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This article introduces a high-speed distortionless predictive image-compression

scheme that is based on differential pulse code modulation output modeling com-

bined with efficient source-code design. Experimental results show that this scheme
achieves compression that is very close to the difference entropy of the source.

I. Introduction

Digital data compression is the conversion of a stream

of high-rate data (digital or analog) into a stream of rela-

tively low-rate quantized data for communication over a

digital communication link or storage in a digital memory.
The goals are to reduce the volume of data for transmission

over a digital channel and to archive to a digital medium.

As the volume of speech and image data in the foreseeable
future becomes prohibitively large for many communica-

tion links or storage devices, the theory and practice of

data compression are receiving increasing attention.

Many data sources contain significant redundancy--

symbol distribution, pattern repetition, and positional re-
dundancy. Data compression schemes work by removing

redundancy and encoding the new information. They can

be broadly categorized into two classes: lossless and lossy.

A iossless coder operating on a digital data source achieves

compression without losing any of the digital source infor-
mation, hence, the decoded image is no different from the

original one. A iossy coder reduces the data rate by sac-

rificing some information that is, or is thought to be, of

little relevance to the user. As a result, the decoded data

from a lossy coder show some coding noise, or error, when

compared to the original data.

Image data are a typical example of a data source with

significant redundancy. Image-compression techniques are

used to reduce the volume of raw image data, which is usu-

ally too large for many communication links and storage
devices. Ill the past 30 years, there has been a consid-

erable amount of activity in image coding. Much of this

research centers around the theme of using elegant com-
pression algorithms to achieve a better compression ratio

in the lossless compression scenario, and to achieve a better

compression-distortion trade-off in the lossy compression

scenario. Due to the recent advances in very large scale
integration (VLSI) technology, it is now feasible to imple-

ment these algorithms in practical situations, e.g., differen-

tial pulse code modulation (DPCM) coding [1], runlength
coding I21, the Rice machine [31, and arithmetic coding [41.

DPCM schemes predict tile present sample value based
on the previous samples and send an encoded version of

the difference between the predicted and actual values.
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Because of its simplicity, compression efficiency, and ease
of implementation, DPCM has become quite common in

compressing speech and image data for transmission and

storage. In digital processing, the input sequence to the

DPCM scheme is generally digitized at the source itself

by a fixed number of bits (typically 8 for images). Be-
cause predictor values are required to be integer values,
the DPCM output sequence will take integer values hav-

ing a skewed probability distribution. Tlle integer values

can then be entropy-coded without distortion using an en-

tropy coder such as the Iluffman code [5] or the Rice al-
gorithm [3]. A schematic diagram of a DPCM/entropy

coding scheme is shown in Fig. 1.

This article introduces a high-speed distortionless pre-

dictive image-compression scheme that is based on DPCM

output modeling and efficient source-code design. In gen-
eral, this scheme is extremely simple to implement and,

hence, has potential for high-rate, low-complexity appli-

cations. This scheme is particularly useful for spacecraft

imaging data, where exact reproduction is a requirement.
Other uses include medical image data, where high speed

and good quality are both extremely important. Tile re-
mainder of this article is organized as follows: Section II

describes two probabilistic models for tile DPCM output

integers and Section III outlines the compression algo-

rithm that is based on the models proposed in Section II.
Section IV describes the experimental results. Section V

discusses the implementation issues. Section VI discusses

the entropy and redundancy analysis for this scheme, Sec-

tion VII addresses the source-model mismatch, and Sec-
tion VIII gives the concluding remarks.

II. DPCM Output Modeling

This section describes two probabilistic models for the

output samples of a simple DPCM scheme as shown in

Fig. 1. To simplify the discussion that follows, a simple
predictor consisting of a single delay is chosen. However,

the results derived in this article are quite general and

apply to DPCM coding schemes with other predictors.

A. The Modified Laplaclan Model

The Laplacian distribution of the form

1 -../'_1-_- u i

fL(x) = _ exp - (1)

where p denotes the mean and tr denotes the standard

deviation, is traditionally used to model the unquantized

output samples of a DPCM scheme [6,7]. By requiring the

input sequence and the predictor output samples to be in-

teger values, the DPCM output sequence will take integer

values. The probability of the DPCM output integer i,

which is denoted by p(i), can be evaluated by integrating
from i - 0.5 to i + 0.5. In most well-behaved speech and
image sources,/_ is very close to zero.

To simplify the discussion that follows, it is assumed

that p = 0. To verify the validity of the Laplacian model,
four images with 8-bit pixels are selected, and the afore-

mentioned simple DPCM coding scheme is applied to en-

code the images. For each image, the frequency distribu-
tion of the DPCM output samples is tabulated and com-

pared to the corresponding hypothetical distribution given

in Eq. (1). The comparisons are shown in Fig. 2. The

results were found to be unsatisfactory. The Laplacian
distribution was then modified by adjusting the standard

deviation a to Ao" such that A_r = -1/(v/21og(1 - r(0)),
and r(0) is the ratio of the number of zeros in the DPCM

output stream to the total number of DPCM output sam-
ples. The zero-mean modified Laplacian distribution is
given in Eq. (2) as

1 exp.r_._
fML(X)- V/_Acr (2)

The introduction of A corresponds to adjusting the

standard deviation cr of the hypothetical distribution by

matching the frequency of occurrences of the most prob-

able event in the experiment, namely the integer zero, to

the frequency of occurrences of zero predicted by the hy-
pothetical Laplacian model. The comparisons between the

experimental frequency distribution and the hypothetical

distribution of the images are shown in Fig. 3. The dif-
ference entropy, defined as the entropy of the differences

between adjacent pixels, is derived from the DPCM output

samples and the entropy calculated from the hypothetical

modified Laplacian model of the images. The comparisons
are shown in Table 1. This modified Laplacian model can

be used (1) to simplify the performance analysis of the

DPCM scheme and (2) to design an optimal scalar quan-

tizer (e.g., a Lloyd-Max quantizer) for the DPCM output
samples.

B. The Two-Sided Geometric Model

The above continuous modified Laplacian distribution

can be shown to provide a good foundation for efficient
source-code design. However, this article deals with dis-

crete (integer) DPCM outputs rather than a continuous

random variable. The probability distribution of DPCM

output integers derived from the modified Laplacian distri-
bution is geometric for all integers except zero. To circum-
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vent these problems, a simple single-parameter discrete

probability distribution for the DPCM output integers is
introduced:

1-0 i'
pa( i) = ]---_O Vi

(3)

where

0 = 1 - r(0)
1 + r(O)

As in the modified Laplacian model introduced in Sec-

tion II.A, the frequency of occurrences of the most prob-

able event in the experiment, namely the integer zero,

matches that predicted by the hypothetical two-sided geo-

metric model. The comparisons between the experimental

frequency distribution and the hypothetical distribution

of the images are shown in Fig. 4. The two distributions

are almost indistinguishable. The difference entropies de-

rived from the hypothetical two-sided geometric model of
the images are shown in Table 1. The two-sided geomet-
ric model will be used in later sections to derive a simple

and efficient lossless coding scheme for the DPCM output

samples.

III. Efficient Coding Based on the
Two-Sided Geometric Model

Constructing an optimal prefix code, by using the Huff-

man algorithm for example, is quite a complex operation
in hardware. This section presents efficient techniques to

design a near-optimal prefix code to encode images with

8 bits/pixel using the two-sided geometric model intro-
duced in the previous section. In contrast, this code is very

simple to implement in hardware. For most well-behaved

images, frequency(i) _ frequency(-/) for i = 1,2,..., 255.
Thus, in order to construct a code for the DPCM output

samples, which have values ranging from -255 to 255, one
can construct a prefix code for the integer set with val-

ues from 0 to 255. An additional bit is then appended to

each codeword, except the codewords representing 0, to

indicate whether integer i or integer -i is sent.

Gallager and van Voorhis presented an optimal binary

prefix code for the set of geometrically distributed non-

negative integers (single-sided geometric) [8]. This tech-
• nique is adapted and modified as discussed above to en-

code the two-sided geometrically distributed DPCM out-

put integers. The Gallager and van Voorhis optimal source

code for geometrically distributed integer alphabets is a
concatenation of a unary and a Huffman code; here it is

named the Gallager-van Voorhis-Huffman (GVtI) code.

Let l be the integer satisfying

0 I+0 t+l_< 1 <0'+0 t-x (4)

where

as defined in Section ll.B. It is easy to see that for any 0,

0 < 0 < 1, there is a unique positive integer I satisfying

Eq. (4). Let a non-negative number i be represented by

i = Ij + r where j = Li/lJ, the integer part of i/l, and

r = [i] rood I. Gallager and van Voorhis showed that an

optimal code for the non-negative integers is the concate-
nation of a unary code that is used to encode j, and a

Huffman code that is used to encode r, 0 < r < l - 1.

Each integer r, 0 < r < l - 1, represents an equivalence

class modulo I. Gallager and van Voorhis showed that the

integer set {r : 0 < r < I- 1} has a distribution

1-0
0_

Pr -- 1 --0 t

and the sum of the two least likely letters exceeds the

probability of the most likely. The length of the optimal
codewords can differ by at most 1. It can be shown that

the optimal coding for this integer set is to use codewords

of length Liog2 lJ for i < 2 il°g2/+lj - l, and codewords of

length Llog2 l] + 1 otherwise.

In this article, a simple construction is proposed to gen-

erate a Ituffman code for the integer set {r : 0 < r </-1}.

The construction algorithna is as follows:

(1) Generate the preliminary list L of 2U °g_tl binary

sequences {00...0,..., 11... 1}, each of which has

length Llog2IJ.

(2) Append to each of the last l - 2llog_q binary se-

quences in L either a 0 or a 1 to generate two binary

sequences of length Llog2 l] + 1, and call the new list
L t"

It is not hard to see that L' has a list of l prefix-

conditioned codewords, with 2klog2r+U _ 1 codewords of

length Llog2 lJ, and the rest of length [log 2 lJ + 1; L' is an

optimal IIuffman code for {r : 0 < r < I - 1}. Thus, each
DPCM output integer i can be efficiently encoded using

a concatenation of a unary code, a IIuffman code, and a

sign bit (except for i = 0).
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IV. Experimental Results

A number of images with 8-bit pixels were selected,

including both planetary and nonplanetary images. The

difference entropy of these images was evaluated, and the

images were compressed using the Rice algorithm and the

DPCM/GVH code. The difference entropy and the av-

erage numbers of bits/pixel used to encode the images

using the Rice algorithm and the DPCM/GVH code are
shown in Table 2. Experimental results show that in all

cases the DPCM/GVH scheme achieves compression that
is very close to the difference entropy of the sources, and

tile compression performances of the Rice algorithm and

the DPCM/GVH code are almost indistinguishable.

V. Some Implementation Issues of the
DPCM/GVH Scheme

Like the Rice algorithm [3], the DPCM/GVtt code
yields a performance (average number of bits per pixel)

that approaches the difference entropy of the source. As
shown in Sections III and VI, the mathematical theories

required to derive this algorithm and to show its efficiency

are quite elegant. Its implementation, however, is very
simple. This section describes some practical implementa-

tion issues of the DPCM/GVH coding scheme.

As discussed in Section III, the decoding process re-
quires finding a unique integer 1 such that 01 -4-01"1"1 < 1

< 0 t+0 t-1. The range of 0, and thus r(0), that gives a

certain l can be precalculated, and l can be found easily

by using a table look-up on r(0). The maximum value for

l is arbitrary; here it is chosen to be 16. Table 3 gives

the ranges of r(0) for l = 1, ..., 16. Note that this table
look-up on l's is optimally designed for the single-sided

geometric distribution [5], and there is no guarantee that

it is optimal for the two-sided geometrical distribution de-

scribed in this article. A look-up table that minimizes the

redundancy of the code for the two-sided geometric model

can be constructed by direct search, and it is given in Ta-
ble 4. This is discussed further in Section VI. Once l is

established, the rest of the encoding is trivial. For each

DPCM output integer i, -255 < i < 255, one expresses

Iil = lj + r. Since 0 < Iil < 255, this operation of find-

ing j and 7" given til can be implemented using a table
look-up on 256 entities. Since 1 < I < 16, there are 16

tables. Tile total memory size required is 256 x 16 x 2 =

8192 bytes. Once j and r are found, j is encoded using a

unary code (a runlength code with j zeros followed by a

1), and v, 0 < r < l- 1, is encoded using a trivial Huffman

code with codewords of lengths [log 2 lJ and [log 2 lJ + 1.

Tile Iluffman codes corresponding to different l's can be

generated easily, and they may be stored in a read-only

memory (ROM). For l = 1, Iil mod I = 0 for all Iil and
no Huffman code is needed. For 2 < l < 16, the Huffman

codes are stored in a ROM with only (2 + 16) x 15/2 =
135 entities, each of which is at most 4 bits long. This

is shown in Table 5. Finally, a 0 or 1 is appended to the

concatenated eodeword to indicate the sign of a nonzero
i. Of course, it is obvious from Table 4 that some values

oflin the range 1 < l< 16 will never be used. The to-

tal memory size can be reduced further by omitting those
entities that correspond to the unused l's.

In summary, this scheme involves first counting the
number of occurrences of identical consecutive digits in a

block (a line or the whole picture) of pixels. A table look-

up operation is then performed to find l, which charac-

terizes the subsequent encoding of the pixels in the block.

Each pixel in the block is then encoded with one subtrac-

tion operation (difference between the present pixel value

and previous pixel value) and two table look-ups.

This scheme can be modified to fit different needs. In-

stead of encoding the whole image using one l, one can
encode one line at a time. This has the following advan-

tages:

(1) It makes the encoding more adaptive to local statis-
tics.

(2) It reduces the buffer size (buffer for one line instead

of the whole picture).

(3) It allows on-the-fly encoding.

(4) It complies with the fixed-line rate format.

tlowever, a potential disadvantage is that the estimate
of 0 is based on fewer samples and may not be as robust as

when the estimate is taken over a large number of samples.
As the number of samples used n is reduced, the possibility

of having a mismatch between the model and the actual
data is increased.

VI. The Redundancy of Gallager-
van Voorhis-Huffman Codes

It has been demonstrated empirically that the GVII

coding scheme yields prefix codes whose average length
is very close to the difference entropy of the source, i.e.,

whose redundancy is quite small. The performance of the

GVH codes is now analyzed in more detail, deriving closed-
form analytic expressions as a function of 0 for the redun-

dancy, the mean codelength, and entropy of both single-
sided and two-sided integer geometric distributions.
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It is both instructive and convenient to first analyze the

redundancy for a single-sided integer geometric source, i.e.,
a source where the letters are labeled i, 0 < i < oo, where

p(i) = (1-0)0 i

The infinite source is treated (rather than the trun-

cated source where 0 < i < 255), since the difference that
results from the truncation is negligible. In Gallager and

van Voorhis's original paper [8], results were stated for the

entropy, mean codelength, and redundancy of the GVH
code for this source. Define the entropy of the DPCM

source to be H(X1) (where X1 is the discrete random vari-

able corresponding to the single-sided geometric source),
the mean codelength of the GVH code for X1 to be il,

and the redundancy of said code to be rx. Furthermore,

let Ix(i) be the length of the ith codeword, as determined
by the GVH procedure. As described in Section III,

h(i) =jz + _,

where

j, = Li/tJ + 1

and

,,, = Llog_(l)J, if i mod I < 2U°g_(t)+U - 1

= [log2(l)J + 1, if i mod l > 2 Ll°g_U)+lJ - l

where I is a function of 0 as described in Section III.

Appendix A shows that the entropy of this source can
be written as

H2(0)
H(X_) = T- 0

where H2(p) = -plog2(P) - (1 - p) log2(1 - p) is the bi-

nary entropy function. It is also shown that the mean

codelength 1 is

Ok

il = Llog2(/)J + 1 + 1 - 0--------7

where k is defined as

k = 2U°g2(t)+aj - I

1 Tiffs result is different from that given in [8]. There appears to

be a typographical error in their equation for /1, as they have the

term [log 2(/)] instead of [log s(l)j.

IIence, the result is

rl = [1 - H(Xa)

-- Llog_(l)J + 1 +
ok H_(O)

1-0 t 1-0

Since this is an optimal prefix code, rt < 1; and indeed,

for most values of O, rl is quite small.

Next, the topic of relevance to DPCM image coding is

addressed, namely the coding of the two-sided geometric
model introduced in Section II.B, where for each letter i,

-oo < i < cx), and

p_(i) = 1 - O01il
1+0

Once again, for convenience the infinite source alphabet

(rather than the truncated case) is treated: tile truncated

case differs by additive terms on tile order of 0255, which is

vanishingly small for all values of 0 encountered in practice.
It has been found that for planetary images, the difference

entropy tends to be in the range of 2.0 to 4.5 bits [3], which

corresponds to 0 in the range from 0.3 to 0.8 bits.

The GVtI code for the double-sided model is defined

as described earlier, i.e., for i ¢ 0, an extra sign bit is

appended to the equivalent codeword for a single-sided
source. Define [._ as tile mean codelength of such a coding

scheme, and r2 as the resulting redundancy. If l_(i) is

defined as the length of the codeword assigned to letter i

by this scheme, then

12(i) = ll(i) + 1, i # 0

= 11(0), i = 0

First derive an expression for the mean codelength 12,
as a function of 0 and I. Note that I need not strictly be a

function of 0 as before, i.e., there is no guarantee that the

condition described in Section III, namely that l uniquely
satisfies

1
1+0 _< 0 -I < 1+

leads to an optimal code for tlle two-sided source. Ilence,

one may treat the optimal selection of I as a separate prob-

lem; the derivations to follow are quite valid for any choice

of I. The question of how to find the l's that minimize r2
will be discussed later.
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i_o0

-[2 = E p_(i)12(i)
i=-oo

= p2(0)/1(0) + E p2(i)(lx(i) + 1)
i=l

i------1

+ _ p2(i)(ll([il)+ 1)
i=-_o

= 2 Ep2(i)il(i ) + 1 - p2(0) - p2(0)12(0)
i=0

But by definition

P2(i)- px(i)
1+0

which leads to

2 -
[2= 1-- h + 1- v2(0)- p (0)t2(0)

Since, in general

12(0) = 1 + Llog2(l)J

and

and ix has been derived earlier, one can write

[2-- i+0 [l°g2(l)J +1+

+ 1 1 - 0 1 - 0 (1 + [log:(/)J)
1+0 150

= 1+ [logs(l)] + 1--_ 0 +

Ilence, it is seen that the mean codelength for the two-

sided GVH coding scheme is quite similar in form to the
one-sided GVH result. Clearly, however, the difference in

the two forms may lead to different optimal values of the
parameter l for fixed O, i.e., [1 and 12 may be minimized

by different values of I over certain ranges of O.

It is shown in Appendix B that the entropy of the two-
sided source can be written as

i=OO

H(X2) : E p2(i)l_.(i)
i---- --oo

, //1 + O_ 20 log2(O )

= '°g2_,_) - (1+ 0)(1 - O)

where X2 is the discrete random variable corresponding to

the double-sided geometric source. Hence, one can write

down a closed-form expression for the redundancy of the

coding scheme as a function of 0 and l, namely

r2 = [_- H(X_)

= 1 + [logs(1)] + _ O+

, { 1 + 0'_ 20 log2(O )

- i,1 + (1+ o)(1- o)

One can find the value of I that minimizes r2 for a given

0 by minimizing the terms in r2 that depend on l, namely

f(l) = [logs(1)] + _

The optimal 1 values (over all ranges of 0 of interest)

can be found by direct search. Table 4 shows the ranges
of

1-0

r(0) - 1 + 0

for which each value of l is optimal, 1 < 1 < 30. Note
in particular that some values of I are not used in Table 4

and that the ranges are different from the single-sided case

(for small values of I) as given by Table 3.

Using the optimal I values, one can plot r2 as a func-

tion of entropy of the two-sided geometric source, with the

results shown in Fig. 5. This characteristic of decreasing

redundancy as a function of increasing source entropy is

quite general and has been bounded by Smyth [9] for arbi-
trary distributions. The redundancy of this coding scheme

yields only a fraction of a bit of inefficiency for ranges of

the source entropy of practical interest. The redundancy
of the Huffman code as a function of the source entropy for

the two-sided geometric model is also plotted in Fig. 5 for
comparison. Clearly, the GVH code is near optimal over
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all ranges of the source entropy and, from a practical view-
point, the redundancy improvement by using a Huffman

code over the GVIt code is negligible.

VII. Source-Model Mismatch

An obvious topic of interest for further investigation is

the robustness of the coding procedure subject to devia-
tions of the true source from the parametric model, i.e.,
one would like to know how the statistical variations that

can be expected in practice will affect tile actual number

of bits sent back. The mean codelength for the model

will not be exactly equal to the mean codelength trans-
mitted for the data. Of course, as described earlier, ex-

cellent empirical performance in the actual encoding of
planetary images has been observed, but a more quan-

titative understanding of the trade-offs involved is desir-

able. Gilbert [10] looked at techniques for designing codes

that avoid having very long codewords and, hence, mini-
mize worst-case performance in the case of source-model

mismatch. Longo and Galasso [11] looked at very gen-

eral cases for the minimum deviations required before a

probability distribution is "nearer" another optimal code.

Itowever, their bounds generally depend on the smallest
differences between source probabilities and, as such, are

not of practical use for DPCM models (where some of the

source probabilities are very small). Since neither of these

approaches is quite appropriate for this problem, there is

considerable room for further work. For flight project ap-

plications in particular, it will be very important to under-
stand and quantify the robustness of this type of model-

based coding prior to practical implementation.

VIII. Conclusions

The DPCM/GVII coding scheme described in this arti-

cle effectively replaces the optimal IIuffman coding scheme

with a near-optimal look-up table operation for the special
case of DPCM noiseless coding of inaage data. Thus, tile

scheme is eminently suitable for applications that require

very high-rate noiseless coding and/or a very simple hard-

ware implementation of the same. Ilence, for example,

future NASA flight projects such as the proposed Presi-
dential Lunar-Mars Space Initiative 2 may find this scheme

very attractive. In addition, very high-rate, ground-based
data communication applications such as video conferenc-

ing and medical imaging may also be suitable areas for

applying this approach.

_E. C. Posner, "Implications of the Presidential Lunar and Mars

Space Initiative for the DSN," JPL IOM ECP 89-67 (internal docu-

ment), Jet ProplLlsion Laboratory, Pasadena, California, February
1990.
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Table 1. Comparison of the difference entropies of the images,

modified Laplscian model, and two-sided geometric model

Difference Difference entropy Difference entropy

hnages entropy of modified of two-sided
Laplacian model geometric model

Saturn 6 2.945 2.877 3.041

Mercury 4.059 3.976 4.069

Moon 5.504 5.790 5.822

Baboon 6.348 6.387 6.409

Table 2. Comparisons of the compression performances of the

Rice algorithm and the DPCM/GVH code in terms of blt/pixel

Difference Rice DPCM/GVtI
hnages

entropy algorithm code

Saturn 6 2.958 3.030 3.281

USC girl 5.061 5.102 5.272

Lena 5.673 5.812 6.010

Moon 5.514 5.663 5.645

Air scene 6.153 6.268 6.174

Peppers 5.094 5.162 5.215

Baboon 6.352 6.339 6.354

Mercury 4.092 4.234 4.162

Table 3. Optimal t values for a single-sided geometric distribu-

tion as a function of r0, the proportion of zeros in the

difference-statistic histogram

Start of range r] (0) End of range r2 (0) Optimal I

1.000000 0.23609,1 1

0.236094 0.140251 2

0.140251 0.099505 3

0.099505 0.077586 ,t

0.077586 0.063264 5

0.063264 0.053741 6

0.053741 0.046572 7

0.046572 0.041124 8

0.041124 0.036807 9

0.036807 0.033058 10

0.033058 0.030397 11

0.030397 0.027749 12

0.027749 0.026167 13

0.026167 0.024066 14

0,024066 0.022495 15

0.022495 0.021450 16

0.021450 0.019888 17

0.019888 0.018849 18

0.018849 0.017812 19

0.017812 0.017294 20

0.017294 0.016260 21

0.016260 0.015744 22

0.015744 0.015228 23

0.015228 0.014199 24

0.014199 0.013685 25

0.013685 0.013171 26

0.013171 0.012658 28

0.012658 0.012146 29
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Table 4. Optimal ! values for a double-sided geometric distribu-

tion as a function of ro, the proportion of zeros in the

difference-statistic histogram

Start of range r_ (0) End of range r2(0) Optimal l

1.000000 0.296176 1

0.296176 0.140251 2

0.140251 0.126126 3

0.126126 0.077586 4

0.077586 0.063264 5

0.063264 0.055966 7

0.055966 0.041124 8

0.041124 0.036807 9

0.036807 0.033058 10

0.033058 0.030397 11

0.030397 0.027749 12

0.027749 0.026167 15

0.026167 0.021450 16

0.021450 0.019888 17

0.019888 0.018849 18

0.018849 0.017812 19

0.017812 0.017294 20

0.017294 0.016260 21

0.016260 0.015744 22

0.015744 0.015228 23

0.015228 0.014199 24

0.014199 0.013685 25

0.013685 0.013171 26

0.013171 0.012658 28

0.012658 0.012146 29

Table 5. Codeword tables for 1 = 1 ..... i6

Codewords Table number Codewords Table number

0
2

I

0
10

11

oo

Ol

I0

II

O0

Ol

IO

110

III

O0

Ol
I00

I01

II0

111

O0

010

011
100

101

110

111

ooo

001

010
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Table 5 (contd)

Codewords Table number Codewords Table number

011

100
lOl

11o

111

000

0Ol

010

Oli

100

101

110

111o
1111

000

001

010

011

100

101

1100

1101

1110

1111

lO

000
OOl

010

Oll

10o

I01O
I011

II00

IiOI

III0

1111

11

000

ooi

010

Oli

I000
IOOI

I010

loll

II00
II01

IIiO

IIII

12

000

0Ol

01o
0110

13

0111

lOO0

lO01

lO10

lO11
110o

11Ol

111o

1111

13

000

o01

0100

o101
o110

o111

I00O

1001

lOlO

1Oll

1100

11Ol
1110

1111

1,1

000

0010
0011

0100

0101

0110

0111

1000

1001
1010

1011

1100

1101
1110

1111

15

0000

0001
0010

0011

0100

0101

0110
0111

1000

1001

1010

1011
1100

1101

1110

1111

16
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Fig. 2. Comparisons between empirical distributions and simple Laplaclan distributions.
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Fig. 3. Comparisons between empirical distributions and modified Laplacian distributions.
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Fig. 4. Comparisons between empirical distributions and two-sided geometric distributions.
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Fig. 5. Redundancy versus entropy for a two-sided geometric

source.
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Appendix A

Mean Codelength of GVH Code for Single-Sided Geometric Distribution

This Appendix gives an expression for the mean code-

length of the GVH code for a single-sided geometric dis-
tribution as defined in Section V. One has

¢o

[1 = E pili

i=0

Looking at the first sum,

i=0

: 0(0 0 + 01 "(" 0 2 -t" ...0/-1 )

I----.00

= (1- O) E Oil,
i=0

= (1-8)(/--_0 i=co 01 ([_j +1)

where

)+z o,(L,o,=(,),+,,)
i=O "

+ 1(0 t + 0 I+1 -[- 01"4"2 -4- ...0 21-1)

+ 2(02/+ 0 21+1 Jr 0 2/+2 "t- ... 0 3/-1)

'-_ . . .

= E i 0 it 0i
i=0 \

1- Ot '_i(Ot )'
_ i=O

6 i : 1 if i (mod i) > k Since

and

and so one has

= 0 otherwise

k = 2Ll°g2(O+lj-- !

one gets

i_OQ

E ioJ -- O_1 - c_2
i=0

S 1 =

0<_<i

1 - 0 t 0 t

1 -- 0 (1 -- 0) 2

Clearly

i----O0 . I----CO

[x =(1-O)(iE=o Oi[_J+ iEoOi.=

=& + S=+ Sa+ &

& +$3 -
1 + Llog2(t)J

1-0

01

(1 - 0)(1 - 0 t)

For the fourth sum, £'4, one gets

i_CO

$4 : E Oi6i

i=0

: (O k -_ 0 k+l ._- ... -_ 0 I-1)

+ (0 k+t + O_+t+_ + ...+ 02t-z)

-_ ..,
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i=oo 1-1 )

= 0} _ 0 i;
i=0 \ j=O /

( )= O_ 1 - 0 t-k_-_-_ (¢)_

=/9.( 1-0'-'1 )T---O 1 - 0_

Adding $1 + $4, one gets

$I + $4 -
1 0 _:

1-01-0 t

ttence

_k

[, = /log2(l)J + 1 + 1 - 0-----7

where k is defined as

k = 2 Ll°g2(s)+H - 1
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Appendix B

Entropy of a Two-Sided Geometric Source as a Function of e

This Appendix gives an expression for the entropy of a two-sided geometric source as a function of O. One has

i=ao

(1 - O)2 ]

(1-0) 20 log_(O)= log_ _ - (f-0-_i¥ 0)
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