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Abstract 

Manipulation Detection Codes (MDC) are  defined as a class of checksum algorithms which can 

detect both accidental  a n d  malicious modif icat ions of an  electronic message or document.  

Although the  MDC resu l t  must  be protected by encrypt ion to prevent  a n  a t t a c k e r  f r o m  

succeeding in substituting his own Manipulation Detection Code (MDC) along with the modified 

text, MDC algorithms do not require the use of secret information such as a cryptographic key. 

Such techniques a re  therefore highly useful in allowing encryption and message authentication to 

be implementcd in different  protocol layers in a communication system without key management 

difficulties, as well as in implementing digital signature schemes. I t  is shown that cryptographic 

checksums that a r e  intended to de?ect fraudulant messages should be on the order of 128 bits in 

length, and the ANSI X9.9-1986 Message Authentication Standard is criticized on that  basis. A 

revised 128-bit MDC algori thm is presented which overcomes the so-called Tr ip l e  Birthday 

Attack introduced by Coppersmith. A fast, efficient implementation is discussed which makes 

use of the Intel 8087180287 Numeric Data  Processor coprocessor chip for  the IBM PCJXTIAT 

and similar microcomputers. 
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1 introduction 

A common theme throughout a series of p a p e r ~ ' - ~ ! ~  by the author and his colleagues, Dr. S. M. 

Matyas and  Dr. C. H. Meyer of IBM, has been the  desirabil i ty of separating the function of 

encryption f rom tha t  of authentication, so tha t  they could operate a t  d i f f e ren t  a rch i tec tura l  

layers or  levels i n  a n  communica t ions  system. In  the  contex t  o f  t h e  I S 0  O p e n  Sys tem 

Interconnect re ference  model, f o r  example,  it  was suggested tha t  l i nk  enc ryp t ion  might  be 

applied to  all of the  communications f rom a host, using a stand-alone l ink encryption device 

opera t ing  a t  I S 0  OSI l ayer  1 ,  the  d a t a  l ink layer. In  th i s  case the  appropr i a t e  p lace  f o r  

au thent ica t ion  would probably  be in t he  Presentation or Application layers  ( layer  6 or  71, 

implemented in a n  application program inside the host. We have also suggested tha t  since the 

mode of encrypt ion  migh t  change depending on the physical medium involved, i t  would be 

desirable if the method of authentication were independent of the encryption scheme used. 

, 

The recently announced  decision of t he  National Security Agency not to endorse new DES 

equipment for  certif ication in accordance with Federal Standard 1027 af te r  1988, and  in  general 

to move on to  a new fami ly  of encrypt ion  algorithms for both Unclassified, National-Security 

Related t r a f f i c  as well as  classified data,  should serve to underscore the advisability of such a 

separation of function, as  i t  will result in an  increased requirement f o r  "keyless" Manipulation 

Detection Code algorithms. Until  the new Commercial COMSEC Endorsement Program (CCEP) 

a lgor i thms a r e  w i d e l y  a v a i l a b l e  ( and  perhaps  f o r  an  even longe r  per iod ,  i n  t h e  case  of 

international circuits which  may have to continue running DES), application programs might be 

supported by two or even three d i f fe ren t  link encryption algorithms (DES, a n  unclassified CCEP 

Type 2 algorithm, a n d  a classified CCEP Type 1 algorithm, depending on the destination), but 

should r equ i r e  on ly  o n e  au then t i ca t ion  a lgor i thm.  I t  should be observed t h a t  t h e r e  is  a 

fundamenta l  d i f f e r e n c e  be tween  encrypt ion  a n d  authentication with respect to the  need to 

change algorithms, for  in the case of encryption it is very difficult to know whether your t ra f f ic  

is being broken sur rep t i t ious ly .  In the  case of authentication, however, i t  usually becomes 

obvious sooner or later if you have been spoofed. The objective is to minimize the amount of 

time required to detect  the  spoofing. I t  would therefore seem tha t  authentication algorithms 

would not have to be changed nearly as often as encryption algorithms, and that there is perhaps 

less need fo r  secrecy in  their  design. 

In the papers presented to  date, our primary concern was to find an  authentication algorithm 

that would  be  more  e f f i c i e n t  than a MAC (especially when implemented in so f tware  on a 

microprocessor), and/or  would not require a traditional encryption operation. Only secondarily 

did we focus on what  this author now believes to be the fundamental  dist inction between an 

MDC and a MAC, i.e., tha t  whereas a MAC involves one or  more secret keys, an MDC makes use 

1. Jueneman, Robert R., "Analyria of Certain Aspect8 of Output Feedback Mode", Advances in Cvpto logy:  Proceeding8 of 
Crypto82, Plenum Presd, Ncr York, 1983, pp 99-127. 

2. Jueneman, R. R., C. H. Meyer, and S .  M. Matysa, "Message Authentication With Manipulation Detection Codes", P m e c e d i w u  of 

the 198s IEEE Sppos ium on Security m d  Prirrey,  IEEE Computer Society Press, 1984, pp 33-54. 

3. Jueneman, R. R., C .  H. Meyer, and S.  M. Matysa, "Measage Authentication", IEEE Communications Magasine. Sept. 1985 - 
Vol. 23, No. 9, pp 29-40. 
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of only publicly known quantities, a n d  is therefore considerably more convenient  f r o m  the  

standpoint of key management. 

1.1 Cryptographic Checksum Requirements 

Let us assume t h a t  we wi sh  to a p p l y  a c ryptographic  seal to some e lec t ronic  message o r  

document, and  that we will ei ther use a digital signature approach, or else use link or end-to-end 

encryption to protect the  MDC result. We must assure tha t  the set of all  checksums is very 

nearly one to one with respect to the set of all message texts, so that we can easily check the 

checksum ( for  example  in  t h e  d ig i ta l  signature) instead of having to process the  en t i re  text. 

That is, given two messages A a n d  B with checksums, we desire that checksum (A) and checksum 

(B) be identical if a n d  only if the messages A and B are  themselves identical. Assuming a good 

checksum algorithm, the  chances tha t  A and  B are not identical given that checksum (A) equals 

checksum (B) should be 2-k, where k is the number of bits in the checksum and the probabilities 

a re  averaged over all  possible messages. 

More specifically, the  algorithm should have the following properties: 

1. If two d i f fe ren t  texts (of a rb i t ra ry  length) a re  checksummed, the probability tha t  the two 

checksums will  be  t h e  same  when  the  two documents  a re  no t  i den t i ca l  should be a 

uni formly  distributed random variable that is independent of the text, with a n  average 

value over all possible texts of 2-N where N is the number of bits in the checksum. 

2. The  checksum must be  sensitive to permutations, so that the message ABC will produce a 

different value than  ACB, etc. 

3. AS will be seen, the  resulting checksum must be on the order of 128 bits i n  length,  in 

order to resist a so-called "birthday attack" against the text itself. 

4. Finally, all of the  bits of the checksum must be an over-determined function of all of the 

bits of the tex t  a n d  a l l  of the  bits of the checksum of the previous block, in  order to 

defeat several a t tacks  tha t  will be discussed below. 

In addition, in a number of applications it is necessary to add a random Initialization Vector to 

the text itself, and  to  cha in  the blocks of messages together by including the checksum of the 

previous block in the  checksum of the current block, so that one properly authenticated value 

cannot be substituted f o r  ano the r  in a playback arrack. For example, if a par t icu lar  dialog 

occurs f r e q u e n t l y ,  a n d  t h e  answer  t o  some ques t ion  is e i ther  "Yes" or "No", wi thou t  the  

appropriate cha in ing  t h e  a t t a c k e r  could  easily substi tute the entire contents of a previous 

message, together wi th  its valid checksum, and the message would be accepted. A 64-bit random 

Initialization Vector will suf f ice  to initialize the authentication, but message chaining may still 

be required. It should be noted tha t  a n  Initialization Vector may also be necessary to ensure that 

the same text is encrypted d i f fe ren t ly  each time it is transmitted, in order to prevent a so-called 

dictionary attack. In general it  appears that  the same Initialization Vector (sometimes called a 

Message Indica tor )  could  be used f o r  both purposes, but i t  would be  necessary t o  carefu l ly  

examine both the encryption and  the authentication scheme before making a blanket statement. 
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Finally, we must point  o u t  that  although a DES-based Message Authentication Code or  MAC 

could be used to authenticate either an  encrypted or unencrypted text without further encryption 

because i t  makes use of  a secret  key', t ha t  is not t rue  of a Manipulation Detection Code. 

Although the text itself does not need to be encrypted, the MDC must be, so that the attacker 

cannot substitute his own MDC with any  significant probability of success. In most cases, the 

MDC can simply be appended to the message, and if the entire message is encrypted together 

with the MDC, that will provide adequate protection. If the MDC is easier to calculate than an 

MAC, then if the message would be encrypted for secrecy in any case the MDC technique would 

be more efficient than a MAC. 

2 Attacks Against  Checksum Techniques 

In the three previous papers i n  this series, we have addressed different aspects of the problem of 

authenticating the  contents  of a message against possible modification or corruption. In the 

first ,  a f law in  a d r a f t  of a f ede ra l  standard regarding Manipulation Detection Codes was 

pointed out  briefly,  a n d  a quadra t i c  residue technique suggested as an  al ternat ive f o r m  of 

checksum. That  paper also pointed out the need for two independent keys for encryption and 

authentication if a Message Authentication Code (MAC)5 is generated through the use of a secret 

(DES) key a n d  appended to the  message, for i t  was shown that the errors introduced in  the 

plaintext by an  error or by manipulation were exactly the errors needed to cause the MAC to be 

erroneously computed so as to validate the manipulated text. 

The second paper presented an  extensive analysis of various forms of Manipulation Detection 

Codes, including block XOR and  linear addition techniques, when used in  combination with 

Cipher Block Chaining,  C iphe r  Feedback,  and Ou tpu t  Feedback modes. T h a t  p a p e r  also 

discussed the architectural  advantages of a Manipulation Detection Code that was independent 

of an encryption algorithm, particularly in those cases where low-level link encryption may be 

used to protect the t r a f f i c  flowing into or out of a main-frame host processor, yet i t  is desired 

for an  application program in  the host to verify the authenticity of the messages received. In 

addition, the potential speed advantages of an MDC technique compared to the calculation of a 

MAC were discussed. 

During the course of wri t ing that  paper and reviewing it with our peers, a number of attack 

scenarios were iden t i f i ed  that  must be considered whenever new schemes are  proposed. In 

particular, Dr. Don Coppersmith introduced several attacks which he called under-determined 

knapsack attacks. These have also been called "birthday" attacks, because they generally involve 

generating random variat ions in  the text and calculating a MAC or an  MDC, then working 

4. This is not recommended, however, because an unencrypted MAC reveals something about the message itself, and may form the 
basis for a dictionary attack. 

5. ha defined in Federal Information Processing Standard FIPS PUB 46, "DES Modes of Operation" publiahed by the Nationd 
Bureau of Standarda. "A MAC may be generated using either the CFB [Cipher Feedback] or CBC [Cipher Block Chdningl mode. 
In CFB authentication. a -e is encrypted in the normal CFB manner except that the cipher text is diwarded. After 
encrypting the final K bits of data  and feeding the resulting cipher text back into the DES input block, the device h OFMted one 
more time and the most siplifrclnt M bits of the resulting DES output block a n  rued aa the MAC, where M is the number of bit. 
in the MAC. In CBC authentication, a message is encrypted in the normal CBC manner but the cipher text b dircarded. 
Meaaages which terminate in partial data blocks muit be padded on the right (LSB) with ceron. In CBC authentication. the moat 
significant M bits of the final output block are uaed am the MAC." 
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forward and backward until  two matching MACs or MDCs are found. Making random variations 

in the text i n  two places a n d  then sorting and comparing the results for  a match allows the 

attacker to take advan tage  of the so-called Birthday Problem in statistics to reduce the work 

required to approximately the square root of the e f fo r t  required to match a particular given 

MAC or MDC. 

2.1 The Fundamental Birthday Attack. 

The third paper abstracted the second for  a more general  audience, but  also added some new 

information. In particular,  i t  was recognized that any Manipulation Detection Code (MDC) or 

Message Authentication Code (MAC) is susceptible to a birthday attack against the text itself, 

unless the MDC or MAC is on the order of 128 bits in length. This fundamental attack proceeds 

as follows, and assumes that  one user is attempting to defraud another by devising a version of a 

bogus or unfavorable contract  or  agreement which would have an  identical checksum as would 

an acceptable version of a legitimate one, having the other party digitally "sign" the legitimate 

version, and then produce the bogus version in front of a judge and claim that the other party 

has defaulted on his obligations: 

1. Assume that  a 64-bit MAC or  MDC is used, and that if necessary the attacker can exercise 

the authentication system ad infiniturn to generate a MAC or an MDC. even if a secret key 

which he does not know is used in the case of the MAC. 

2. The attacker secret ly  prepares a number of subtle variations of the legitimate text in 

advance, and calculates (or has the system calculate) the MDC or MAC for  each one. In 

the case of a n  electronic mail message or document, for example, suppose that  a number 

of l ines contain the  ASCII character sequence "space-space-backspacen6 between selected 

words. The  at tacker  might prepare a set of variations of that  document in  which the 

sequence in  selected lines would be "space-backspace-space". The length of the text would 

not be  al tered thereby, and all of the variations of the document would appea r  to be 

identical ,  both when pr inted and when displayed on the normal video display, unless 

"dumped" in  hexadecimal format. Other, more consequential changes to the text could also 

be made, of course. By systematically altering or not altering the text in each of say 32 

d i f f e ren t  l ines,  232 o r  4.3 bi l l ion var ia t ions could be generated.  A f i l e  of records 

consisting of  t h e  MAC o r  MDC plus a 32-bit  permutation index could be used to 

summarize wha t  lines were altered by a given variation, and what MAC or MDC resulted. 

3. The attacker then prepares an equally large number of variations on the bogus text he 

would like to substi tute for  the legitimate text, and calculates (or has the system calculate) 

the MDC or  MAC f o r  each one of those variations as well, producing another  fi le Of 

MAC/MDC results plus the permutation index records. 

4. The attacker then compares the two files, searching for a pair of identical MACS or mcs 
a n d  not ing the  permutat ion indices. (If no match is found, the at tacker  can simply 

generate a f e w  more random variations of the legitimate and the bogus texts unti l  a match 

6 Other eombinationa, such w null-charactcr, or carriage return - line feed would dm work, 8. well M lwa subtle variations such 
changing "the" to 'an", or inserting or deleting commas or spaces in a numenc field 
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is found.) He then  recreates t he  fu l l  text of both the acceptable and the unacceptable 

documents with the  specific modifications necessary to produce the matching MACS or 

MDCs, based on the permutation indices. 

5. Finally, he offers  the appropriate variation of the legitimate contract to the other party 

and both "sign" it. A t  some time in the future  the attacker substitutes the unfavorable 

contract, and tells the judge that the digital signature containing the MAC/MDC "proves" 

i t  was that version that  was signed by both parties. 

This is Yuval's' classic "How to  Swindle Rabin" form of a so-called "Birthday Problem" attack. 

According to the famous birthday paradox' problem in statistics, this kind of an attack is likely 

to succeed i f  t he  number  of variations of each document that are generated a n d  compared 

approaches the square root of the total number of possible MAC/MDC values. Tha t  is, if a 32- 

bit checksum were used, the probability of a successful attack would be about 50% a f t e r  only 216 

or 65536 variations were computed, and would increase rapidly after that point. If a 64-bit MAC 

or MDC were used, then the 4.3 billion iterations produced by systematically varying 32 lines of 

text would be likely to suffice.  

In order to see whether this attack would be computationally feasible against a 64-bit MAC, let 

us assume that  t he  var ia t ions all  occur a t  the end of the text and that exactly one variation 

occurs in 8 bytes of text, so that  only one DES iteration would be required to account for  that  

variation. The brute-force way to calculate the resulting MAC for the entire text would be to 

recalculate the last 32 DES blocks fo r  each variation, which would require 2 x 32  x 232 DES 

iterations for  the two sets of  variations of the text. However, by only encrypting those blocks 

tha t  have  changed a n d  those fo r  which earlier blocks have changed, the number  of DES 

iterations can be reduced to 2 x (2ss-1). A hardware  DES implementat ion r u n n i n g  a t  10 

microseconds per i teration could complete the task in just under 2 CPU days. 

However, the amount of 1 / 0  required to sort and compare the data must not be neglected. A 64 

bit MAC and a 32 bi t  permutation index per variation would require 12 bytes per entry times 2" 

entries,  or  51.5 gigabytes per file. At an  effective rate of 20 microseconds pe r  va r i a t ion  

(including encrypting due  to the requirement to reencrypt blocks after a change), da t a  would be 

generated a t  the rate of 4.8 Mbps or 600 kilobytes per second, which is well within the channel 

capacity of a mainframe computer to record. The process of comparing two files consisting of 

340 reels each of 6250 bpi high-density tape (151 megabytes per reel), searching f o r  a n y  one 

value on one fi le that  matches any  one value on the other file, would admittedly be  a lengthy 

task even for a mainframe computer, but it is not infeasible. One approach would be to presort 

the information by dis t r ibut ing the da t a  across 22 tape drives while the information is being 

generated, producing 22 files of approximately 15 to 16 reels each for  each variation. Each of 

those files could in tu rn  be distributed onto 20 reels of tape at  maximum tape speed, and then 

those approximately 680 individual reels could be sorted one at  a time using a conventional tape 

7. Yuvai, G . ,  "How to Swindle Rnbin', Cryptoloda, Val 3., No. S, July 1979, pp 187-190. 

8. How many people must them bz in a room in order to have a good chance that at hart two people in the room dl have the S a m e  

birthday. 



or disk sort routine, a n d  finally compared. Assuming each reel requires 15 minutes to sort, the 

total process could be completed in  about a week. 

An interesting alternative technique wan suggested by Caron and Silverman's distributed proceasing approach to factoringg. Let Us 

mume that the attacker has a t  least the occasional use of 256 Intel 80386-based micmpmcessors or similar machines which are 

connected via a high-weed LAN. Each of them slave machines will be sasumed to have h o  boards of 8 megabytee." each of the new 

1 megabit memory chips. In addition, a master station will be equipped with a hard-- DES implementation, four 8-megabyte 

memory boards. and two 85 megabyte hard duka. 

The total amount of memory in the 256 slave processors would be 4.295 gigabytes, or 235 bits. Let us m u m e  that after each 

CalCuhtiOn Of a MAC in the first set of variationa, the maater workstation sends 24 bits (bits 8 through 32) of the MAC to the 

appropriate slave Processor b w x i  on bits 0 to  7 of the MAC. Each slave processor would then uae thoae 24 bits to addresll a 

particular bit within its memory, and would turn on that bit. At the end of the fvrt p a n  through all of the variatiom of a single 

document (requiring about 24 hours), the contents of the fint 32 bits of dl s2 MAC, calculated would be represented as a *et of bits 

turned on in d l  of the memorim. Because there M ZS2 bits turned on out of z35 bits totd,  the probability that a particular bit will 

be on after the first Pass is 1/8, with many bits having been turned on multiple times within this pans. At the end of the first Pass, 

all of the slave processors would dump memory to  a hard disk, then zero all of the bit ntorage area. 

The maater procesaor would then begin pmceuing the second 8et of variations and would again send 24 b i b  of the MAC to d of the 

slave processon. This time, however, the slave processon would check to see if that particular bit had dready been turned on. If it 

had, it would signal the master CPU, which would record that permutation index. Becauw the probability of a particular bit being 

turn on in both the first and the second psssea is 1/64, a 1 byte increment from the previous permutation index would normally 

suffice and there would be appmximately Z32/M or 67,108,859 values to record, BO one 85 megabyte hard disk would be sufficient to 

contain one set of permutation indices. 

The master CPU would then repeat the calculations of the first pau  in a third psas, sgain broadcasting 24 bits of the MAC to the 

appropriate slave stations, which would replay whenever a collision waa found. The master station would then record the 

permutation indicea aaeociated mth those collisions on the second 85 megabyte hard disk. 

This entire thr- P W  procorm would then be repealed, but instead of examining the firrt 32 bits of the MAC the last 32 bits would be 

Wed. The fourth P u s  would initially turn a set of bits based on the first document, m d  the fifth p m  would check for a pouible 

collieion. However. the master CPU would not have to generate all 232 variations, but rould only p m c ~  the variationa that sere 

previously recorded as potential match- after the second and third pames. Therefore. h t e a d  of taking two days for this pmceaaing, 

it would only take about 4s minutes. 

' 

During the fifth and sixth p a u a ,  the various slave pnxesom would send back acknowledgements as before, and the maater station 

would erase any permutation index that did not produce a collision. Thin time, the probability of a false alarm colliaion is Only 

1/4090, so the expected number of collisions remaining to  be processed is 1,048,576. 

The maater station would then make two internal passes over the remaining permutation indices for the two different documents, 

using a haah table lookup scheme to atore/searcb the M-bit MAC and 32 bit permutation indices. 

2.2 Other Opportunities For Bir thday  Attacks. 

Similar attacks could potentially succeed against command and control systems, especially if  the 

attacker is able t o  send bogus commands and random variables over a channel tha t  cannot be 

shut down without denying  service to the legitimate users as well. An example would  be an  

attacker who a t t empt s  to take over or disrupt a communications satellite by sending  spur ious  

commands via the Telemetry,  Tracking, and Control channel to the satellite in a n  a t tempt  to get 

9. Camn, Thomas R. and Robert Silverman, "Parallel Implementation of the Quadratic Sieve", Adranees in Computer S d a C e  - 

10. Sixty-four microprocessors r i t b  64 megabytes of memory would be significantly cheaper, but that would be a Very I F i d i Z e d  

CRYPT0 '86 Proceedings, Springer-Verlag. Berlin, 1987. 

system, M opposed to a configuration that might be used for other purposes and could be 'borrowed" for OUT P U m .  
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it to move out of position, use up  all  of the maneuvering fuel, go into a spin, etc. There is no 

easy way that the attacker can be located, and if he is operating out of a foreign country there 

may be nothing that can be done to stop his transmissions. The attacker can simply send random 

data, a n d  even if the command link were encrypted there is a possibility that  the decrypted 

information might be accepted as a valid command. Unless a sufficiently long checksum is used, 

random da ta  and  a r andom MDC o r  MAC will eventually result in  a random command being 

accepted". 

I 

Another instance could arise i n  a multilevel-secure system, where a cryptographic  "seal" is 

applied to  a n  "object". i n  o r d e r  t o  prevent classified information from being disclosed or  

modified without  proper  authorizat ion.  For example, if the security classification associated 

with the object could be manipulated by a Trojan Horse program, a classified object's label could 

be changed to "unclassified", and the information released. Similarly, the contents of a properly 

marked, unclassified object could be changed and classified information inserted. Because the 

sensitivity label must be very closely associated with the contents of the object (to prevent a 

simple cut-and-paste attack), the security seal of the object typically includes both the sensitivity 

label and  the contents of t he  object as well. In this case, the Trojan Horse program could 

conceivably man ipu la t e  t h e  label  together  with some innocuous port ion of t he  data ,  and 

repeatedly present the information to the cryptographic seal mechanism until two versions, one 

good and  one bad, happened to  produce the same cryptographic checksum. The substi tution 

would then be prepared. 

2.3 Recommended Length For Cryptographic Checksums. 

Based on these attacks,  we conclude tha t  it is essential that  any MAC or MDC checksum be on 

the order of 128 bits in length, in order to protect against situations where the opponent could 

systematically change both the text and the MAC/MDC until he finds a combination that  works. 

A 128-bit checksum is suff ic ient ,  because in addition to the sorting and searching problem 

rapidly becoming insurmountable  ( a f t e r  about 80 bits), the 265 basic MAC/MDC calculations 

required by the bir thday problem a t t ack  would not be computationally feasible, even if  they 

were to take only I nanosecond apiece. I t  must be stressed that this attack has nothing to do 

with the cryptographic strength of the MAC or MDC algorithm, or whether conventional keys, 

public keys, or no keys a t  all  are  used, but only whether the length of the result is sufficient to 

withstand any computationally feasible number of random "birthday attack" trials. 

In this connection, i t  is worth observing that the recently revised ANSI X9.9-1986 authentication 

standard'* specifies the use of a 32-bit MAC, although the future use of a 48-bit or 64-bit MAC 

is also discussed. In analyzing the protection afforded by that standard, we should consider both 

external attacks and internal f raud.  With respect to an external threat in this environment, a 32- 

bit MAC is arguably sufficient.  Even though an attack against such a system would be likely to 

11. Actually, satellite command procesnon typically echo the command received back to the ground, and then require an "Execute" 
Auuming that the Execute command is also command within a certain period to  make the received command take effect. 

encrypted and authenticated it in much I- likely that this particular attack would succeed, but the point is clear. 

12. Financial Institution Message Authentication (Wholesale) X9.9-1986 (Approved August 16, 1986), published by the x 9  
Secretariat, American Banken hsociat ion,  1120 Connecticut Avenue, Washington. D.C. 20036. 
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succeed af ter  only 65 thousand attempts, hopefully all of the false MACs should generate some 

alarm, and the investigative agencies would be called in to stop the perpetrator before he (or 

she!) was successful. 

, 

With respect to a possible internal threat or Trojan Horse program, however, it is obvious that if 

the security of the system were to rest solely on the authentication provided by the MAC, then a 

32-bit MAC is grossly inadequate. It should be apparent from the preceding discussion that  even 

a 64-bit MAC would provide inadequate protection from a member bank or insider who might 

attempt to defraud another  institution, if that  were the only mechanism used to protect against 

such attacks. In the  b a n k i n g  env i ronmen t ,  of course, there  a re  a l l  sorts of reconciliation 

processes tha t  would presumably uncover such attempts a t  f raud sooner or later, but i n  other 

environments this might not be the case. System developers are therefore cautioned not to a p p l y  

the X9.9-1986 authentication standard outside of the specific wholesale banking environment for which 

it was developed. 

2.4 The Need For Super-Authentication. 

It should b e  noted t h a t  if  a n  MDC technique were used to  authenticate a message t h a t  is  

protected by Ou tpu t  Feedback (OFB) mode (or worse yet, not protected a t  all), the opponent 

could easily calculate a valid MDC to go with the modified text, and append the new MDC to 

the text a t  will, since there is no separate cryptographic key used to protect the authentication 

information. Even though the attacker doesn’t know the key used to encrypt the message, if we 

assume that he does know the plaintext (perhaps because he generated it) he can determine the 

keystream o u t p u t  f r o m  OFB by  XORing i t  with the plaintext,  a n d  can then change  the 

keystream to suit his purposes. This particular attack can be defeated by having the system 

introduce a secret ,  v a r y i n g ,  r a n d o m  component  wh ich  the  opponen t  doesn’t k n o w  (an  

Ini t ia l izat ion Vector)  i n t o  eve ry  message, and including that  r andom value i n  t h e  MDC 

calculation. The Init ialization Vector is not a key, since it doesn’t have to be known in advance 

by either party. I t  doesn’t even have to be deterministic, and it can be discarded by the receiver 

after the MDC is checked. However, the random value should be at  least 64 bits long, so that  the 

attacker cannot discover i ts  va lue  a n d  then the t rue  value of the MDC and therefore  the 

corresponding bits of t he  key s t ream by exhaustively trying all possible values of the initial 

random component. 

With this in mind, let us reconsider the delayed transmission OFB attack that was discussed in 

the second and third papers. That  attack made use of a lengthy message whose plaintext was 

known to the attacker,  so that  an  extensive amount of keystream would become known. The 

beginning and end of t h e  message would then be jammed, and an invalid message substituted 

based on the keystream. The  invalid message could even contain a random component, since the 

attacker would have already recovered the keystream bits for that portion of the output. 

In order for  this attack to succeed, i t  is necessary for the attacker to precisely synchronize the 

plaintext and the ciphertext, know the current message sequence number, intercept the ciphertext 

and block it, jam the portion of the message containing the secret, random component t o  make it 

look l ike a noise burst  on the  transmission medium, and then fabricate  any desired random 

value, bogus message, a n d  a corresponding fraudulent MDC, and follow it with a valid HDLC 
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frame check sequence. Finally, the end of the message containing any remaining message text. 

the old MDC, f r ame  check, and  the start  of the next message would be replaced wi th  random 

characters to cause another  noise burst  to be simulated, which would then be rejected by the 

standard HDLC error recovery mechanism a t  the receiver. 

, 

It should be clear that  this real-time interception and modification technique, although difficult  

to put into practice, could theoretically be applied to m y  MDC scheme that does not involve the 

use of a secret key fo r  authentication, if the message text being sent is known to the attacker. 

Although this attack was previously considered legitimate, and a potentially serious obstacle to 

the use of an  MDC technique, i t  can only succeed if the message being attacked is considered in 

isolation, as if  i t  were the only message being sent. In order to defeat  the at tack i t  is Only 

necessary to chain the  ind iv idua l  messages together i n  such a manner that  a change in  One 

message will a f f e c t  the MDC in  the next message. Therefore, instead of the MDC i n  a given 

message pertaining to that  message, i t  should instead pertain to the previous message. The MDc 

contained in  the f i r s t  message should cover the Call Request/Call Acknowledgement or other 

session establishment message sent b y  the olher correspondent, and containing a secret, random 

component known to that  correspondent, or the system a t  that end. By MDCing something that 

the other correspondent a l ready knows, the chain is anchored a t  the beginning, defeating an 

attack that would systematically change every message in the sequence. 

Each MDC should therefore cover not only the data contents of the previous message, but the 

previous MDC as well, so t h a t  changing a single bit of a message will affect  all of the MDC 

results f rom then on. The  MDC fo r  the previous message then satisfies the requirement for a 

secret, random component  i n  each message if  OFB is used. In order to detect an  attempt to 

delete the f i n a l  message o f  a session, a unique end-of-session message should be  sent  that  

includes the MDC of the previous message, plus the MDC of the end-of-session message itself. If 

a digital signature capabili ty is implemented, it would be desirable to sign this f inal  message. If 

the final MDC is digitally signed, then the initial MDC could be a constant. This would avoid 

the necessity of having a session established in  real time so that the other correspondent can 

check the original value of the MDC a t  the time of session startup. This would be particularly 

useful i n  s tore-and-forward message systems, including electronic mai l  a n d  bu l l e t in  board 

systems, where the receiver is not i n  direct  contact with the originator and the  intermediate 

system may be a public or untrusted system. It would also apply to unidirectional transmission 

systems, i nc lud ing  some  command  and  control systems as well as systems that  t ransmit  to 

destinations operating under  radio silence rules. 

Finally, i t  should be noted t h a t  i n  some cases the communications system may employ some 

device such as an  Automated Teller Machine to screen the messages being sent, allowing only the 

"good" messages through. But in this case the system (the ATM machine and the bank) and the 

user do not necessarily share  common interests. The user may wish to ensure that his messages 

are kept secret ,  a n d  t h e  legi t imate  user may also be interested in assuring the end-to-end 

integrity of his messages. But the system, in this case the ATM machine, may also have a role to 

play in assuring that the user does not compromise the integrity of his own messages. 

We should not  t ry  to  s a t i s f y  both of these possibly diverging requirements  t h r o u g h  one 

mechanism. Instead, just  as we sometimes use super-encipherment (for example using end-to-end 
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DES enc ryp t ion  to  e n s u r e  wr i te r - to- reader  pr ivacy ,  plus l i nk  encrypt ion  us ing  c l a s s i f i ed  

algorithms to protect against  a n  ex terna l  threat), we should talk about super-authentication. 

That is, if the system has a requirement to assure that messages are not modified af ter  they exit a 

secure processing f a c i l i t y .  then the s y s t e m  must independently  provide that assurance without 

depending upon the user's mechanisms. 

8 

3 A Quadratic Congruential MDC 

Now tha t  we have developed the  rationale fo r  the use of an MDC algorithm, we should certainly 

try to def ine  a suitable implementation: 

3.1 The Original QCMDC, 

The original Quadra t ic  Congruential Manipulation Detection Code (QCMDC) function proposed 

in the second paper in  th i s  series was defined as: 

Z, = C = MDC in i t ia l  value 

Zi = (Zi-l + Xi)* modulo N 

MDC = z,, 

where C, Zi, a n d  MDC a r e  a l l  32-bit integers i n  two's-complement notation, and  N was the  

Mersenne prime 2'l-1, chosen so that  the modulo result would f i t  in a 32-bit word. 

In order to prevent a n  a t tack  against the MDC in the case of Output Feedback Mode (where both 

the text and  the MDC could easily be changed), it was first  proposed to make the first  32 bits of 

the message a secret seed, S, withheld even from the message originator, so that i f  the  opponent 

attempted to attack his own message he  would not know the secret seed and  would therefore not 

be able to intelligently modify the  MDC. 

However, a var ia t ion  o f  t h e  under-determined knapsack attack of Coppersmith involving the 

taking of square roots modulo N and working backwards from the MDC in a meet-in-the-middle 

attack showed tha t  the  use of t he  secre t  seed, S, was not sufficient;  and  tha t  e i ther  a secret 

quant i ty  C would have  to  be in t roduced  into the accumulator or the MDC would have  to be 

extended to 80 bits or more. 

When the QCMDC algorithm was first  implemented on the 8087, some variations were also coded 

and tested which used a n  Exclusive OR operation (denoted e or XOR). These variations were 

intended to defea t  Coppersmith's technique of working backwards taking square roots modulo p. 

Although these operations were felt  a t  the time to increase the cryptographic s t r eng th  of the  

algorithm by denying the  attacker the opportunity to work backwards (by making the algorithm 

non-invertible), the additional operations were quite time consuming. 

However, we concluded in the  third paper that the MDC must be on the order of 128 bits long in 

order to foil  the b i r thday  problem attack in any case, and for  that reason i t  was recommended 
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that four separate i terations of the MDC algorithm be performed over the text resulting in a 124- 

bit MDC. It was thekefore thought that  Coppersmith's attack on the QCMDC would be defeated ' 

because of the diff icul ty  of generating the requisite 2*, different variations. We then concluded 

that none of the variations on the basic QCMDC approach were necessary. 

3.2 The Triple Bir thday Attack 

Ironically, one week before  the publication of the third paper, C o p p e r ~ m i t h ' ~  pointed Out a 

weakness in a double-iteration DES signature scheme by Davies and Price which also applied (to 

a somewhat lesser degree) to the quadruple-iteration MDC scheme, as follows: 

- Assuming t h e  use of a n  a rb i t r a ry  invertible function F(X,H) as a checksum funct ion 

operating over  t h e  message M = (Ml, M,, .._ M,), intermediate results H,, H,, ... H, are  

produced f r o m  the  relation H i  = F(Mi,Hi-&, or alternately from the inverse of F, Hi-1 = 

F - ~ ( M , H ~ ) .  

- During a precomputation phase, select some arbitrary n-bit quantity Z, which is going to 

be the value of H,, H,, H,, ... ,HI,. Then randomly select approximately 2" values x, 
compute the  values F(X,Z), and store these values. Then randomly select 236 values y, 

compute the inverse function F"(Y,Z), and store those values as well. Then compare all 

of the Y values to all of the X values searching for a matching pair, using a sort  and 

compare technique as required. This constitutes the first birthday problem. We expect to 

f ind  256 such matching pairs, and if not, we will examine a few more values of X or Y or 

both. Note that  each such pair  (Xi, Yi) can be used as a message pair (M3,M4), (M.&Q, ..., 
or (M17,M18) such that  if H, = 2, M3 = Xi, M, = Yi then H, = Z, etc. 

- Given a message M' = (MI% M,, ... , M,,), the chosen value of 2, and the 256 pairs (Xi, Yi) 

obtained during the precomputation, our task is to select values of M,, M,, ... , M, which 

will make H,, a valid hash of M = (Ml, M,, ...,M,,). We therefore f ind  values of Ml and M, 

such that F(M,,Z) = Fel(M,Z) to put ourselves in a standardized position. Th i s  takes on 

the order of 2= hashing operations and 232 storage. This is the second birthday problem. 

- Working b a c k w a r d s  f r o m  H,, (note that this requires the checksum func t ion  to  be 

invertible), using the values M,, M,-,, ... , M,,, we find the value of Hn+18. the value of 

the hash function on the second iteration. Finally, we make use of the precomputed pairs 

(Xi ,Yi ) .  For each of the 256' = 232 choices of the four pairs (Xi,Yi) to be the values Of 

(M3,M4), (Ms,Mg), (M7,M8), and  (M*MIO), we compute the value of Hnf10 that  would result 

then d o  the  same  thing w i t h  the  values of (Mll,MlP), (M,&i14), (MlSrM16)r (M1,.M18), 

computing backwards f rom H,, to get a value for HlP We again sort and compare these 

values as the third birthday problem. We expect one match, and the corresponding values 

of M3 through M,, finish our  task for a two-pass checksum process. 

- The process could be extended to attack a triple-pass hash algorithm by constructing eight 

"super-pairs" 'consisting of M,, through M,, plus M,, through M,,, etc., up to M 2 5 ~  Each 

13. Coppemmith, D . ,  "Another Birthday Attack", Advanca in Cryptdog). - CRYPT0 '85 Pmceedinp, Lecture Note. in 
Computer Science, Vol. 218, Springer-Verlag, Berlin, 1986, pp 14-17. 
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super-pair would be manipulated during the precomputed phase to continue to produce the 

value of 2, even on the third pass. Only slightly more computation would be required, 

but obviously 258  blocks of the message M would be constrained, limiting the messages 

that could be attacked to fa i r ly  long ones. Finally, this process could be extended even 

fur ther  to attack a quadruple-pass hash algorithm by computing eight "super-dooper" pairs 

consisting of 512 blocks each, or  a total of 4098 blocks. 

The multiple bir thday a t t a c k  therefore  serves to reduce the strength of an  N-pass signature 

scheme from an apparent 2N*k/2 to an  almost trivial N*2k/2. 

It is worth mentioning that  the Coppersmith's attack also applies to attempts to extend the MAC 

of FIPS PUB 46 or ANSI X9.9 to 128 bits (in order to try to overcome Yuval's attack against the 

p l a in t ex t )  b y  s imply  c o n c a t e n a t i n g  t w o  o r  more MACs u s i n g  t w o  o r  m o r e  d i f f e r e n t  

authentication keys. T h e  reason is t ha t  the MAC function, i.e., DES Cipher Feedback mode 

encryption, is  invertible,  a n d  in  addition the components are  separable and  individual ly  too 

small to resist a birthday attackI4. As a result, and contrary to the advice in the second and third 

papers in this series, the 64-bit Message Authentication Code technique by itself cannot be considered 

sufficiently strong, and is not recommended if  there is any possibility t ha t  the or iginator  may 

attempt to defraud the message recipient, or  if a Trojan Horse could circumvent security controls 

through such a mechanism. In addi t ion,  the use of a MAC in certain command a n d  control 

situations where the at tacker  may attempt to spoof computer-controlled equipment or  processes is 

also not recommended. 

In practice, the Iikelihood of all  of these blocks of being substituted without being noticed may 

be remote, f o r  in the case of the quadruple-iteration QCMDC routine this amounts to 16392 bytes 

that would have to be inserted in the text. However, in the previous papers we had committed 

ourselves to detecting even a single inserted,  deleted, or manipulated bit, regardless of the 

amount of text and independent of any  internal syntactical or semantic content. After all, if we 

were to rely solely on internal consistency checks to detect such manipulations we would first  

have to invent a suitable manipulation detection scheme! 

It should therefore be observed that  Coppersmith's triple-birthday attack will succeed against a 

multiple-iteration QCMDC routine if two conditions are true: 

1. If t he  checksum func t ion  is  invertible, so that it is possible to work both forwards and 

backwards to produce matching values in a birthday-problem attack. 

2. If t h e  checksum f u n c t i o n  is subject to decomposition into separate  and  independen t  

elements, each of which is sufficiently small that the birthday-problem attack is feasible 

from the standpoint of computation time and storage. If the checksum function were to 

involve a 128-bit result that  could not be broken down into something smaller, then the 

bir thday at tack would be infeasible  because it would involve generating, storing, and 

comparing on the order  of 2H 128-bit checksums and 64-bit permutation indices, or about 

8.8*1OZ0 bytes of storage, or 5 quadrillion reels of 6250 bpi magnetic tape. 

14. Thin is no: to aay that e auitable 128-bit checksum could not be constructed wing DES or aomc other 64-bit block cipher. but 
only to  caution that tho task is not nearly M trivial M it may appear a: firat glance. 
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In the case of the simple QCMDC routine (where Hi = ( (Hi-, + Mi)* ) modulo N), the addition of 

Hi-1 and Mi makes the func t ion  technically non-invertible from the standpoint of exactly and 

uniquely reproducing the input  Fi-l given some Fi, since the Hi is a function of two independent 

variables. But i t  is suff ic ient  if the attacker can construct a value Yi-l = F-'(Xi) which, when I 

computed in  the forward direction, will produce the desired result for Hi. T o  do this, note that 

(K*N + x) mod N = X. Therefore,  multiply the modulus N by some variable K such that  the 

result is a perfect square, and take the square root of the result. Then Yi-, = Hi - K*N, and the 

value of Xi that  will satisfy this relation is SQRT(K*N) - Y, 

This suggests a variation of the QCMDC routine that would involve XOR(s) or  some other non- 

linear combining function that would not be susceptible to a square root attack. If  in addition 

the routine involved all  128 bits of the text and all 128 bits of the MDC of the previous block, 

then neither of the two conditions would be true and the triple-birthday attack would therefore 

be defeated. However. as the indefatigable Dr. Coppersmith pointed out, this is not necessarily a 

trivial task. 

In order to make the MDC funct ion non-invertible it is necessary to introduce a history function, 

i.e., some value t h a t  wou ld  no t  yet  be known when working in  the backwards direct ion,  

calculated in some non-linear manner  so that  the square root attack will not work. In addition, 

it appears necessary to incorporate multiple references to both the text to be authenticated and 

to the previous MDC result, so that  the only value that would satisfy the forward relationship is 

the Proper one. Not only must each bit of the checksum function be a function of all of the bits 

in the ful l  128-bit text block together with all of the bits in the MDC of the previous block, but 

additional dependencies should be introduced to ensure that the function is not just  minimally 

dependent on those bits but  is over-constrained instead. 

Finally, as stated previously, the MDC function must produce a value on the order of 128 bits in 

length in order to defeat  the various birthday attacks against the text itself. 

3.3 The New, Improved QCMDCV4 Algorithm 

The following algorithm, dubbed  the Quadrat ic  Congruential Manipulation Detection Code, 

Version 4 (QCMDCV4) fo r  brevity, is proposed to satisfy these requirements: 

Consider a 128-bit (16 byte) block of text, divided into four 32-bit words, T,, ... ,T,. For reasons 

that will be explained later, we will be operating on a 31-bit subset of each of those 32-bit words 

which consists of the sign bi t  a n d  the low-order 30 bits, i.e., Pi = Ti AND BFFFFFFF.  In 

addition, we will def ine a 30-bit f i f t h  component, T**, consisting of the 6 high-order bits of TI 

(with the 6 bits shifted right two bits and 2 leading zero bits introduced on the lef t  or most- 

significant-bit position), concatenated with the high order 8 bits of T,, T,, and T,, to make a 32 

bit word with two high order zero bits. 

Let the 128 bits of the MDC result (obtained from the previous block of text) also be divided 

into four 32-bit integer components M,, M,, M,, M,; and let the 32-bit components of the new 

MDC result be designated as M', 
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Finally, define a set of moduli  N,... N,. consisting of the four largest prime numbers less than 

the maximum 32-bit integer,  namely 2147483629 (231-19), 2147483587 (2s1-61), 2147483579 

(231-69), and 2147483563 (2%5). 

- 

Then calculate: 

Several  f ea tu re s  of t h i s  a lgo r i thm should be noted. First, each of the 16 d i f f e r e n t  X O R  

combinations is unique. Second, even if a significant amount of the text contains a l l  zeroes 

(with the result that  the XOR does nothing), the alternating signs for the Mi and T** components 

operate in  such a manner  that  the contribution of the various terms will be different  in each 

case. Finally, the M’i values are  introduced into the computation of the subsequent components 

as soon as they are  available, so that  there is a great deal of inter-dependency and mixing. AS a 

result, each 32-bit component of the MDC result is an over-constrained function of all  of the text 

and all of the prior MDC. 

The previous papers had  proposed a constant value for the modulus, N, equal to the Mersenne 

prime 2’l-I (2147483647), f o r  all four  of the 32-bit M’i results. But as Don Coppersmith pointed 

out when reviewing a d r a f t  of the current procedure, because 2$l-1 is the largest number that 

can be contained in  a f o u r  byte integer in two’s complement form, XORing the hexadecimal bit- 

string 80000001 has the effect  of inverting the sign and the low order bit, which can be the 

equivalent of adding or subtracting the modulus. As a result, even when the intermediate sum is 

squared, t h e  d iv i s ion  b y  t h e  2’l-I modulus f requent ly  produces no change i n  the result, 

depending on the sign of the Ti and whether a carry would be required, and a modification to 

the text could thereby escape detection. 

Coppersmith proposed picking up  the text only 24 bits a t  a time to avoid this problem, using 

additional i terations to get back to around 128 bits. In an attempt to overcome this  problem 

without the overhead of  a n  add i t iona l  iteration, the f o u r  different primes fo r  the moduli Nj 
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were introduced, all of them smaller than 2s1. However, it was found that if the text consisted 

of one 32-bit word of random bits and three words of zeroes, then in about 10% of the cases it 

was possible to either a d d  or subtract  the value of the first  modulus and have the  change go 

undetected i n  the corresponding 32-bit word of the MDC result. Although the use of fou r  

different values f o r  the moduli means that the substitution does affect the remaining 3 words, or 

a t  least 96 bits, i t  was fel t  that  the ful l  128-bit strength should be preserved. 

For this reason, only 30 bits plus the sign bit of each 32-bit word of text is used in forming the 

intermediate sum. Since the moduli are  all greater than 250, i t  is impossible to add or  subtract 

the modulus f rom the text without detection. The final addition or subtraction of T** ensures 

that all of the bits in the text affect  all of the bits of the result. 

One fu r the r  improvement is  possible. Because of the squaring operation, each 32-bit MDC 

component will be positive, producing a 124-bit result. But we can calculate the parity of the 

intermediate MDC result, just  prior to the multiplication, and then change the sign of each 32-bit 

result if the parity is even. 

Finally,  because t h e  a l g o r i t h m  o p e r a t e s  on  16-byte  blocks,  i t  i s  necessary to  somehow 

differentiate between a text string that  is say 1 byte long and one that consists of the same byte 

extended with up  to 15 bytes of zeroes. For that reason the last few bytes (less than 16), if any, 

are moved to a 16-byte buffer ,  the rest of the buffer zeroed, and the MDC algorithm executed 

N+1 times on that  same buf fe r ,  where N is the number of the last f e w  bytes. N+1 is used 

instead of N, because a block that  is 16 bytes long has to be processed once, and therefore a 1 

byte block has  to be processed twice in order to be distinguished from the previous case. If 

improved performance is needed, the length code of the text can be prefixed to the text, and the 

size of the buffer  extended to be an  exact multiple of 16 bytes. This technique m u ~ t  be used if 

it is necessary to deal with text strings that are not multiples of 8 bits in length.15 

In order to avoid a strong correlation between the text and the MDC result in the case where the 

text is very sparse (contains mostly zero bits), i t  is desirable to use different  values f o r  the 

start ing values of  Mi. For purposes  of  s tandardizat ion the values 141421356, 271828182, 

314159265, and 57721566 a re  suggested. 

4 Implementation Considerations 

The  QCMDCV4 a l g o r i t h m  h a s  been  implemented a n d  t e s t ed  o n  t h e  I B M  P C  a n d  A T  

microcomputers and the Compaq 286 Portable, and should run correctly on any similar machine 

which uses the Intel 8088, 8086, 80188, or 80286 CPU chip in combination with the 8087 or  80287 

Numeric Data Processor chip. The 8087/80287 is used to significantly speed up the calculation 

of the various ari thmetic operations, in particular the division modulo the large primes. 

15. It may be worth mentioning that the ANSI X9.9-1986 authentication atandard and the definition of the MAC in FIPS PUB 46 do 
not take this problem into account, and therefore do not differentiate between a short mensage (one that is not a multiple of 8 

bytes in length) that must be padded with =roes. and one that is a multiple of 8 bytm in length and happens to contain zeroes at 
the end. Although binary zeroes would bc interpreted M ASCII null characters and would not be confused with the ASCII "0" 
(hexdecimal SO) character in coded text, formatted binary information is allowed by paragraph 5.1 of that standard. which does 
not specify that a length indicator field must be used. The confusion therefore could occur in thin cane. 
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During the calculations the results a r e  kept in IEEE Binary Floating Point 80-bit Temporary 

Real format with a 64-bit mantissa, a n d  Ti and Mi a re  in Intel 32-bit integer (IBM/Microsoft 

Pascal INTEGER4) fo rma t .  (Note tha t  the Intel format loads and stores register contents in 

"reversed" order, i.e., wi th  the low order byte coming first  in memory, so that  the text bytes are 

processed in the order 4, 3, 2, 1, 8, 7, 6, 5 ,  etc.) 

In the worst case, the total  resulting from the alternating sign terms could range f rom -2" to 

23'-4, in which case the squaring operation would produce a value as large as 266. Because the 

operation is carr ied o u t  i n  f loat ing point an overflow cannot occur, but a number t h a t  large 

cannot be represented i n  the 64-bit mantissa without loss of precision. If the 8087/80287 control 

word status were set to enable the precision interrupt then an interrupt would occur in that 

event, but the normal Pascal setting is to disable such interrupts. The result in the normal case 

will therefore be to round up  or  down to the nearest even value as appropriate (assuming the 

normal setting fo r  the rounding mode), and discarding up to four low order bits of the sum. It 

should be noted that f o r  precision loss to occur, the signs of the 32-bit result of the XOR must 

be +, -, +, -, to match the order  of operations. As a result, it would be extremely unlikely for  a 

loss of precision to occur on all four  of the 32-bit intermediate result computations because of 

the way the  text is cycled through the algorithm. In addition, if the intermediate result  is 

viewed as the sum 2x + y, where x represents the 31 high order bits and y the two low order bits, 

then the square is 4x2 + 4xy + y2. Therefore, even though the low order yz bits are  dropped 

after the multiplication this does not mean that the low order bits of the original quant i ty  are 

ignored, since they a f f ec t  the mid-square (4xy) component of the result. For this reason it is not 

possible for  the low order bit  or  bits of one or more of the 32-bit words of text to be changed 

without causing a change in  all  128 bits of the result. 

The 8087/80287 FPREM instruction computes an exact remainder by successive subtractions the 

way division is done by hand, instead of using the more usual technique of dividing, rounding, 

multiplying, and subtracting from the original. The FPREM instruction is as fast  as a divide, 

and is guaranteed to be  accurate ,  without  any roundoff.  However, because the modulus is 

slightly less than 2'l and  the maximum value of the result after the squaring operation is zrn, the 

FPREM operation is not guaranteed to be completed in one operation (since the difference in 

magnitude between the dividend and the divisor may be larger than 264 and FPREM shifts a t  

most 64 bits in one operation), but  i t  will always be complete in two operations. For this reason, 

the 8087/80287 condition code is tested af ter  each FPREM and an additional FPREM performed 

if necessary. 

In order to produce the fastest possible implementation, the XORs and other CPU instructions 

are executed in parallel with the coprocessor addition, subrraction, multiplication, and  FPREM 

operations whenever possible. The FWAIT instructions necessary to ensure that the coprocessor 

has finished with i ts  computations before  the CPU reads the results are  delayed as long as 

possible to permit the maximum possible overlap. Although the original version was coded using 

a macro that  was invoked fou r  times f o r  the four different iterations within one block, in the 

final version the code was "unwound" and hand-optimized to permit maximum overlap. 

On an IBM-PC with an 8088 & 8087 and a 4.77 MHz clock, the time to MDC check 1,000 512-byte 

blocks was 43.5 seconds, or 1359.5 microseconds per 16 bytes. This corresponds to 94.2 kilobits 
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per second. By comparison, the time fo r  the fastest known software implementation of DES for 

the PC is 2801 microseconds per 8 bytes for the PC (22.8 Kbps, or 171K bytes per minute). With 

an 80287 speedup kit  (consisting of an  8 MHz 80287 with its own clock crystal  on a plug-in 

daughter-board) installed in  a n  IBM AT with the standard 6 hfHz 80286, the same test took 813.6 

microseconds for  16 bytes (157.3 Kbps), or 1.18 megabytes per minute, compared to the DES time 

of 933 microseconds per 8 bytes. We are currently awaiting the availability of t h e  new Intel 

80386 CPU together with the 80387 coprocessor to time that configuration. We expect to recode 

the algorithm to take advantage of the new 386/387 instructions, and anticipate that  the result 

will run  abou t  4 t imes f a s t e r  t han  on the IBM AT. Depending on the clock speeds of the 

Processors involved, then, the 128-bit MDC technique is anywhere from 4.6 to 8.1 times faster 

than computing two independent  64-bit Message Authentication Codes in sof tware using the 

fastest known software DES implementation for the IBM PC or AT.16 From a human factors 

s t andpo in t ,  this  means  t h a t  t h e  e n t i r e  con ten t s  of a f loppy  d i sk  (362K by tes )  c a n  be 

a u t h e n t i c a t e d  to  t h e  most s t r ingen t  s t anda rds  in less than 1 5  to 30 seconds on c u r r e n t  

microprocessors, without benefit  of any special cryptographic hardware. 

4.1 MDC Test Program 

The following program, writ ten in IBM/Microsoft Pascal for the IBM PC, can be used to verify 

the proper operation of the QCMDCV4 algorithm: 

($TITLE:lCHECXMDC1 - Verify MDC algorithm.) 
($FLoATCAUs- (Generate native 8087/80287 code.)} 

PROGRAM checkmdc(input,output); 

TYPE 
checksums= ARRAY[l. .4] OF INTEGERI; 

VAR [PUBLIC] 
text: PACKED ARRAY[l..33] OF CHAR: 
textg: ADSMEM ; 

result: checksums ; 
n-bytes : WORD ; 

i,j: INTEGER; 

VAR [EXTERN] 
mdc-name: PACKED ARRAY[1..8] OF C H A R ;  

{ "QCMDCV4 ) 

CONST 
mdc-init = checksums( 

14142 1356 , 
271828182, 
314159265, 
57721566) ; 

check = checksum( 
-1900412449, 
676867420, 
-689076088, 
1333643940) ; 

16. In addition, two independent 64-bit MAC8 are not believed to be nearly M necure m a single 128-bit MDC. 
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PROCEDURE mdc ( textgtr : ADSMEM; 
n-bytes:WORD; 

VARS result: checksums) ; 
EXTERN; 

BEGIN ; 

WRITE (output, 
'Verifying MDC routine ( I ,  

mdc-name, ) . . . ' ) ; 
FOR i:= 1 TO 33 W text[i] := CHR(0); 
text[l] := CHR(1); 
text2 := ADS text; 
result := mdc-init; 

FOR i:= 1 TO 50 DO 
BEGIN ; 

IF i<34 THEN n-bytes := WRD(i) 
ELSE n-bytes :- 32; 

mdc(textg,n-bytes,result); 

FOR j:= 32 WWNTO 1 DO 
text[j+l] := text[j]; 

text[l] := 
CHR( LOBYTE (LOWORD (result [4] ) ) ) ; 

END : 

IF result[l]=check[l] AND THEN 
result[2]=check[2) AND THEN 
result[3]=check[3] AND THEN 
result[4]=check[4] 

THEN WRITE ( 'OK. I ) 
ELSE 

BEGIN ; 
WRITE ( 'MDC is INCORRECT! I ) ; 
WRITELN (result [ 11 , result [ 2 3 , 

result[3],result[4]); 
END ; 

WRITELN ; 

END. 

5 Summary and Conclusions 

Several architectural  justif ications have been presented an authentication algorithm which does 

not require a tradit ional c rypto  "black box" approach using secret cryptographic keys, wi th  all of 

the key management d i f f icu l t ies  tha t  entails. In particular, the relatively common practice of 

using l ink encrypt ion  f o r  secrecy a t  t he  OSI Data Link  layer and  implementing end-to-end 

authentication a t  the Presentation Layer would profit from "keyless", non-cryptographic means Of 

authentication that could be easily implemented in both PCs and  general-purpose main-frame 

computers. 
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The need for  a checksum on the order of 128 bits in length was reaffirmed, both in  the case of 

two mutually suspicious, potentially deceitful users where one may attempt to defraud the othep, 

and in the command a n d  control case where the attacker may.have an  almost unlimited ability to 

attempt to spoof the system. Contrary to the author's previous position, i t  was concluded that 

the 64-bit Message Authentication Code (MAC) approach of FIBS PUB 46 cannot be considered 

sufficiently strong in  the case where the originator of a message may attempt to defraud the 

recipient, as well as i n  some command and control and multi-level security situations. 

The MAC checksum technique used by ANSI X9.9-1986 is viewed as particularly unfortunate,  

both because of the inadequate 32-bit length and because no provision was made to distinguish 

between short block t h a t  was padded and a block that is a multiple of 8 bytes that  happens to 

end with the same characters. 

Coppersmith's Triple  B i r thday  a t t ack  as it appl ied to the or iginal  QCMDC a lgor i thm was 

summarized, and i t  was concluded that i n  order for that attack to be defeated i t  was necessary 

to ensure that the checksum funct ion is not invertible, and that the length of the checksum be on 

the order of 128 bits i n  length. 

The QCMDCV4 algorithm was described, which uses XORs plus a history function to ensure that 

the function is not invertible. The function computes a 128-bit result that  is an over-determined 

function of 128 bits of the text and  the 128-bit MDC result of the previous text  block than 

cannot be decomposed. A "birthday attack" against the QCMDCV4 result cannot succeed, because 

of the enormous number of variations that would have to be computed, sorted and compared. In 

order to ensure that a message that  is not an  even multiple of 128 bits can be distinguished from 

the same message extended with zeros, the algorithm is executed N + 1 times on the last buffer,  

which contains the last N bytes of data  extended with zeros. 

The QCMDCV4 a l g o r i t h m  is r ecommended  f o r  use i n  microcompute r  a n d  m a i n - f r a m e  

applications where encryption will be provided separately and i t  is desirable no t  t o  have to  

replicate the encryption funct ion fo r  authentication. It is also suitable fo r  use in  combination 

with a public-key algorithm when implementing a digital signature function to protect against 

fraud. 


