data. For 
the sake of simplicity we use this transformed 2D data to 
demonstrate the concept. The process is analogous for high- 
er dimensional spaces. 

The classification process in this situation involves deciding 
whether or not a sample falls inside the region bordered by 
the four lines. A very simple network-having just two inputs, 
four hidden layer neurons, and one output neuron-can make 
this decision. Every line corresponds to the separation bound- 

Figure 4. Separation by a single neuron. 
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- 
Figure 5. Physics events in 2D. 
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Figure 6. Computation by a single neuron: inner product (a); activation (b); and neuron output (c). 

ary of a single neuron in the first layer. The region containing 
the samples falls to the positive side of all four lines. Therefore, 
the output neuron makes its decision by checking to see if all 
hidden-layer neurons have “high” output or not. 

We usually obtain this decision rule by training the neur- 
al net on examples. However, we can also derive it “by hand 
from examples, or from the probability density functions 
(PDFs), by positioning the separation boundaries suitably. 

Note that we can use this decision-making concept for 
regions or clusters of any number and any complexity. 
Consequently, the computing time is independent of com- 
plexity, because all neurons and synapses belonging to one 
layer may work in parallel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Decision surface. If the classes overlap in the input space, 
complete separation is impossible, because patterns, locat- 
ed in the overlapping region, may belong to both classes. 
Although perfect classification is not possible, we can max- 
imize the likelihood of a correct decision. Knowing only the 
probability density functions of classes, we can calculate the 
probability that a pattern x with unknown origin belongs to 
a certain class. Again assuming two classes: 

Here Pxsndesignates the probability that the pattern belongs 
to class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, andfa(x) andf,(x) are the PDFs at point x of class 
a and class b. Iff,(x) andf,(x) are unknown, we can approx- 
imate them with the density of available examples in the 
neighborhood of x. (Note that calculating this probability is not 
necessary when training a neural net for classification.) 

Calculating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPx,, for each point lets us generate a proba- 
bility surface in which the probabilities are heights above 
the plain of input space. If a neural net performs an input- 
output mapping that produces the same surface as the prob- 

ability surface, it is an optimal classifier for the specific prob- 
lem. We also call the input-output mapping of a classifier 
neural net a decision surface. 

Figure 6 helps us understand how to obtain the decision 
surface of a single neuron. The first surface is the function 
corresponding to the inner-product operation. The nonlinear 
activation function maps this surface into the decision sur- 
face. We similarly construct the decision surface of a neural 
net having two or more layers. 

Figure 7a (next page) shows a decision surface of a sin- 
gle neuron when trained to classify 2D vectors with Gaussian 
PDFs, also shown in the figure. Since the activation function 
is sigmoid, and the probability density functions are Gaussian 
with the same variance, the shape of the decision surface 
perfectly matches the probability surface obtained by Equa- 
tion 2. (The cross section of Figure 7b further illustrates this 
point.) Therefore, the single neuron is an optimal classifier 
for this particular case, and its performance matches the the- 
oretical limit.4 

Training, overtraining, generalization. Learning algo- 
rithms are simply alternatives-just easy ways to develop the 
decision rule. Usually there is no guarantee that this easy- 
to-use method provides the optimal solution. On the other 
hand, if we find the optimal or suboptimal decision rule with 
either neural or classical methods, the neural net offers the 
most parallel structure to implement it. 

Ordinarily, the training procedure is quite straightforward. 
We divide the available set of examples into two parts, train- 
ing and test. Only the training set trains the network. The 
test set verifies adequate network performance on patterns 
that the training procedure did not include. 

Figure 8 shows a typical learning curve, obtained during 
the learning process of a 70~6x1 network, which we trained 
to classify physics and background patterns. The difference 
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samples of physics and background 
events. Furthermore, it contains the 
desired outputs for each pattern, for 
example Os and 1s corresponding to 
the two pattern classes. This way the 
training set defines the desired deci- 
sion surface with as many points for 
as many examples as it contains. 
Because it is discrete, this surface, 
however, is not equal to the optimal 
one. The optimal surface, calculated 
by Equation 2 ,  smoothly changes 
from 0 to 1 in the overlapping region 
(see Figure 7a). 

On the other hand, the desired sur- 
face, according to the training set, has 
heights of only Os and Is. Every exam- Figure 7. Probability density function, wi th correspoding optimal decision surface - .  

(a); cross section (b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Training steps 

Figure 8. Learning curve. 

between the error on the training and test sets is small, indi- 
cating that the generalization is good. Furthermore, the fig- 
ure demonstrates the phenomenon called overtraining, 
which begins to take effect after about IO6 training steps. 
Although the error on the training set decreases continu- 
ously, the error on the test set increases again after reaching 
a minimum. Simply put, the network specializes on the train- 
ing set, so its generalization degrades. Another explanation, 
however, gives more insight. 

The training set contains the actual examples, in our case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ple in the training set creates a sharp 
peak or a deep valley. If the neural 
network is large enough and we train 

it long enough, the net may learn that very complex surface, 
which is very different from the optimal one. Therefore, a large 
network may classlfy all the samples in the training set cor- 
rectly, while performing very poorly on the test set. 

Conversely, a simple network cannot generate such a 
complex decision surface. It will instead average the peaks 
and valleys. Paradoxically, because of this averaging, its deci- 
sion surface will approach the optimal one. For example, as 
Figure 7a shows, the network with the best generalization 
consists of a single neuron. 

Why analog hardware? 
Our neural chip serves as a special-purpose analog 

coprocessor. Adapting the digital terms, this coprocessor 
operates at 20 MHz and evaluates a 70~4x1 feedforward net 
within one clock cycle. Within one clock cycle, the equiva- 
lent digital signal processor should perform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA284 multiplica- 
tions, 284 additions, and four times the evaluation of the 
sigmoid function. 

Please note that our prototype analog chip, fabricated 
using a 2.5-pm CMOS process, does not take advantage of 
advanced technology. A digital processor built with this tech- 
nology would operate with as low as a IO-MHz clock fre- 
q ~ e n c y , ~  thus producing several orders of magnitude lower 
computing performance. Furthermore, the digital processor 
should integrate an 8-bit analog-to-digital converter per 
input-altogether 70 for the neural net-as the detectors prc- 
viding the input signals are always analog. 

Taking advantage of a modern 0.8-pm CMOS process 
would increase the speed and network size of the analog 
chip tenfold. By executing up to 1013 multiply-and-add oper- 
ations per second, unprecedented computing performance 
would result. 
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Figure 9. Chip photo (a); consecutive circuit blocks using the signal path (b). 

System description 

t" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure 9b shows the functional blocks 
of the feedforward network of Figure 9a, 
from input to output along one of the 
several hundred parallel signal paths. 
The time delay introduced by this cir- v"t9 
cuitry determines the processing delay 
of the complete network. Therefore, 
thanks to the fully parallel architecture, 

(b) the processing delay is independent of (a) 

the input pattern size. 
The network input voltage in Figure Figure 10. Unit synapse (a); programmable synapse (b). 

9b is multiplied by -1 with the voltage 
multiplier, composed of transistors T1, 
T2, T3, and T4. The synapse, consisting of T5 and T6, is a 
VHF transconductofl that multiplies its input voltage by its 
transconductance to provide an output current. The sign of 
the synapse depends on the state of the sign switch. If we 
apply the input voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVIN directly to the transconductor, 
the synapse is positive. To obtain a negative synaptic weight, 
we apply the inverted version of the input signal. 

All a neuron's synapses connect to a common, low- 
impedant summing node that sums their output current 
according to Kirchhoff's law. A cascaded single inverter 
amplifier stage, T9 and T10, generates the strongly nonlin- 
ear threshold function of the cell body. The output of the 
cell body forms the input of the second-layer synapse, T11 
and T12. The circuit sums the currents of the second-layer 
synapses of the low-impedant summing node. To enable off- 
set cancellation, the chip applies a bias current to every sum- 
ming node in the network. 

Except for the four polysilicon resistors, the circuit is built 
of identical CMOS inverter stages. Using identical CMOS 
inverter stages has several advantages. Prototyping is easy 
because of uniform layout; actually, we could implement the 

entire circuit on an analog or digital CMOS gate array. 
Furthermore, quiescent internal node voltages are the 

same throughout the circuit, minimizing offset-related prob- 
lems. Use of parallel-connected units to implement different 
weight values guarantees accurate relative synaptic strengths. 
Having analog inputs makes efficient use of pins. To trans- 
fer an equivalent amount of information with digital signals 
would require 8 to 12 times more pins, leading to unrealis- 
tic pin counts. 

The synapse. Figure 10 shows the unity synapse circuit 
and its variable-weight version. The circuit is basically a 
CMOS inverter you might recognize from digital circuits. Two 
basic differences, however, yield the required analog func- 
tionality. In contrast to digital mode operation, we use the 
input-voltage/output-current characteristic, with a very low 
impedant (output) load. With this configuration, the circuit 
need not charge the parasitic capacitance at the output to 
high voltages, so operating speed increases considerably. 
Also, we must properly size the p and n transistors to obtain 
the appropriate input-output relationship. 

Because we want to integrate hundreds to tens of thou- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 11. Measured synapse characteristic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sands of synapses on a neural chip, the most important 
demand on the synapse is for simplicity. Also essential is 
speed. The synapse circuit of Figure 10a satisfies both expec- 
tations. The operating conditions just described can yield a 
synapse bandwidth of up to 1 GHz, in contrast to approxi- 
mately 10 MHz in the digital mode, assuming a 2.5-pm CMOS 
process. 

Figure 11 shows the measured input-output characteristic 
of the synapse circuit of Figure lob. The parameter is the 
synaptic weight, obtained by the number of parallel- 
connected unit synapses. We use the square-law model to 
derive the principle of operation. As long as the transistors 
operate in strong inversion and saturation, we can write the 
input-output relationship as follows: 

Io,,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDp - ID, = K P (V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGsP - VT>' - K,(VGs,, - VTJ2 (3) 

where 

where 

In an ideal case, the coefficients a and c of Equation 4 are 
0, and the synapse acts as a multiplier with a multiplication 
factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. In a practical situation, a and c are small compared 
to w. The effect of these parasitic terms is a small offset and a 
nonlinear term in the synapse characteristic, barely noticeable 
on Figure 11. As we will show, these imperfections do not nec- 
essarily influence the neural computation we are discussing. 

Current output of synapses enables easy summing to com- 
pute the activation value. All we need is to connect the output 
of synapses; summing will proceed according to Kirchoff s law. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cell body. Transistors T7-TlO of Figure 9a form the cell 
body. The input node of the cell body is the summing node. 
All a neuron's synapses connect to the summing node, mak- 
ing the parasitic capacitance of this node large. To keep the 
dominant time constant of this node below a few nanosec- 
onds, the node impedance must be small. Small input imped- 
ance of the cell body is essential not only for keeping the 
dominant time constant of the summing node low but also 
for ensuring correct summing of synaptic currents. 

The system requires low input impedance for the entire 
dynamic range of input or activation current, and strongly 
nonlinear input-output characteristic. A single inverter ampli- 
fier stage with resistive feedback generates low input imped- 
ance; cascading two stages produces strong saturating 
nonlinearily. So long as the transistors of the first stage, T 7  
and T8, operate in strong inversion and in saturation, the 
voltage gain of the amplifier stage remains high. As a con- 
sequence, the input impedance of this stage is low due to the 
feedback, which enables high-speed operation. We can 
adjust the saturation point of the cascaded structure with the 
feedback resistance R. Figure 12 shows the input-output char- 
acteristic of the cell body. 

Voltage inverter. We can realize a negative synapse by 
inverting its input signal. Transistors Tl-T4 of Figure 9b per- 
form voltage multiplication. If we properly size the p and n 
transistors, the output voltage of the circuit equals -1 times 
the input voltage. Because the inverted version of the input sig- 
nal is forwarded to every neuron in the network, one voltage 
multiplier stage per input suffices for the entire circuit. The 
output impedance of this stage is low due to the unity feed- 
back of transistors T3 and T4, enabling high-speed operation. 

Why not onchip learning? On-chip learning requires 
extra circuitry, at least as large as the neural network itself 
without learning. Limits in the maximum size of the chip 
force designers to make trade-offs. Either they can have a 
small network with learning, or a large network without 
learning. Consequently, they should avoid on-chip learning 
whenever network size or speed or both is more important. 

There is another, probably even more important reason 
to avoid on-chip learning. Accuracy requirements for the 
computation make it difficult to implement most of the leam- 
ing algorithms with analog hardware. Cost increases more 
rapidly with increasing accuracy for analog design than for 
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digital. Therefore, analog techniques are attractive for designs 
that do not require high accuracy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Why zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot programmable? Because its most important 
demand is for speed, we could use a neural net with fixed 
weights. Programmability is not essential for the high-energy 
physics application we studied, since the performed classifi- 
cation task is fixed. Still, a programmable chip clearly affords 
advantages; it would allow for reconfiguration of the neural 
net and would let us use the same hardware for other similar 
applications. We intended our mask-programmable prototype 
chip for demonstration purposes, and have already developed 
and fabricated a new, digitally programmable version. 

How much precision do we need? 
Clearly, high speed and simplicity of multiplication make 

the analog approach attractive for implementing neural net- 
works. A major concern is the influence of nonideal effects, 
such as noise, nonlinearity, and parameter spread due to fab- 
rication. By understanding the decision-making process of 
the feedforward neural net, we can see how these effects 
influence it. The type of neural signal processing we are dis- 
cussing tolerates nonideal effects well. 

Elaborate analytic discussion is beyond our scope here; 
nor does it give much insight. A few illustrative figures can 
explain the point more efficiently. 

Noise, parameter spread due zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto fabrication, weight 
discretization. Noise in various forms is always present in 
analog circuitry. In addition to its usual meaning, we can con- 
sider other deviating effects similar to noise, such as parame- 
ter spread due to fabrication and weight discretization. These 
phenomena commonly introduce uncertainty to the parame- 
ters of the particular system. A clear difference between these 
effects is their variation through time, or in other words, their 
spectral distribution. White noise, for instance, has a uniform 
spectral distribution; flicker noise increases with decreasing 
frequency. We may usefully consider discretization and para- 
meter spread as noise with zero frequency. 

Drawing general conclusions about their effects on the deci- 
sion-making process of the feedforward neural network is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdif- 
ficult. The actual consequences depend highly on the particular 
situation. Figure 13a (next page) shows a few effects in 2D. 

As this figure shows, because of noisy inputs, the region 
of classes expands according to the amount of noise. Noisy 
weights introduce uncertainty in the angle and position of the 
separation boundary. The closer the classes are, the larger the 
influence of noise. Consequently, if the distance between 
separate regions is large enough, noise has no effect at all on 
the decision-making process. 

Once we have examples or known PDFs of a particular 
problem, statistical and geometrical methods will let us derive 
specifications for the allowable amount of noise. The physics 
and background classes in our database overlapped, so noise 
affects classification performance. Figure 13b shows the per- 
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Figure 12. Hardware activation function. 

cent of misclassified physics and background patterns as a 
function of decision threshold, which is the separating acti- 
vation value of the output neuron. 

Activation values above the decision threshold designate 
the physics pattern; activation values below designate a back- 
ground pattern. Perfect classification is not possible with 
overlapping pattern classes. There is trade-off in the effi- 
ciency of classification for the two classes. Figure 13b shows 
that if we want to recognize more than 99.5 percent of back- 
ground events, 30 percent of physics events will get mis- 
classified. On the other hand, if we allow a 1-percent 
misclassification of background events, the percentage of 
misclassified physics events decreases from 30 to 15 percent. 

Figure 13c presents the noisy case. To demonstrate the effect, 
we have exaggerated the amount of noise. Measurements of 
our chip indicate noise levels within a line thickness shown 
by Figure 13b. When reading the noisy plot, we must take the 
worst cases. Measured noise levels indicate less than 1 percent 
difference in the just-mentioned performance figures. 

How good are these figures? In the data-acquisition system 
we chose to discuss, the analog neural processor could 
reduce the data flow a hundredfold by losing only 15 per- 
cent of the physics events. This would allow sufficient time 
for the consecutive level of decision-making systems to per- 
form more elaborate analysis on the remaining data. 

Nonlinearity. When processing continuous time signals 
in analog circuits, nonlinearity is a major concern. Non- 
linearity affects the frequency spectrum of the signal, lead- 
ing to harmonic distortion. The situation is different in the 
decision-making process of the feedforward neural network. 
Signals are stationary, so only the shape of the decision sur- 
face is affected. 
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Figure 14a shows a nonlinear synapse characteristic that 

is typical for simple analog circuitry. To help us visualize the 
effect, we exaggerated the nonlinearity in this figure. Figure 
11 showed a realistic, measured synapse characteristic of the 
our chip, which is more linear. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA nonlinear synapse charac- 
teristic leads to nonlinear separation boundaries, 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14b shows the decision surface of a single neuron 
with nonlinear synapses. It also presents the weight vector 
in the 2D input space. In contrast to the ideal, axially sym- 
metric shape of Figure 7, here the decision surface is also 
curved in the direction perpendicular to the weight vector. 
Consequently, as we can see from the contour plot of Figure 
14b, the equiprobability lines and therefore the separation 
boundary are also curved. Clearly, in contrast to the neuron 
with linear synapses (LN), a nonlinear-synapse-neuron (NLN) 
can solve nonlinearly separable problems. 

48 IEEE Micro 

Increasing the gain or steepness of the activation function 
shrinks its transition region (see Figure 15); the separation 
boundary becomes marginally linear. We may again con- 
clude that the influence of the nonlinear synapse is depen- 
dent on the particular arrangement of pattern classes and 
decision boundaries. Assuming practical figures for nonlin- 
earity, neglecting the effect coinpletely will influence classi- 
fication performance in our applicaiton much less than 1 
percent. Performing calculations with the effect during the 
training period eliminates the influence completely. 

Chip specifications 
Figure 16 shows the transient response of  the neural 

processor. Assuming less than 5-ns rise time for the input 
signal, the network output is available within less than 50 
ns. It reaches 95 percent o f  its final value at almut 20 ns, and 
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99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApercent at about 25 ns. Table 1 presents specifications of 
our neural processor. We have already developed and fab- 
ricated a programmable version of this neural chip using a 
more advanced 1.5ym CMOS process. Table 1 also shows 
the specifications for that chip. 

ALTHOUGH OUR PROTOTYPE does not take advantage 
of advanced technology, and was fabricated with a 2.5-pm 
CMOS process, it achieves unique computing performance 
through its parallel neural architecture and analog compu- 
tation. Taking advantage of a modern 0.8-ym CMOS process 
would increase by tenfold both speed and network size. 
Unprecedented computing performance of up to 1013 mul- 
tiply-and-add operations per second would result. 

The advantages of the analog approach, such as its high 
speed and compact inner product operation, make it an 
attractive candidate for implementing high-speed neural net- 
works. The new architecture we have been discussing allows 
fast prototyping for dedicated applications on analog or dig- 
ital gate arrays. The circuit clearly demonstrates the strong 
attributes of analog VLSI neural networks. 

The single-chip pattern classifier performs 6 billion multi- 
ply-and-add operations per second. It possesses a remark- 
able 1.5-Gbyte/s input bandwidth, because of its analog 
input signals. This performance lets us classify up to 70 
dimensional vectors within tens of nanoseconds. 

Continuations of the research we discussed in this article 
resulted in another successful prototype that also includes 
programmablity. This concept will find wider application 

Table 1. Chip specifications of mask-programmable and programmable chips. 

Item Mask-programmable chip 
(2.5-pm DLM CMOS) 

Programmable chip 
(1.5-km DLM CMOS) 

Network architecture 
Equivalent input bandwidth 
Chip size 
Number/resolution of synapses 
Synapse size 
Number of transistors 
Pin-grid array package 
Total processing delay 
Computation speed 
Power dissipation 
On-chip static RAM 

7 0 x 4 ~ 1  feedforward 
1 .5 G bytes/s 
6 . 5 ~ 4  mm2 
289/5 bits (4 bits + sign) 
120x50 pm2 
17,000 
122 pins 
<50 ns 
6 billion multiplications/additions per second 
2W a t  V,, = 2.5V, V,, = -2.5V 
- 

7 0 x 6 ~ 1  feedforward 
5 Gbytes/s 
1 0x9mm2 
426/5 bits (4 bits +sign) 
400x70 pm2 
40 000 
144 pins 
< 20 ns 
20 billion multiplications/additions per second 
<lw 
3,750 bits 
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because the same hardware can lie reconfigured for quite 
different applications, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas image recognition, speech 
processing, and character recognition. Our research showed 
that analog neural hardw-are will play a dominant role when- 
ever massive computing performance. low price. sniall size, 
and low power dissipation are important factors. p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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