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Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-

computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. 

This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP 

speller with a computer monitor. A frequency and phase approximation approach was developed to eliminate the 

limitation of the number of targets caused by the monitor refresh rate, resulting in a speller comprising 32 flickers 

specified by eight frequencies (8-15Hz with a 1Hz interval) and four phases (0, 90, 180, and 270 degrees). A multi-

channel approach incorporating Canonical Correlation Analysis (CCA) and SSVEP training data was proposed for 

target identification. In a simulated online experiment, at a spelling rate of 40 characters per minute, the system 

obtained an averaged information transfer rate (ITR) of 166.91 bits/min across 13 subjects with a maximum 

individual ITR of 192.26 bits/min, the highest ITR ever reported in EEG-based BCIs. The results of this study 

demonstrate great potential of a high-speed SSVEP-based BCI in real-life applications. 

Keywords: Steady-state visual evoked potential; brain-computer interface; mixed frequency and phase coding; 

speller. 

1. Introduction 

In recent years, electroencephalogram (EEG)-based 

brain-computer interfaces (BCIs) have received 

increasing attention from researchers in neural 

engineering, neuroscience, and clinical rehabilitation.
1-10

 

Although the performance of current BCIs has 

improved significantly in the past few decades, the 

current performance level does not support widespread 

usages. Around the year 2000, the maximum 

information transfer rate (ITR) of BCI systems was up 

to 10-25 bits/min.
1
 Recent progresses in system design 



and data analysis considerably improved the ITR of 

BCIs. For example, the BCI-based spelling systems that 

use P300 potential and visual evoked potentials (VEPs) 

show their advantages of large amount of commands 

and high communication speed.
11, 12

 Typically, a P300- 

or VEP-based BCI is capable of reaching more than 30 

characters for spelling. The P300 speller (a 6x6 matrix) 

proposed by Farwell and Donchin,
13

 for example, 

reached a speed up to 5 characters/min. Jin et al.
14

 

obtained an ITR of 35 bits/min using a 12×7 matrix 

speller. Recently, in an electrocorticogram (ECoG)-

based P300 BCI, a subject achieved an averaged ITR of 

69 bits/min and a peak ITR of 113 bits/min.
15

 The speed 

of a P300-based speller is limited by the time during 

which the characters are intensified and the time 

between two consecutive characters.
16

 In general, VEP-

based spellers show a higher communication speed than 

P300 spellers. Bin et al.
17

 reported an ITR of 58 

bits/min in a 6-target system based on steady-state 

visual evoked potentials (SSVEPs). Recently, higher 

ITRs were reported in SSVEP-based BCIs. Nakanishi et 

al.
17

 reported an ITR of 95 bits/min in an 8-target 

system. Chen et al.
18

 reported an ITR of 105 bits/min in 

a 45-target system. High ITRs were also reported in 

BCIs using other types of VEP signals. For example, 

using a code modulated VEP (c-VEP) paradigm, Bin et 

al.
19

 reported an ITR of 108 bits/min in a 32-target 

speller. By applying adaptive learning and error 

correction methods, Spüler et al.
20

 obtained an ITR of 

144 bits/min using a similar c-VEP paradigm. In an 

early study using c-VEP, a subject with implanted intra-

cranial electrodes reached communication rates of 10-12 

words/min.
21

  

Generally, the performance of an SSVEP-based BCI 

depends on three major factors: (1) stimulus 

presentation, (2) multiple target coding, and (3) target 

identification. First, the properties of flickers in stimulus 

presentation need to be stable and accurate so that the 

elicited SSVEP signals are robust and reliable for 

accurate target identification. When using a monitor-

based stimulator, the number of targets is always limited 

by the monitor refresh rate. Recently, the approximation 

approach proposed by Wang et al.
22

 solved this problem 

by using varied frequencies in different stimulation 

cycles. Using this method, any frequency lower than the 

half of the refresh rate can be accurately rendered on a 

computer screen.
23

 Second, target coding plays an 

important role in system design and implementation. An 

efficient target coding approach can enhance the signal-

to-noise ratio (SNR) of VEP and thereby increase the 

discriminability of different targets. The multiple access 

methods widely used in telecommunications have been 

adopted in VEP BCIs.
24

 For example, the time division 

multiple access (TDMA), frequency division multiple 

access (FDMA), and code division multiple access 

(CDMA) methods have been applied to current VEP 

BCIs.
24

 Third, a high-speed VEP BCI requires an 

efficient target identification method.
12

 Recently, a 

multi-channel approach based on Canonical Correlation 

Analysis (CCA) has been widely used in SSVEP 

BCIs.
16, 25

 Compared with power spectrum density 

(PSD)-based methods using single-channel EEG data, 

CCA can significantly improve target identification 

accuracy.
25

 The CCA-based method has been further 

improved in several recent studies.
26, 27, 28

  

This study aims to explore the communication speed 

limit of an SSVEP-based BCI. Currently, most SSVEP 

BCIs showed ITRs lower than 60 bits/min.
16

 The 

highest ITR reported in SSVEP-based BCIs, which 

employed frequency coding in system design, was 105 

bits/min.
18

 Obviously, there is room for improvement. 

By employing hybrid coding approaches such as mixed 

frequency and phase coding,
29

 the number of targets can 

be increased by integrating frequency and phase 

information while the discriminability of different 

targets remains. Furthermore, target identification 

approaches could be improved by integrating subject 

specific training data into the CCA-based method. 

Therefore, by solving the problems of stimulus 

presentation, multiple target coding, and target 

identification, the SSVEP-based BCI has potential to 

achieve a higher communication speed. This study 

proposes and develops a high-speed SSVEP BCI to 

support fast spelling at a speed of 40 characters per 

minute, which corresponds to an ITR up to 200 

bits/min, a new world record to the best of our 

knowledge. To this end, this study first develops an 

extended approximation approach in visual stimulus 

presentation to realize accurate coding of both 

frequency and phase of SSVEPs. The limitation of 

number of targets caused by the monitor refresh rate can 

thereby be totally eliminated. A 32-target speller can be 

implemented by rendering the flickers characterized by 

eight frequencies (8-15Hz with a 1Hz interval) and four 

phases (0, 90, 180, and 270 degrees) on a regular LCD 

monitor. To assess the frequency and phase information 



  

 

 

within short time durations, this study proposes to 

incorporate CCA and individual SSVEP training data in 

target identification. The primary novelties and 

contributions of this study include: (1) a frequency and 

phase approximation approach for rendering visual 

flickers using a regular monitor refresh rate, e.g. 60Hz, 

(2) a 32-target speller design using a mixed frequency 

and phase coding scheme, and (3) a target identification 

approach using CCA with reference signals derived 

from individual SSVEP training data. 

The rest of this paper is organized as follows. Section 2 

describes the frequency and phase approximation 

approach, the target identification method using CCA 

with SSVEP training data, and the experimental setups 

in the spelling experiment. Section 3 illustrates the 

signal characteristics of the SSVEP signals and the 

results of BCI performance in the spelling experiment. 

Section 4 discusses important factors that affect the 

system performance and points out some directions for 

further improvement. Finally, Section 5 concludes the 

study. 

2. Methods 

2.1. Visual stimulus design 

In the conventional SSVEP-based BCI systems that use 

a computer monitor to present visual stimuli, a visual 

flicker that alternates white and black frames at a 

specified frequency is used to elicit SSVEPs. In this 

way, the number of flickers that can be presented 

simultaneously on the screen is always limited by the 

refresh rate. It is impossible to realize the frequencies by 

which the refresh rate is not dividable (e.g., an 11Hz 

flicker under a 60Hz refresh rate) because the 

white/black reversal needs to occur every 2.73 frames. 

Wang et al.
22

 proposed an approximation approach that 

can generate a visual flicker at a flexible frequency by 

approximating the frequency with variable number of 

frames in a stimulation cycle. For instance, a flicker at 

11Hz under a 60Hz refresh rate can be realized by 

interleaving five and six frames in a stimulation cycle as 

‘1110001110011100011100111…’. Based on this 

 

Fig. 1.  Time series of quad-phase coded (A) flickering signals, (B) elicited SSVEPs by the 10Hz stimuli presented on an LCD 

monitor with a 75Hz refresh rate, and (C) amplitude spectra, (D) a scatter diagram of the complex spectra of elicited SSVEPs at 

10Hz from a subject.  



approach, any stimulus frequency up to the half of the 

monitor refresh rate can be realized. Therefore, the 

number of visual stimuli that can be presented on a 

monitor can be considerably increased.
18, 22

 Importantly, 

a recent study found that the phase and latency of 

SSVEPs elicited by the approximation approach are 

stable across different frequencies,
17

 suggesting that the 

approximation approach could be extended to the phase 

domain. In this way, the mixed frequency and phase 

coding approach, which was proved highly efficiently in 

stimulus coding,
29

 could be used to implement a BCI 

speller with a large amount of targets. Generally, to 

render a visual flicker at frequency f with an initial 

phase φ, a stimulus sequence s(f,φ,i) can be generated 

by: 

   𝑠 𝑓,𝜙, 𝑖 = square 2𝜋𝑓 𝑖
𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑅𝑎𝑡𝑒

+ 𝜙          (1) 

where square[] generates a 50% duty cycle square wave 

with levels 0 and 1, and i indicates the frame index. In 

this way, visual stimuli tagged by the same frequency 

but different phases can be realized. Theoretically, the 

extended approximation approach can thereby 

implement visual flickers at any frequency (up to the 

half of the refresh rate) and any phase (from 0 to 360 

degrees). Fig. 1A shows time sequences of quad-phase 

coded flickering signals (0, 90,180, and 270 degrees) at 

10Hz on an LCD monitor with a 75Hz refresh rate. 

According to the photic driving effect,
30

 frequency and 

phase information of the target stimulus can be 

accurately decoded from the resulting SSVEP signals 

(Fig. 1B). 

2.2.  Signal characteristics analysis 

The stimulus sequence generated by (1) can accurately 

encode specified frequency and phase in a visual flicker. 

The frequency and phase of the resulting SSVEPs can 

be estimated through calculating the complex spectrum 

using fast Fourier transform (FFT). An amplitude 

spectrum value and a phase spectrum value can be 

obtained at the stimulation frequency in the complex 

spectrum. The initial phase is the angle between the 

imaginary and real parts of the complex spectrum value. 

The amplitude and initial phase of SSVEPs can be 

estimated as follows: 

              𝐴𝒙 𝑓 = abs
!

!
𝒙 𝑛 𝑒

!!!!
!

!!
!!

!!!        

                          𝜙𝒙 𝑓 = angle
!

!
𝒙 𝑛 𝑒

!!!!
!

!!
!!

!!!          (2) 

where 𝑥(𝑛)  is single-channel EEG signal, 𝑓  is the 

stimulation frequency, 𝑓! is the sampling rate, and 𝑁 is 

the number of data points. Then, the phase difference 

(in π radians) between SSVEPs at two stimulating 

frequencies (𝑓! and 𝑓!) can be defined as: 

  Δ𝜙𝒙 𝑓! − 𝑓! = 𝜙𝒙(𝑓!) − 𝜙𝒙(𝑓!)                        (3) 

The response latency t (in milliseconds) between the 

visual stimulus and the SSVEP response can be derived 

by measuring phase as a function of stimulating 

frequency and estimating the slope of the curve:
31, 32 

𝑡 = −
!!𝒙 !!!!!

!×(!!!!!)
×1000                                   (4) 

 

2.3. Target identification 

2.3.1. Standard CCA-based method 

In an SSVEP BCI using mixed frequency and phase 

coding, target identification can be performed using a 

two-step strategy: (1) frequency detection, and (2) phase 

detection. This study first proposes a standard CCA-

based method for frequency and phase detection. The 

frequency of SSVEPs is first detected by the CCA 

approach, and then the initial phase, which can be 

obtained through calculating the angle of complex 

spectrum value at the detected frequency, is compared 

with reference phases measured from the training data.  

CCA has been widely used to detect the dominant 

frequency of SSVEPs in SSVEP-based BCIs.
16, 25

 CCA 

is a statistical way to measure the linear relationship 

between two multidimensional variables, which may 

have some underlying correlation. Considering two 

multidimensional variable 𝑿 , 𝒀  and their linear 

combinations 𝒙 = 𝑿
𝑻
𝑾𝑿  and 𝒚 = 𝒀

𝑻
𝑾𝒀 , CCA finds 

the weight vectors, 𝑾𝑿 and 𝑾𝒀, which maximize the 

correlation between 𝒙 and 𝒚 by solving the following 

problem: 

max𝑾𝑿,  𝑾𝒀
𝜌 𝒙,𝒚 =

! 𝑾𝑿

!
𝑿𝒀

!
𝑾𝒀

! 𝑾
𝑿

!
𝑿𝑿!𝑾𝑿 ! 𝑾

𝒀

!
𝒀𝒀!𝑾𝒀

.     (5) 

The maximum of 𝜌 with respect to 𝑾𝑿 and 𝑾𝒀 is the 

maximum canonical correlation. Projections onto 𝑾𝑿 

and 𝑾𝒀 are called canonical variants. Here, 𝑿 refers to 

the set of multi-channel EEG signals and 𝒀 refers to the 



 

 

set of reference signals that have the same length as 𝑿. 

The reference signals 𝒀! are set as 

𝒀! =

𝑠𝑖𝑛 2𝜋𝑓𝑛

𝑐𝑜𝑠 2𝜋𝑓𝑛

⋮

𝑠𝑖𝑛 2𝜋𝑁!𝑓𝑛

𝑐𝑜𝑠 2𝜋𝑁!𝑓𝑛

, 𝑛 =
!

!!
,
!

!!
,⋯ ,

!

!!
             (6) 

where 𝑓 is the target frequency, 𝑁!  is the number of 

harmonics, and 𝑁 is the number of sampling points. To 

recognize the frequency of the SSVEPs, CCA calculates 

the canonical correlation between the multi-channel 

EEG signals and the reference signals at each stimulus 

frequency. The frequency of the reference signals with 

the maximal correlation is selected as the frequency of 

SSVEPs. 

Once the frequency of SSVEP is detected, the complex 

spectrum value at the detected frequency is calculated 

by FFT to obtain the initial phase of SSVEP signals 

from a single channel. The complex spectrum is then 

projected onto the reference phase directions 

corresponding to targets at the detected frequency, 

which can be measured from SSVEP training data.
22

 

The visual stimulus with the maximum projected value 

is then selected as the target. 

2.3.2. CCA with SSVEP training data 

Since training data are required for phase detection, this 

study proposes a CCA-based method, which uses 

reference signals from SSVEP training data, for target 

identification in a one-step way. In the proposed 

method, training reference signals 𝑿! can be obtained 

by averaging training set 𝑿!  (𝑘 = 1,2,… ,𝐾) . 

Correlation coefficient between projections of test set 𝑿 

and training reference signals 𝑿! using CCA-based 

spatial filters (i.e., 𝑾𝑿 in (5)) can be used to identify a 

target from 𝐾  visual stimuli. In this study, three 

canonical coefficients including (1) 𝑾
𝑿𝑿

 between test 

set 𝑿  and training reference signals   𝑿! , (2) 𝑾𝑿𝒀 

between test set 𝑿 and sine-cosine reference signals  𝒀, 

and (3) 𝑾
𝑿𝒀

 between training reference signals 𝑿! and 

sine-cosine reference signals 𝒀 are used as spatial filters 

for improving the SNR of SSVEPs. Fig. 2 illustrates the 

procedure of target identification using the proposed 

method. The target can be identified by recognizing the 

training reference signal that maximizes the correlation 

coefficient. Although the standard CCA-based method 

cannot discriminate different phases, it still contributes 

to frequency detection. Therefore, this study considers 

four different approaches including the standard CCA-

based frequency detection method and the three 

 

Fig. 2.  Flowchart of the proposed target identification method using CCA with SSVEP training data.  



correlation analysis based methods using CCA with 

SSVEP training data.  

This study develops an ensemble classifier to combine 

decisions from the four methods described above. A 

correlation vector 𝝆 is defined as follows: 

𝝆 =

𝜌!
𝜌!
𝜌!
𝜌!

=

𝜌

𝜌 𝑿
!
𝑾

𝑿𝑿
,𝑿!𝑾

𝑿𝑿

𝜌 𝑿
!
𝑾𝑿𝒀,𝑿

!
𝑾𝑿𝒀

𝜌 𝑿
!
𝑾𝑿𝒀,𝑿

!
𝑾𝑿𝒀

                              (7) 

where 𝜌 𝑎, 𝑏  indicates the Pearson’s correlation 

coefficient between 𝑎  and 𝑏 . To combine these 

correlation values, the following weighted correlation 

coefficient 𝜌 is used as the final feature value for target 

identification: 

𝜌 = sign 𝜌!
!

!!! ∙ 𝜌!
!                                      (8) 

where sign() is used to remain discriminative 

information from negative correlation coefficients 

between test set and training reference signals (e.g., 0 

degree vs. 180 degrees, 90 degrees vs. 270 degrees). 

The training reference signal that maximizes the 

weighted correlation value is selected as the reference 

corresponding to the target. 

To validate the efficiency of the combined method, this 

study compared classification performance of the 

following five methods: (M1) a standard CCA-based 

method; (M2) a correlation analysis using a spatial filter 

derived from test set and training reference signals; 

(M3) a correlation analysis using a spatial filter derived 

from test set and since-cosine reference signals; (M4) a 

correlation analysis using a spatial filter derived from 

training reference signals and sine-cosine reference 

signals; and (M5) a combined method using the 

ensemble classifier described in (8). 

 

2.4. Experiment 

2.4.1. Experiment 1: Offline experiment 

The offline experiment was designed to analyze the 

characteristics of SSVEPs elicited by the mixed 

frequency and phase coded visual stimuli and obtain 

training reference signals and classifiers for the 

simulated online experiment. In this experiment, 32 

visual flickers (3 cm×3 cm) were concurrently rendered 

on a Dell S2409W 24-inch LCD monitor (Dell Inc.) 

with a refresh rate of 75Hz. The horizontal and vertical 

intervals between two stimuli were 2 cm and 3 cm 

respectively. As shown in Fig. 3, targets in a 4×8 matrix 

were specified by four phases (0, 90, 180, 270 degrees) 

and eight frequencies (8Hz to 15Hz with a 1Hz 

interval). Different phases and frequencies were used to 

label rows and columns respectively. The visual stimuli 

at all frequencies and phases were produced by the 

approximation approach described in (1). The 

stimulation program was developed under MATLAB 

(Mathworks, Inc.) using the Psychophysics Toolbox 

extensions.
33

  

Thirteen healthy adults (10 males and 3 females, mean 

age: 23 years) with normal or corrected-to-normal 

vision participated in the study. All subjects signed an 

informed consent form approved by the Research Ethics 

Committee of Keio University before participating in 

the experiment. The subjects were seated in a 

comfortable chair 70 cm in front of the LCD monitor in 

a dark room. They were asked to gaze at one of the 

visual stimuli (a target stimulus) for 4 seconds, and 32 

targets were indicated in a random order in a run. At the 

beginning of each trial, a red rectangle marker (see Fig. 

3) appeared for 0.5 second at the position of the target 

stimulus. Subjects were asked to shift their gaze to the 

target within the same 0.5 second duration. After that, 

all stimuli started to flicker simultaneously for 4 

seconds on the LCD monitor. To reduce eye movement 

artifacts, subjects were asked to avoid eye blinks during 

the stimulation period. Seven runs were carried out for 

each subject. To avoid visual fatigue, subjects could 

take few minutes of rest between two runs. EEG data 

were recorded by 16 electrodes over the parietal and 

occipital areas (FPz, F3, F4, Fz, Cz, P1, P2, Pz, PO3, 

PO4, PO7, PO8, POz, O1, O2, and Oz) using the 

g.USBamp (g.tec medical engineering GmbH) with a 

 

Fig. 3.  Presentation of the 32-target visual stimuli using 

mixed frequency and phase coding.  



 

 

sampling rate of 512Hz. Event triggers generated by the 

stimulus program were sent from the parallel port of the 

computer to the amplifier and recorded on an event 

channel synchronized to the EEG data. The 4s EEG data 

epochs synchronized to the visual stimuli were extracted 

and saved for further analysis.  

2.4.2. Experiment 2: Simulated online experiment 

To estimate an online performance of the BCI based on 

the proposed paradigm, a simulated online experiment 

using the same data recording setup, was conducted 

after the offline experiments. The subjects were asked to 

input a sequence with all 32 characters in a run, and 

repeat the run twice in the experiment. The order of 

targets was randomized in the task sequence. Unlike the 

4s stimulus duration used in the offline experiment, 

visual stimuli flickered for only 1 second on the LCD 

monitor in the simulated online experiment. The 1s 

EEG epochs synchronized to the visual stimuli were 

used for estimating online BCI performance.  

2.5. Data analysis and performance evaluation 

In offline and simulated online experiments, all data 

epochs were referenced using common average 

reference (CAR) and then band-pass filtered from 7Hz 

to 50Hz with an infinite impulse response (IIR) filter. 

Zero-phase forward and reverse IIR filtering was 

implemented using the filtfilt() function in Matlab. 

Considering a latency delay in the visual system (see 

Equation (4)), the data epochs for offline and simulated 

online experiments were extracted in [0.12s 4.12s] and 

[0.12s 1.12s] respectively (time 0 indicated stimulus 

onset). The 120ms delay was selected towards highest 

classification accuracy in the offline experiment. To 

avoid overfitting in CCA, eight electrodes over the 

parieto-occipital region (PO3, PO4, PO7, PO8, POz, 

O1, O2, and Oz) were selected for representing the 

SSVEP data. In the standard CCA using sine-cosine 

reference signals, the number of harmonics (𝑁!) was set 

to 3.The single-channel SSVEP signal recorded from 

the Oz electrode with a small Laplacian reference was 

used for phase detection using the standard CCA-based 

method.  

The recorded EEG epochs were classified by the 

proposed target identification methods described in 

Section 2.3. For the offline experiment, the 

classification accuracy was estimated using leave-one-

out cross-validation. Training reference signals and 

classifiers derived from offline data using 1s-long data 

epochs were applied to analyzing data epochs from the 

simulated online experiment. In addition to 

classification accuracy, BCI performance was also 

evaluated by ITR calculated as follows
1
: 

𝐼𝑇𝑅 = 𝑙𝑜𝑔!𝑀 + 𝑃𝑙𝑜𝑔!𝑃 + (1 − 𝑃)𝑙𝑜𝑔!
!!!

!!!
∗

!"

!
   (9) 

 

Fig. 4.  Complex spectra of (A) stimulus sequences and (B) averaged SSVEPs across all subjects at each stimulation frequency. For 

each sub-figure, horizontal and vertical axes indicate real and imaginary parts of complex spectra. Black dots indicate spectrum values 

corresponding to other stimulation frequencies. Dashed circle indicates spectrum values with maximal amplitude.  



where M is the number of targets, P is the accuracy of 

target identification, and T (seconds/selection) is the 

average time for a selection. This study calculated 

classification performance using different T (Target 

gazing: 1s, 2s, 3s, 4s; Gaze shifting: 0.5s) in the offline 

experiment. For the simulated online experiment, T is 

1.5s (1s for target gazing and 0.5s for gaze shifting). 

3. Results 

3.1. Amplitude, phase, and latency 

Fig. 1 shows an example of stimulus signals (Fig. 1A) 

and elicited SSVEPs (Fig. 1B) corresponding to four 

different phases (0, 90, 180, 270 degrees) at 10Hz from 

a subject. Fig. 1C shows amplitude spectra of the 

SSVEPs, which exhibit peak amplitudes at 10Hz for all 

phases. The scatter diagram of complex spectrum for 

SSVEP signals (Fig. 1D) indicates four clusters 

corresponding to four phases. These results indicate that 

the frequency and phase approximation approach can 

elicit robust SSVEP signals that encode accurate 

frequency and phase information. This approach 

provides a flexible solution for presenting a large 

number of flickering targets in an SSVEP-based BCI. 

Fig. 4A and Fig. 4B illustrate the complex spectra of 

stimulus sequences and averaged SSVEPs across 

subjects for each stimulation frequency. The SSVEPs 

were recorded from the Oz electrode. Ideally, spectrum 

values corresponding to target stimulation signals 

should appear at 0, 90, 180, 270 degrees with maximal 

amplitude while those corresponding to non-target 

stimulation signals have zero amplitude. Although there 

were some frequency and phase errors in stimulus 

sequences (e.g., stimuli at 15Hz) generated by the 

approximation approach, each target still has distinct 

frequency and phase characters and thereby can be 

discriminated from others. The resulting SSVEP signals 

show similar patterns to the stimulus signals. The 

change of phases between stimulus signals and SSVEPs 

is caused by a latency delay in the visual system, which 

can be estimated by (4). Fig. 5 shows the estimation of 

phase and latency of SSVEPs. The averaged phases 

across subjects were plotted in Fig. 5A as a function of 

stimulus frequency for four phase conditions. All 

frequency-phase curves fit linear models with a similar 

slope, indicating that the latency of SSVEP is a 

constant. Fig. 5B shows the latency estimated by the 

slope of the linear regression line. The latencies of the 

SSVEPs for four phase conditions (0, 90, 180, 270 

degrees) were 144ms, 141ms, 142ms, and 145ms 

respectively. The estimated latencies are consistent with 

results in previous studies.
34, 29

 A one-way analysis of 

variance (ANOVA) indicates the difference of latency 

between different phase conditions was not significant 

(F(3,48)=0.43, p=0.73). These results suggest that, by 

extracting distinct frequency and phase information, 

single-trial SSVEP signals can be accurately 

discriminated using machine-learning based methods. 

3.2. Offline BCI performance 

Fig. 6 shows the averaged accuracy (Fig. 6A) and ITR 

(Fig. 6B) across all subjects for the offline experiments. 

 

Fig. 5.  (A) Averaged phases of SSVEPs at all stimulation frequencies specific to four phases, and (B) estimated latencies for four 

phases across subjects.  



 

 

Results for different CCA-based methods were 

calculated with different data lengths from 1s to 4s. The 

five methods were described in Section 2.3.2. It is 

evident that the four methods (M2, M3, M4, and M5) 

outperformed M1 under all conditions with different 

data lengths. The ensemble classification method (M5) 

showed the highest classification accuracy and ITR. 

With 1-s data length, the accuracy increased from 

70.95±17.53% to 88.84±11.48% (M1 vs. M5, t=-5.69, 

p<10
-3

), resulting in an ITR increase from 111.65 

±41.75 bits/min to 161.00±34.23 bits/min (M1 vs. M5, 

t=-7.43, p<10
-5

). Since the accuracy was relatively high 

(>88%) with all data lengths, the highest ITR was 

obtained with the shortest data length (1s). According to 

(9), when using a longer data length, a minor increase of 

classification accuracy leads to a significant decrease of 

ITR. For example, compared with 1-s data length, 

classification accuracy increased by 4.26% when using 

2-s data length (88.84± 11.48% vs. 93.10± 6.16%, 

paired t-test: t=-2.81, p<0.05); however, ITR dropped 

from 161.00±34.23 bits/min to 104.02±12.49 bits/min 

(paired t-test: t=9.36, p<10
-6

). These results indicate that 

the data length of 1s is optimal for achieving a high ITR 

in an online system using the proposed diagram.  

To further compare the performance of these methods, 

this study calculated classification accuracy and ITR for 

all five methods using data lengths of 0.5s and 1s. As 

shown in Fig. 6C and Fig. 6D, for both conditions, the 

averaged classification accuracy and ITRs using the 

four methods (M2, M3, M4, and M5) were significantly 

higher than the standard CCA-based method. The 

performance improvement is more significant with 0.5s 

data length. More specifically, accuracy of M1 was 

significantly lower than the other methods (M1 vs. M2: 

t=-8.15, p<10
-5

; M1 vs. M3: t=-9.03, p<10
-5

; M1 vs. M4: 

t=-10.06, p<10
-6

; M1 vs. M5: t=-10.45, p<10
-6

) while M5 

significantly outperformed the others (M5 vs. M1: 

t=10.45, p<10
-6

; M5 vs. M2: t=4.81, p<10
-3

; M5 vs. M3: 

t=8.58, p<10
-5

; M5 vs. M4: t=6.52, p<10
-4

). There was no 

significant difference between M2, M3, and M4 (M2 vs. 

M3: t=-0.32, p=0.75; M2 vs. M4: t=-0.18, p=0.85; M3 vs. 

M4: t=-0.69, p=0.50). These results proved the efficacy 

of the combined method based on the standard CCA 

method and the correlation analysis approaches using 

CCA-based spatial filtering. 

3.3. Simulated online BCI performance 

Table 1 lists the classification accuracy and ITR in the 

simulated online experiment. Results corresponding to 

frequency-only classification (8 classes), phase-only 

classification (4 classes), and mixed frequency and 

phase classification (32 classes) were calculated 

separately. The frequency-only classification calculated 

the mean of results from four 8-class frequency 

classifications corresponding to the four phases. 

Similarly, the phase-only classification calculated the 

mean of results from eight 4-class phase classifications 

corresponding to the eight frequencies. Across all 

subjects, classification accuracies under the three 

conditions were all above 90% (Frequency: 

95.55 ± 3.98%, Phase: 91.83 ± 5.68% Mixed: 

91.35± 5.69%). In general, frequency classification 

shows higher accuracy than phase classification. Three 

subjects (Subjects 7, 8, and 10) obtained 100% accuracy 

in frequency classification. Given a trial length of 1.5 s, 

these classification accuracies resulted in high ITRs. For 

mixed frequency and phase coding, an averaged ITR of 

166.91±18.50 bits/min (range: 126.34-192.26 bits/min) 

was obtain across all subjects. The ITRs for frequency 

and phase coding were 105.64±  11.55 bits/min and 

59.55±10.85 bits/min respectively.  

Fig. 7 illustrates the simulated online performances with 

different data lengths. Fig. 7A shows that the 

Table 1.  BCI performance in simulated online experiment. 

 Accuracy (%)  ITR (bits/min) 

Subject Frequency Phase Mixed  Frequency Phase Mixed 

S1 96.88 93.75 92.19  108.47 62.54 168.70 

S2 93.75 90.62 90.62  99.49 56.10 163.47 

S3 93.75 95.31 93.75  99.49 66.11 174.12 

S4 93.75 92.19 92.19  99.49 59.23 168.70 

S5 96.88 90.62 90.62  108.47 56.10 163.47 

S6 96.88 93.75 92.19  108.47 62.55 168.70 

S7 100.00 95.31 95.31  120.00 66.11 179.79 

S8 100.00 96.88 96.88  120.00 69.99 185.78 

S9 89.06 78.12 78.12  89.06 35.82 126.34 

S10 100.00 98.44 98.44  120.00 74.36 192.26 

S11 95.31 85.94 85.94  103.82 47.65 148.70 

S12 98.44 96.88 96.88  113.60 69.99 185.78 

S13 87.50 85.94 84.38  84.22 47.65 144.03 

Mean±Std 95.55±3.98 91.83±5.68 91.35±5.69  105.64±11.55 59.55±10.85 166.91±18.50 

 



classification accuracy increased as data length 

increased from 0.1 s to 1 s. The starting point of the data 

segment was set to time 0 (stimulus onset). Note that, a 

latency delay of 120ms was used in extracting the data 

epochs. For example, the data length of 0.1 s 

corresponds to the time window between 0.12s and 

0.22s in real EEG data. Even with a very short data 

length, classification accuracy was significantly higher 

than the chance level under all three classification 

conditions. With short data lengths, the phase-only 

classification accuracy was relatively high compared 

with the frequency-only classification accuracy. As 

shown in Fig. 7B, by reducing target detection time 

using a shorter data length, ITR could be improved 

although accuracy decreased. This phenomenon is 

common under all three classification conditions. The 

highest ITR appeared at the data length of 0.6 s (Mixed: 

203.56 ± 30.74 bits/min; Frequency: 121.58 ± 21.47 

bits/min; Phase: 72.01±14.96 bits/min). In practice, a 

tradeoff between accuracy and ITR should be 

considered to optimize the data length for practical 

system use. 

4. Discussion 

4.1. Information transfer rate 

ITR has been widely used in evaluating system 

performance of BCIs.
1, 35

 In this study, an averaged ITR 

of 166.91± 18.50 bits/min was obtained across 13 

subjects. The highest and lowest ITR for individuals 

was 192.26 bits/min (Subject 10) and 126.34 bits/min 

(Subject 9) respectively. To our knowledge, an averaged 

ITR of 166.91±18.50 bits/min is the highest ITR 

reported in EEG-based BCIs, which broke the previous 

record of 144 bits/min in a code modulated VEP (c-

VEP) based BCI.
20 

 

Fig. 6.  (A) Target identification accuracy, (B) ITRs as functions of data length (from 1 s to 4 s) calculated by different methods, (C) 

accuracy, and (D) ITR for data lengths of 0.5 s and 1 s. Five methods include: (M1) a standard CCA-based method; (M2) a correlation 

analysis using spatial filter derived from test set and training reference signals; (M3) a correlation analysis using spatial filter derived 

from test set and since-cosine reference signals; (M4) a correlation analysis using a spatial filter derived from training reference 

signals and sine-cosine reference signals; (M5) a combined method. The asterisks indicate significant difference between different 

methods (*: p<0.05, **: p<0.005, and ***: p<0.0005).  



 

 

The mixed frequency and phase coding method studied 

by Jia et al.
29

 obtained an ITR of 66.5 bits/min using a 

similar testing paradigm. The distinct performance 

improvement (~100 bits/min) in the present study is 

mainly attributed to the following factors: (1) a larger 

number of targets (32 vs. 15), (2) shorter data length (1 

s vs. 2 s), (3) multiple channel analysis approach (CCA 

vs. bipolar), and (4) a combined method in target 

identification. The proposed frequency and phase 

approximation approach significantly facilitates the 

presentation of a large amount of concurrent stimuli on 

a computer monitor. The results indicate that the 

robustness of the SSVEPs elicited by the approximation 

approach can satisfy the requirements of signal 

characters for discriminating SSVEPs with a high 

frequency and phase resolution (1Hz and 90 degrees 

respectively). The proposed CCA-based multi-channel 

approach extracted SSVEP signals with a much higher 

SNR than the single-channel counterparts.  The 

combined method further improved the classification 

performance, leading to accuracy above 90% when the 

data length was reduced to 1 s. 

The present study achieved a significant performance 

improvement compared to other existing SSVEP-based 

BCIs. The first online BCI system using the CCA 

method obtained an ITR of 58 bits/min.
16

 ITRs around 

100 bits/min were reported in two recent studies using 

the frequency approximation approach.
17, 18

 The present 

study extended the frequency approximation approach 

to the phase domain and thereby further improved the 

efficiency of information coding in SSVEPs. The 

proposed system also outperformed the BCIs using code 

modulated VEPs.
19, 20

 These systems were considered to 

have highest communication speed in previous BCI 

studies.
10

 For example, the previous record of ITR (144 

bits/min) was obtained by a c-VEP-based BCI.
20

 The 

present study suggests that the mixed frequency and 

phase modulation approach could be as efficient as the 

code modulation approach. A direct comparison 

between the two methods could be helpful for 

optimizing the coding methods in VEP-based BCIs.  

Although the present system achieved a very high ITR, 

there is still room for improvement. As shown in Fig. 7, 

with a shorter time window of 0.6 s, the ITR can further 

reach 203.56±30.74 bits/min across all subjects and 

262.17 bits/min for the best individual (Subjects 8). In 

real practice, adaptive data length adjustment
36

 can be 

applied to reduce the target detection time across trials 

and subjects. Considering individual difference, 

selection of subject specific parameters (e.g., channel 

location, number of harmonics, ban-pass filters, 

stimulating frequencies) can also be useful for 

improving individual performance. The classification 

accuracy could be further improved by incorporating 

other frequency and phase decoding methods.
7, 26, 27, 37

 

Another direction is to increase the number of targets in 

system design. A wider frequency band and a higher 

frequency or phase resolution can achieve this goal. For 

example, a frequency resolution of 0.2Hz was proved 

feasible in the system using frequency coding.
18

 

Besides, as discussed by Jia et al.
29

 and Manyakov et 

al.
37

, the phase resolution could be as low as 60 degrees, 

which corresponded to six targets per frequency. Further 

investigations are required to determine an optimal 

 

Fig. 7.  (A) Target identification accuracy and (B) ITRs as functions of data length. Dashed lines indicate chance-level accuracies in 

classification (Frequency: 12.5%, Phase: 25%, Mixed: 3.13%).   



combination of frequency and phase resolutions in 

system design. These system parameters should be 

carefully selected towards an optimal ITR. By 

combining the above methods, a high-speed BCI that 

can spell 40 characters per minute could be feasible in 

online practice.  

4.2. The advantages of inclusion of training data 

The proposed target identification approach played an 

important role in the performance improvement. To 

further explore the underlying mechanisms of the 

proposed method in characterizing SSVEP signals, this 

study also compared the proposed target identification 

method with the standard CCA approach using 

frequency-coding and phase-coding paradigms 

separately. Fig. 8 shows target identification accuracy 

and ITR specific to frequency coding and phase coding 

using different methods with data lengths of 0.5 s and 1 

s. It is evident that the employment of SSVEP training 

data in the CCA-based approaches can facilitate both 

frequency and phase detection. More specifically, the 

improvement of phase detection seems to be 

comparable to that of frequency detection. When using 

a data length of 1 s, the accuracy of phase detection was 

increased by 14.15% (M1: 76.20%, M5: 90.35%, t=-

5.59, p<0.005), while the accuracy of frequency 

detection showed an increase of 13.60% (M1: 79.50%, 

M5:  93.10%, t=-4.64, p<0.05). Even with a short data 

length of 0.5 s, the proposed approach can obtain very 

high classification accuracy, which was significantly 

higher than the standard CCA-based method 

(Frequency: 83.10% vs. 30.77%, t=13.70, p<10
-6

; 

Phase: 82.55% vs. 41.38%, t=14.31, p<10
-8

). 

It is important to find out why the frequency and phase 

characters of SSVEPs can be significantly improved by 

the proposed method. By comparing to other CCA-

based methods in the literature, primary advantages of 

the proposed method can be explained by the following 

three reasons: 

(1) It has been demonstrated that, compared to sine-

cosine reference signals, the time domain features can 

 

Fig. 8.  Target identification accuracy ((A) frequency coding and (C) phase coding) and ITRs ((B) frequency coding and (D) phase 

coding) calculated by different CCA-based method using data lengths of 0.5 s and 1 s. The asterisks indicate significant difference 

between different methods (*: p<0.05, **: p<0.005, and ***: p<0.0005).  



 

 

be better characterized by the SSVEP training data. 

Zhang et al.
26

 proposed a multi-way CCA method by 

combining SSVEP training data in frequency detection. 

The multiset CCA approach has recently been applied to 

improve the detection of SSVEP.
28

 Pan et al.
27

 proposed 

a phase constrained CCA approach by measuring the 

latency delay in the visual pathway. These methods 

improved the standard CCA approach. As shown in Fig. 

6, the proposed method significantly outperformed the 

traditional CCA method using sine-cosine reference 

signals.
25

 

(2) The present method used correlation coefficient 

instead of the canonical correlation (see Ref. 25 for 

more details) as features. The canonical correlation 

could not discriminate the two classes with a 180-degree 

phase shift, leading to a positive correlation between 

test data and training reference signals for both classes. 

The difference between the two classes is presented in 

weight vectors (𝑊! and 𝑊! in Equation (4)). However, 

correlation coefficients between test data and training 

reference signals for the two classes show opposite 

signs. Therefore, the two classes with the same 

frequency but a 180-degree phase shift can be reliably 

discriminated with the correlation coefficient calculated 

with SSVEPs after CCA-based spatial filtering. This 

process significantly facilitates phase detection.  

 (3) This study proposed three different strategies to 

design CCA-based spatial filters for improving the 

estimation of correlation coefficient between test data 

and training reference signals. These methods were 

further combined with the standard CCA method to 

make final decision in target identification. As shown in 

Fig. 6, the combination method was highly efficient and 

robust for recognizing SSVEPs using mixed frequency 

and phase coding. An important finding is that the 

proposed approach can reach high classification 

accuracy even with a very short data length. Compared 

with the standard CCA method, the classification 

accuracy and ITR were significantly improved when 

using a data length of 0.5 s (Accuracy: 78.98% vs. 

26.41%, t=12.78, p<10
-7

; ITR: 200.14 bits/min vs. 33.92 

bits/min, t=10.45, p<10
-6

). The proposed method makes 

it possible to implement a fast speller that can spell a 

character in 1-2 seconds. 

Note that, the employment of training data in target 

identification requires additional efforts in data 

collection before system operation. For frequency 

detection, the standard CCA method for frequency 

detection does not require training data. However, since 

individual variability is relatively high in phase, training 

data are usually required in phase detection.
29

 In 

practice, the number of trials in training data is a key 

factor for the proposed system. More training data can 

enhance robustness of system performance, but increase 

difficulty in system use at the same time. Fig. 9 shows 

the system performance as a function of the number of 

training trials. Overall, the performance increased as the 

size of training data increased. The increase of number 

of training trials enhanced the performance of phase 

classification more significantly than that of frequency 

classification. ITR remained relatively stable when the 

training data have more than 5 trials (5 trials: 161.34 

bits/min; 6 trials: 164.20 bits/min; 7 trials: 166.91 

bits/min). Given a trial length of 1.5 s, the training data 

 

Fig. 9.  (A) Target identification accuracy and (B) ITRs as functions of number of training trials.   



with 5 trials for each target can be collected within 5 

minutes. If adaptive learning approaches
38

 are 

applicable, the training procedure could be further 

simplified by adopting training data from previous 

recordings. 

4.3. Online implementation 

This study estimated the system performance using a 

simulated online test. This strategy has been widely 

used in previous BCI studies.
29, 37, 39

 In essence, the 

simulated online test could be easily converted to an 

implementation in real time. However, in an online 

system, BCI performance could be affected by technical 

issues such as time delays in data transmission, data 

processing, and feedback presentation. These problems 

can be solved with real-time platforms and technologies. 

In addition, online performance could also be affected 

by user’s error-related physiological and psychological 

changes, as well as distraction from feedback or real-

world events during system operation. In this regard, 

user training could be helpful to improve user’s 

performance in operating an online system. In practice, 

the real BCI performance needs to be evaluated using a 

close-loop online system.
35 

To implement a practical spelling system, the following 

issues need to be further addressed. First, the high ITR 

obtained in the present study depends critically on the 

fast selection speed (1.5 seconds per selection). In an 

online system, it requires further investigation to prove 

the feasibility of gaze shifting following a real-time 

feedback within a 0.5s duration. Second, a BCI for free 

spelling requires an asynchronous system design. In 

other words, the system should be capable of 

discriminating the resting and working states 

automatically. The ON/OFF switch design
40

 could be a 

solution to solve this problem. Third, in a VEP BCI, it is 

important to reduce discomfort and fatigue caused by 

continuous visual stimulation during system use. The 

comfortableness of visual stimuli can be improved using 

different stimulating parameters. For example, visual 

stimuli using high-frequency flickers
41

 and high-duty 

cycle flickers
42

 have been proved useful to reduce visual 

discomfort and fatigue. Fourth, a mobile BCI system is 

required for long-term daily use. The mobile and 

wireless BCI technology
43-45

 can satisfy the 

requirements of system feasibility and practicality in 

real-life applications. 

4.4.  Other applications 

This study demonstrates a 32-target spelling program 

using an SSVEP-based BCI system. Compared to other 

BCI-based spelling programs such as the P300 speller,
13

 

the present system shows higher communication speed 

and less user variation. Given the spelling speed at 1.5 s 

per character, the current paradigm can spell 40 

characters in a minute. This communication speed 

makes the proposed system even competitive to other 

input devices such as eye tracker and touch screen. In 

addition to the spelling program, the proposed system 

can also be applied to other applications that require 

large amount of commands. These applications include 

phone dialing, complex menu selection, and multi-

dimensional movement control. The methodologies 

developed in this study also provide a practical solution 

to the newly proposed concept of the brain-display 

interface technology.
46 

The proposed target identification approach can be 

adopted to implement SSVEP-based BCIs for other 

applications that require fewer targets.
47

 For example, a 

4-target system can be realized using two frequencies 

(e.g., 10Hz and 15Hz) and two phases (e.g., 0 and 180 

degrees). In this case, data length required for target 

identification could be reduced to less than 0.5 s. An 

operation speed at a hundred-millisecond level has 

potential for many applications under time constraints. 

For example, during human natural behaviors, visual 

attention on frequency-tagged objects
48

 could be tracked 

in near real time. In addition to the communication and 

control purposes for the disabled patients, the proposed 

high-speed BCI technology can also be combined with 

traditional human-computer interfaces to improve 

behavioral performance of healthy people.
49, 50 

The methodologies developed in this study can also 

facilitate visual neuroscience studies that use SSVEP-

based frequency tagging (e.g., selective visual 

attention).
51, 52

 The approximation approach makes it 

possible to use flexible frequencies and phases to tag 

multiple targets. The proposed CCA-based target 

identification method can be applied to improving the 

efficiency in extracting task-related power and phase 

modulations. Accordingly, these methods have potential 

for improving the independent BCI systems based on 

attentional modulation of SSVEPs.
53-55 

5. Conclusion 



 

 

This study proposed a high-speed brain speller using an 

SSVEP-based BCI. By adequately addressing technical 

issues of visual stimulus presentation and target 

identification, this study showed great potential of the 

mixed frequency and phase coding approach in 

implementing a high-speed BCI. As a result, the 

proposed system that can spell 40 characters per minute 

(1.5 seconds/character) obtained a record-breaking 

average ITR of 166.91 bits/min across 13 subjects with 

a maximum ITR of 192.26 bits/min for a single subject. 

In addition to the achievement of a high-speed BCI, this 

study also provides experimental and methodological 

guidelines for implementing practical applications using 

the SSVEP-based BCI. 
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