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Abstract. -4 high-speed data encryption chip implementing the Data 
Encryption Standard (DES) has been developed. The  DES modes of op- 
eration supported are Electronic Code Book and Cipher Block Chaining. 
The chip is based on a gallium arsenide (GaAs) gate array containing 
50K transistors. At a clock frequency of 250MHz, data can be encrypted 
or decrypted at a rate  of 1 GBit/second, making this the  fastest single- 
chip implementation reported to  date. High performance and high den- 
sity have been achieved by using custom-designed circuits to implement 
the core of the DES algorithm. These circuits employ precharged logic. 
a methodology novel to the design of GaAs devices. A pipelined flow- 
through architecture and  an efficient key exchange mechanism make this 
chip suitable for low-latency network controllers. 

1 Introduction 

Networking and  secure distributed systems are major research areas a t  the  Dig- 
ital Equipment Corporation's Systems Research Center. A prototype network 
called Autonet with 100 MBit/s links has been in service there since early 
1990 [14]. We are currently working on a follow-on network with link d a t a  rates 
of 1 GBit/s.  

T h e  work described here was motivated by the need for d a t a  encryption 
hardware for this new high-speed network. Secure transmission over a network 
requires encryption hardware that operates a t  link speed. Encryption will be- 
come a n  integral par t  of future  high-speed networks. 

We  have chosen the  Da ta  Encryption Standard (DES) since it is widely used 
in commercial applications and allows for efficient hardware implementations. 
Several single-chip implementations of the  DES algorithm exist or have been 
announced. Commercial products include the AmZ8068/Am9518 [l] with an en- 
cryption ra te  of 14 hiIBit/s and the  recently announced VM007 with a throughput 
of 192 MBit/s [18]. 

An encryption rate of 1 GBit/s can be achieved by using a fast VLSI tech- 
nology. Possible candidates are GaAs  direct-coupled field-effect transistor logic 
(DCFL) a n d  silicon emitter-coupled logic (ECL). As a semiconductor m a t e r i d  
GaAs is attractive because of t he  high electron mobility which makes GaAs  
circuits twice as fast as silicon circuits. In  addition, electrons reach maximum 
velocity in GaAs at a lower voltage t h a n  in silicon, allowing for lower internal OP- 
erating voltages, which decreases power consumption. These properties position 

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 521-539, 1993. 
@ Spnnger-Verlag Berlin Heidelberg 1993 



522 

GaAs favorably with respect to silicon in particular for high speed applications. 
T h e  disadvantage of GaAs technology is its immaturity compared with silicon 
technology. GaAs has been recognized as a possible alternative to silicon for 
over twenty years, but only recently have the difficulties with manufacturing 
been overcome. GaAs is becoming a viable contender for VLSI designs [8, 101 
and motivated us to explore the feasibility of GaAs for our design. 

In this paper, we will describe a new implementation of the DES algorithm 
with a GaAs gate array. We will show how high performance can be obtained 
even with the limited flexibility of a semi-custom design. Our approach was to 
use custom-designed circuits to implement the core of the DES algorithm and 
a n  unconventional chip layout that  optimizes the da ta  paths. Further, we will 
describe how encryption can be incorporated into network controllers without 
compromising network throughput or latency. We will show that low latency can 
be achieved with a fully pipelined DES chip architecture and hardware support 
for a key exchange mechanism that allows for selecting the key on the fly. 

Section 2 of this paper outlines the DES algorithm. Section 3 describes the 
GaAs gate array that  we used for implementing the DES algorithm. Section 4 
provides a detailed description of our DES implementation. Section 5 shows how 
the chip can be used for network applications and the features that make it 
suitable for building low-latency network controllers. This section also includes 
a short analysis of the economics of breaking DES enciphered data.  Finally, 
section 6 contains some concluding remarks. 

2 DES Algorithm 

T h e  DES algorithm was issued by the Kational Bureau of Standards (NBS) in 
1977. A detailed description of the algorithm can be found in [ I l ,  131. The DES 
algorithm enciphers 64-bit data blocks using a 56-bit secret key (not including 
parity bits which are part of the 6 1-bit key block). The  algorithm employs three 
different types of operations: permutations, rotations, and substitutions. The 
exact choices for these transformations, i.e. the permutation and substitution 
tables are not important to this paper. They are described in [ll]. As shown in 
Fig. 1, a block to be enciphered is first subjected to an initial permutation (IP), 
then to 16 iterations, or rounds, of a complex key-dependent computation, and 
finally to the inverse initial permutation (IP-'1. The key schedule transforms the 
56-bit key into sixteen 48-bit partial keys by using each of the key bits several 
times. 

Figure 2(a) shows an  expanded version of the 16 DES iterations for encryp- 
tion. The  inputs to the 16 rounds are the output of IP and sixteen 48-bit keys 
X1..16 tha t  are derived from the supplied 56-bit key. First, the 64-bit output 
data block of IP is divided into two halves LO and RO each consisting of 32 bits. 
T h e  outputs Ln and R, of an  iteration are defined by: 
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16 Iterations 

Cleartext 
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56 
Key Schedule I: Key 

Fig. 1. Overview of the Data Encryption Standard 

where n is in the range from 1 to  16. At the completion of the 16 iterations the 
two 32-bit words L16 and are put together into a 64-bit block and used as 
the input to 1P-I. 

Figure 2(b) represents the key scheduling algorithm for encryption. The 56- 
bit key first undergoes permuted choice 1 (PC1).  The resulting 56 bits are divided 
into two 28-bit entities Co and DO. The outputs of an iteration C, and D, are 
obtained by rotating Cn-l and D,-1 by one or two positions to  the left, where 
n is in the range from 1 to 16. The number of left shifts a t  each iteration is a 
fixed part of the algorithm. After 16 rounds the two halves of the 56-bit key will 
have been shifted by 28 positions, i.e. C16 equals Co and Dl6 equals DO. The 
key value K,  is obtained from C, and D, by choosing 48 bits of the available 
56 bits according to  permuted choice 2 (PC2). 

Decryption and encryption use the same data path, and differ only in the 
order in which the key bits are presented to  function f. That  is, for decryption 
K16 is used in the first iteration, K15 in the second, and so on, with XI used in 
the 16th iteration. The order is reversed simply by changing the direction of the 
rotate operation performed on C O , . ~ ~  and that is, Co..15 and D0..15 are 
rotated to the left during encryption and rotated to the right during decryption. 

Figure 3 describes the calculation of function f. First, the 32 bits of the right 
half R are permuted and expanded to 48 bits by the E bit-selection table (E). 
The expansion is achieved by repeating certain bits. The 48-bit result is then 
XORed with a 48-bit key value K obtained from the key schedule. Next, the 
48-bit output of the XOR operation is split into blocks of 6 bits and delivered 
to  eight substitution boxes S~.,S. Each S box implements a different nonlinear 
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Fig.2. Expanded Version of the 16 Iterations (a) and the Key Schedule (b) for En- 
cryption 
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Fig. 3. Expanded Version of Function f 

function yielding a 4 b i t  output block. Finally, the 32 bits produced by the 
S boxes undergo one more permutation function (P). 

For enciphering data  streams that are longer than 64 bits the obvious solution 
is to  cut the stream into 64-bit blocks and encipher each of them independently. 
This method is known as Electronic Code Book (ECB) mode [12]. Since for a 
given key and a given plaintext block the resulting ciphertext block wiIl always be 
the same, frequency analysis could be used to retrieve the original data.  There 
exist alternatives to the ECB mode that use the concept of diffusion SO that 
each ciphertext block depends on all previous plaintext blocks. These modes are 
called Cipher Block Chaining (CBC) mode, Cipher Feedback (CFB) mode, and 
Output Feedback (OFB) mode [12]. 

Our implementation complies with the NBS DES and supports ECB mode 
and CBC mode. We did not implement CFB and OFB modes because they are 
less useful in network applications. Figure 4 illustrates CBC mode. The plaintext 
p is split into 64-bit blocks p = plp2 . . .p , .  The ciphertext block c, is computed 
as : 

C i  DESk (pi X O R  c i -  1) , 

The resulting ciphertext is c = c1c2 ... c,. Knowing key k and co,  which is 
also known as the initialization vector, the ciphertext can be deciphered by 
computing the plaintext block pi as: 
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Fig. 4. Cipher Block Chaining 

3 GaAs Gate Array 

The DES chip is based on a FURY VSC15K gate array from Vitesse Semi- 
conductor [16]. It uses a 0.8 pm GaAs enhancement/depletion mode metal- 
semiconductor field-effect transistor (E/D-mode MESFET) process [17]. The 
array contains 50K transistors on a 8.1 mm by 7.1 mm die and can implement 
UP to  15K unbuffered DCFL 2-input NOR gates. Of more interest to real a p  
plications, the array has the capacity for 4,000 buffered 2-input NOR gates or 
1,500 D-flipflops. 

Compared with silicon technologies, GaAs DCFL offers higher density than 
silicon ECL, which is the highest-performance bipolar silicon technology, but 
cannot yet compete with silicon CMOS, the densest silicon technology. Presently, 
the densest cell-based GaAs gate arrays offer up to 200K raw gates, while CMOS 
arrays can integrate up to 800K raw gates. It is worth noting that  the density 



of GaAs DCFL is currently increasing more rapidly than the density of silicon 
CMOS. GaAs competes favorably with ECL in that it offers comparable speed, 
but consumes only about half to  a third of the power. It remains to  be seen how 
well GaAs competes with CMOS. Compared with CMOS, GaAs is faster by a 
factor of two to three at the gate level while power consumption favors GaAs 
only a t  clock frequencies higher than 100 MHz. 

4 DES Chip Implementation 

This section describes how we implemented the DES algorithm. 

4.1 Organ iza t ion  

There are two ways to improve an algorithm's performance. One can choose a 
dense but slow technology such as silicon CMOS and increase performance by 
parallelizing the algorithm or flattening the logic. Alternatively, one can choose 
a fast but  low-density technology such as silicon ECL or GaAs DCFL. The DES 
algorithm imposes limits on the former approach. As was shown in Fig. 4 ,  the 
CBC mode of operation combines the result obtained by encrypting a block with 
the next input block. Since the result has to be available before the next block 
can be processed, it is impossible to parallelize the algorithm and operate on 
more than one block a t  a time. It is, however, possible to unroll the 16 rounds of 
Fig. 1 and implement all 16 iterations in sequence. Flattening the design in this 
manner will save the time needed to latch the intermediate results in a register 
on every iteration. Even though the density of CMOS chips is sufficient for doing 
this, the speed requirements of a 1 GBit/s CMOS implementation might stdl be 
challenging. 

Since we wanted to use GaAs technology, we had to choose a different ap- 
proach. The limited density of GaAs gate arrays forced us to implement only 
one of the 16 rounds and reuse it for all 16 iterations. Even without unrolling 
the 16 rounds, fitting the implementation into the available space and meeting 
the speed requirements was a major challenge. In order to  achieve a data  rate 
of 1 GBit/s, each block has to be processed in 64 ns, which corresponds to 4ns 
per iteration or a clock rate of 250MHz. 

The register-level block diagrams for encryption and decryption are shown in 
Figures 5 and 6. The DES chip realizes a rigid %stage pipeline, that  is, a block 
is first written into the input register I, is then moved into register LR, where it 
undergoes the 16 iterations of the cipher function f, and finally is written into 
the output register 0. 

The key schedule is formed by the master key register MK, which holds the 
encryption or decryption key, and a shift register CD, which supplies a different 
key value for each of the 16 iterations. Registers MK and CD can be written but 
not read by external circuitry. This is important since the security of a secret 
key system depends on the security of the keys. If the keys are compromised, 
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Fig. 5 .  Encrypt ion 

the whole system is. Once a key has been obtained, messages can be decoded or 
forged messages can be injected into the system. 

The diagrams do not show the various permutations that must be applied to 
the data  paths since these are accomplished solely with wiring. 

Our implementation of the DES algorithm supports CBC mode. During en- 
cryption, a plaintext data  block must be XORed with the previously encrypted 
block before it enters register LR of the encryption stage. During decryption, 
the decrypted block must be XORed with the previously encrypted block before 
it enters the output register 0. In addition to the XOR gates, pipeline registers 
I’ and I” are required during decryption in order to  hold the encrypted version 
of a block. In ECB mode, blocks are not chained, that  is, the CBC XOR gates 
are disabled. 

A data  path from the output register 0 to register CD allows for loading a 
key with a block from the data  stream. The use of this feature wdl be explained 
in Sect. 5.1.  
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Fig. 6. Decryption 

4.2 Implementation Characteristics 

The implementation of the DES chip contains 480 flipflops, 2580 gates, and 8 
PLAs. There are up to ten logic levels that have to be passed during the 4ns  
clock period. The chip uses 84% of the transistors available in the VSC15K gate 
array. The high utilization is the result of a fully manual placement. Timing 
constraints further forced us to lay out signal wires partially by hand. 

The chip’s interface is completely asynchronous. The da ta  ports are 8, 16, or 
32 bits wide. A separate 7-bit wide port is available for loading the master key. 
Of the 211 available pins, 144 are used for signals and 45 are used for power and 
ground. With the exception of the 250MHz clock, which is ECL compatible, all 
input and output signals are TTL compatible. 

The chip requires power supply voltages of -2 V for the GaAs logic and 5 V 
for the TTL-compatible output drivers. The maximum power consumption is 
8 W. 
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4.3 Asynchronous Interface 

Asynchronous ports are provided in order to avoid synchronization with the 
250 MHz clock. The data  input and output registers are controlled by two-way 
handshake signals which determine when the registers can be written or read. 
The data  ports are 8, 16, or 32 bits wide. The variable width allows for reducing 
the width of the external data  path at  lower operating speeds. With the 32-bit 
wide port, a new data  word must be loaded every 32ns in order to  achieve an 
encryption rate of 1 GBit/s. The master key register is loaded through a separate, 
also fully asynchronous 7-bit wide port. Our implementation does not check the 
byte parity bits included in the 64-bit key. The low speed of the data  and key 
ports makes it possible to  use TTL-levels for all signals except for the 250 MHz 
clock which is a differential ECL-compatible signal. 

Thanks to the fully asynchronous chip interface, the chip manufacturer was 
able to do at-speed testing even without being able to  supply test vectors at 
full speed. For this purpose, the 250MHz clock was generated by a separate 
generator, while the test vectors were supplied asynchronously by a tester run- 
ning at  only 40 MHz.  At-speed testing was essential particularly in testing the 
precharged logic which wdl be described in the following section. 

Due to the high chip utilization there was no room for test structures like 
scan-paths 191. A special test mode, however, allows for single-stepping through 
the iterations of the cipher function and reading out intermediate results and the 
state of the control logic after each DES round. Combined with the possibility of 
at-speed testing this technique can provide valuable information about the chip 
internals. 

4.4 Precharged S box 

The core of the DES algorithm consists of eight substitution boxes (S boxes) 
which are part of the cipher function f i n  Fig. 2(a). Each S box computes a 
different boolean function with 6 inputs and 4 outputs. The most challenging 
and interesting part of the DES chip is to design and implement S boxes that 
are both fast and space-efficient. 

The obvious implementation structure for the S boxes is a programmable 
logic array (PLA). In order to meet space and timing constraints, a precharged 
design using custom macros was chosen. 

Precharging is a well-known design technique for silicon nMOS [ 5 ] .  It offers 
the density of unbuffered gates and the speed of buffered gates. For FURY gate 
arrays, the difference in cell count between buffered logic versus unbuffered logic 
typically is a factor of four. The goal of precharged logic is to  overcome the slow 
rise time of unbuffered gates that must drive large capacitive loads. The rise time 
of an  unbuffered gate can be as much as ten times the fall time when driving 
a significant amount of metal because of the weak pullup transistors used in 
DCFL. 

Figure 7(a) shows the basic building block of precharged NOR-NOR logic. 
The first-level gates have an extra input for the precharge signal, while the 
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Fig. 7. Precharged NOR-NOR Logic (a)  and Timing (b) 

second-level gates have an active pullup connected to the output. As shown 
in Fig. 7(b), precharged logic operates in two phases: a precharge phase and a 
compute phase. During precharge, when the precharge signal is high, the outputs 
of the first-level gates are forced to  a low level, while the active pullups will force 
the outputs of the second-level gates to a high level. During the compute phase, 
when the precharge signal is low, the outputs of the first-level gates stay low 
or go high while the outputs of the second-level gates stay high or go low. The 
first-level gates are placed adjacent to  the second-level gates to make the rising 
edges of the first-level gates fast. The second-level gates are equipped with an 
active pullup to  drive large capacitive loads. In a typical application several basic 
blocks are chained together. Notice tha t  the slow low-to-high transitions for the 
second-level gates will occur in parallel during the precharge phase. During the 
compute phase, the long wires of the logic chain propagate only falling edges, 
which are fast. The penalty of this design technique is the time required for 
precharging. The  precharge phase has to  be long enough to charge the worst- 
case capacitance driven by any second-level gate. Therefore, the more levels of 
logic, the bigger the gain in performance. 

The S box implementation shown in Fig. 8 contains two levels of precharged 
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Fig. 8 .  Precharged S box 

t t t  

NOR-NOR logic: a 4-input NOR gate drivin 2-input 
NOR gate driving from zero to four pulldown transistors. The row decoder uses 
two 3:8 decoders in order to save space. By using precharged logic, the S boxes 
occupy less than 10% of the die area. If standard macros were chosen, the S box 
implementation would require 5 .5  times as many cells. An implementation with 
available macros would not have fit into the chosen gate array. 

Contrary to  the results obtained by analog simulations of the S box, the first 
implementation exhibited a discharge problem, which caused the chips to fail 
at high temperature. The discharge problem affected the last stage of the PLA 
structure in Fig. 8, which corresponds to  a 32-bit wide NOR gate. The models 
of the pulldown transistors provided by the chip manufacturer basically ignored 
leakage currents. This caused the output of the PLA to  drop from a high to  a 
low level before the compute phase was over. Since leakage is proportional to 
temperature, the discharge problem was even worse at higher temperatures. The 
problem can be eliminated by lowering the voltage of the low level of the gates 
driving the 32-input NOR gate and thereby turning off the 32-input NOR gate 
harder. This requires a major change of the driving circuitry. Due to space con- 
straints, we decided to  improve the drop rate by simply changing the precharge 

an inverter followed by 
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pullup of the 32-input NOR gate. A current source in the form of a D-mode 
FET was added to  the existing active pullup transistor in order to compensate 
for the leakage current. 

4.5 Floorplan 

The usual choices when laying out a pipelined design are to partition the logic 
either into register slices or bit slices. The various permutations of the da ta  paths 
contained in the DES algorithm complicate this task. The permutation tables 
employed by the DES algorithm are the so-called initial permutation (IP), the 
E bit-selection table (E), the permutation function (P), and a pair of permuted- 
choice tables (PC1, PC2). Some of the tables not only permute the input bits 
but also duplicate or omit input bits and, thereby, expand or shrink the input 
string. The wiring of the da ta  paths, however, is not as badly scrambled as one 
might fear. IP, IP-', and PC1 affect the wiring of the input and output pads 
only, not the wiring of the critical path,  the iteration feedback loop. Fig. 9 shows 
one DES iteration. The wires belonging to the critical path are highlighted. This 
feedback loop contains two permuted da ta  paths: permutations E and P. 

from I from I 

L R I 
K 1  16 

32 32 

1 
to 0 to 0 

Compute Precharge 

Fig. 9. One DES Iteration 

While previous implementations have chosen a register-sliced layout [7, 151, 
we preferred a mixed strategy. As shown in Fig. 10, we first divide the design into 



blocks corresponding to the eight S boxes. We further subdivide each block into 
four bit slices each containing one bit of the left and the right half of registers I, 
1', I", LR, and 0. The register bits are laid out so that the wires connecting the 
outputs of the S boxes and the inputs of LR are as short as possible. Referring 
to  Fig. 9,  the only scrambled data  path is permutation E which connects the 
outputs of R with the inputs of the XOR gate. These wires potentially have to 
go all the way across the chip. In our implementation] the longest of these wires 
is 6 mm long. The time to drive these wires is significant. However, driving these 
long wires happens a t  the beginning of a clock cycle and, therefore, coincides 
with the precharge phase. Thus, there is no data  path with long wires that would 
contribute to the cycle time of the critical path. 
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The  key bits of register CD are laid out so that  the wires connecting CD and 
the XOR gates are kept as short as possible. This scrambles the wiring of the 
key schedule (which implements two 28-bit wide registers that  can be rotated 
by one or two bits either to the right or to the left). The timing of these wires 
is, however, not critical since the only logic this path contains is a multiplexer 
tha t  implements the rotate function. 

T h e  control signals are generated in the middle columns of the chip. Drivers 
are duplicated; that  is, there are separate drivers for each side of the chip in 
order to reduce the load and wire length and with it the propagation delay. 

5 Applications 

We now discuss applications of the DES chip, which is intended primarily €or 
use in network controllers. 

5.1 Low-latency Network Controller 

Our implementation of the DES algorithm is tailored for high-speed network 
applications. This requires not only encryption hardware operating a t  link speed 
but  also support for low-latency controllers. Operating a t  link data  rates of 
1 GBit/s requires a completely pipelined controller structure. Low latency can 
be achieved by buffering data  in the controller as little as possible and by avoiding 
protocol processing in the controller. In this respect, the main features of the 
DES chip are a pipelined flow-through design and an efficient key exchange 
mechanism. 

As described in the previous section, the chip is implemented as a rigid 3- 
stage pipeline with separate input and output ports. Each 64-bit da ta  block is 
entered into the pipeline together with a command word. While the da ta  block 
flows through the pipeline, the accompanying command instructs the pipeline 
stages which operations to apply to the da ta  block. On a block-by-block basis it 
is possible to enable or disable encryption, to choose ECB or CBC mode, and to 
select the master key in MK or the key in CD. None of these commands causes 
the pipeline to stall. It is further possible to  instruct the pipeline to  load a block 
from the output register 0 into register CD. Typical usage of this feature is as 
follows: a data block is decrypted with the master key, is loaded into CD, and is 
then used for encrypting or decrypting subsequent da ta  blocks. This operation 
requires a one-cycle delay slot; that  is, the new key in C D  cannot be applied to  
the d a t a  block immediately following. 

T h e  format of packets transmitted over the Autonet network efficiently uses 
the described architecture allowing for very low-latency controllers. The da ta  
flow of a packet transmission is as follows. With the help of a public key algo- 
rithm, a sender S and receiver R first exchange a key K that will subsequently 
be used for encrypting packets. Sender and receiver encrypt this key under their 
master keys and exchange the resulting values. Both store copies of [K]MKS and 
[K]MKR in their memories. MKS is the master key of S and MKR the master 
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key of R. Note tha t  a plaintext version of I( is not stored in either memory. 
The transmission of the actual da ta  call now begin. The data  flow through the 
sender’s and receiver’s DES chips is as follows. 

Figure 11 shows the data  that  flows through the DE,S chip in the sender. 
First, a control block containing the key needed for encrypting the da ta  part 
of the packet will be read from host memory and be presented to the sender’s 
DE,S chip. The DES chip wdl decrypt [ K : ~ ~ K S  and load the resulting key value K 
into key register CD.  The control block will not be sent to the network since it 
contains only information required by the sender. Next, the header of the packet 
containing [ K ] M K ~  wdl pass through the DE,S chip without being manipulated, 
followed by the data ,  for which encryption and CBC mode are enabled. Both 
header and encrypted da ta  will be sent ovei the network to the receiver. 

When the header of the packet flows through the receiver’s DES chip, [K]MKR 
will be picked out of the header, decrypted, and loaded into register CD. When 
the da ta  part  begins, decryption and CBC mode wlll be enabled. Note tha t  in 
order to obtain key K, the receiver did not have to access memory or halt the 
DES pipeline. 

5.2 Breaking DES 

In 1979, Hellman published a paper with the title ‘DES will be totally insecure 
within ten years’ [6]. The controversy comes from the rather short length of the 
DES key, which could make an exhaustive search of the key space feasible [3, 41. 

In 1977, Diffie and Hellman proposed a machine consisting of 1 million pro- 
cessors that  would each be able to  try 1 million keys per second. At an  estimated 
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Part 1 Year Technology ' D a t a  Ratel Cost /Ch$ Cos t /GBzt / s lE~h.  Search] 
Am9518 84 Silicon nMOS I 14MBit/sl $19 $1357' 72 day4 

'VM007 92 Silicon CMOS1192 SIBit/si $170 $8851 47 days 
GaAs DES I 92 GaAs DCFL 1 1 GBit.'si $3001 $3001 1 6  days 

cost of $20M this machine would exhaust the key space in 20 hours 141. In 1984, 
Hoornaert, Goubert, and Desmedt proposed a machine consisting of 25,000 de- 
vices that  would each be able to try 1.13 million keys per second. At an estimated 
cost of $1M this machine would exhaust the key space in about 4 weeks [7]. 

This section compares the length of time taken by our implementation to  
break DES with the time taken by two other popular implementations [l, 181. 
We assume a known-plaintext cryptanalytic attack as described in [4]. The search 
starts out  with one or several corresponding plaintext-ciphertext blocks, all en- 
crypted under the same key. The  attack is based on brute force in that key after 
key of the key space, which contains 256 = 7 .2  x elements, is tried. Once the 
key is broken, messages can be forged or cryptograms for which the plaintext is 
not known can be read. 

The  d a t a  given in Table 1 illustrates the economics of breaking DES. AS 
expected, the cost per GBit/s of decryption bandwidth and the time required 
for doing a n  exhaustive search drop with more recent implementations. The 
given duration for doing an  exhaustive search assumes that one is willing to 
spend $1M on DES chips alone. The necessary support circuitry might easily 
double that figure. The given cost per chip assumes quantities of thousands. 

Table 1. Cost of Breaking DES 

For our implementation, it takes 16 days to t r y  2jG keys 01 an average of 8 
days to  find the key. With the separate key port our chip would be well suited 
for breaking DES in that the key could be easily changed every decryption CY- 

cle without stalling the pipeline. Moreover, the use of field-programmable gate 
arrays in our network controllers would easily allow for turning a network of 
controllers into a distributed machine for breaking DES. We believe that the full 
decryption bandwidth of 1 GBit/s per chip could be achieved without having to 
modify existing hardware. Therefore, a network of 10,000 machines each con- 
taining two DES chips to  encrypt da ta  full duplex a t  1GBit /s  would exhaust 
the key space in 2 days and 16 hours. 

Biham and Shamir recently showed that DES can be broken in less than the 
256 DES operations required for a n  exhaustive search [2]. The cryptanalytical 
attack consists of a da ta  collection phase during which a pool of 2'7 chosen 
plaintext blocks are encrypted and a data  analysis phase which consists of 237 
DES-like operations. The proposed attack will not be further considered here 
since it cannot make use of existing DES implementations and since the practi- 
cability of the data  collection phase is questionable. 

1 

I 



6 Status and Conclusions 

We began designing the  DES chip in early 1989 a n d  received the  first prototypes 
at the  beginning of 1991. T h e  par t s  were logically functional, bu t  exhibited 
electrical problems and  failed at high temperature.  A minor design change fixed 
this problem. In the  fall of 1991, we received 25 fully functional par t s  t ha t  we 
plan to use in future high-speed network controllers. 

Wi th  a n  encryption rate of l G B i t / s ,  t he  design presented in this paper is 
the  fastest DES implementation reported to date.  Both ECB and  CBC modes 
of operation are supported at full speed. This data rate is based on a worst case 
t iming analysis and  a clock frequency of 250MHz. T h e  fastest chips we tested 
run at 350 MHz or 1.4  GBit/s. 

We  have shown tha t  a high-speed implementation of the  DES algorithm is 
possible even with the limited flexibility of a semi-custom design. An efficient im- 
plementation of the S boxes offering both high performance and  high density has 
been achieved with a novel approach to designing PLA structures in GaAs. An 
unconventional floorplan has been presented tha t  eliminates long wires caused 
by permuted da ta  bits in the  critical pa th .  

T h e  architecture of the  DES chip makes it possible to build very low-latency 
network controllers. A pipelined design together with separate fully asynchronous 
input a n d  output  ports allows for easy integration into controllers with a flow- 
through architecture. ECL levels are required only for the 250MHz clock; TTL 
levels are used for all the  data and  control pins, thus providing a cost-effective 
interface even a t  d a t a  rates of 1 GBit/s.  The  provision of a d a t a  pa th  for loading 
the  key from the d a t a  stream allows for selecting the encryption or decryption 
key on the  fly. These features make it possible to use encryption hardware for 
network applications with very little overhead. 
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