
A HIGH SPEED MANIPULATION DETECTION CODE

Robert R. Jueneman

Computer Sciences Corp.

3160 Fairview Park Drive

Falls Church, YA 22042

(703) 876-1076

Abstract

Manipulation Detection Codes (MDC) are defined as a class of checksum algorithms which can

detect both accidental a n d malicious modif icat ions of an electronic message or document.

Although the MDC resu l t must be protected by encrypt ion to prevent a n a t t a c k e r f r o m

succeeding in substituting his own Manipulation Detection Code (MDC) along with the modified

text, MDC algorithms do not require the use of secret information such as a cryptographic key.

Such techniques a re therefore highly useful in allowing encryption and message authentication to

be implementcd in different protocol layers in a communication system without key management

difficulties, as well as in implementing digital signature schemes. I t is shown that cryptographic

checksums that a r e intended to de?ect fraudulant messages should be on the order of 128 bits in

length, and the ANSI X9.9-1986 Message Authentication Standard is criticized on that basis. A

revised 128-bit MDC algori thm is presented which overcomes the so-called Tr ip l e Birthday

Attack introduced by Coppersmith. A fast, efficient implementation is discussed which makes

use of the Intel 8087180287 Numeric Data Processor coprocessor chip for the IBM PCJXTIAT

and similar microcomputers.

Key words: Man ipu la t ion Detect ion Code (MDC), Message Authent icat ion C o d e (MAC),

checksums. birthday problem attacks, authentication, encryption, digital signature, cryptography,

numeric data processor chip, math coprocessor chip, 8087, 80287, IBM PC.

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 '86, LNCS 263, pp. 327-346, 1987.
0 Springer-Verlag Berlin Heidelberg 1987

328

1 introduction

A common theme throughout a series of p a p e r ~ ' - ~ ! ~ by the author and his colleagues, Dr. S. M.

Matyas and Dr. C. H. Meyer of IBM, has been the desirabil i ty of separating the function of

encryption f rom tha t of authentication, so tha t they could operate a t d i f f e ren t a rch i tec tura l

layers or levels i n a n communica t ions system. In the contex t o f t h e I S 0 O p e n Sys tem

Interconnect re ference model, f o r example, it was suggested tha t l i nk enc ryp t ion might be

applied to all of the communications f rom a host, using a stand-alone l ink encryption device

opera t ing a t I S 0 OSI l ayer 1 , the d a t a l ink layer. In th i s case the appropr i a t e p lace f o r

au thent ica t ion would probably be in t he Presentation or Application layers (layer 6 or 71,

implemented in a n application program inside the host. We have also suggested tha t since the

mode of encrypt ion migh t change depending on the physical medium involved, i t would be

desirable if the method of authentication were independent of the encryption scheme used.

,

The recently announced decision of t he National Security Agency not to endorse new DES

equipment for certif ication in accordance with Federal Standard 1027 af te r 1988, and in general

to move on to a new fami ly of encrypt ion algorithms for both Unclassified, National-Security

Related t r a f f i c as well as classified data, should serve to underscore the advisability of such a

separation of function, as i t will result in an increased requirement f o r "keyless" Manipulation

Detection Code algorithms. Until the new Commercial COMSEC Endorsement Program (CCEP)

a lgor i thms a r e w i d e l y a v a i l a b l e (and perhaps f o r an even longe r per iod , i n t h e case of

international circuits which may have to continue running DES), application programs might be

supported by two or even three d i f fe ren t link encryption algorithms (DES, a n unclassified CCEP

Type 2 algorithm, a n d a classified CCEP Type 1 algorithm, depending on the destination), but

should r equ i r e on ly o n e au then t i ca t ion a lgor i thm. I t should be observed t h a t t h e r e is a

fundamenta l d i f f e r e n c e be tween encrypt ion a n d authentication with respect to the need to

change algorithms, for in the case of encryption it is very difficult to know whether your t ra f f ic

is being broken sur rep t i t ious ly . In the case of authentication, however, i t usually becomes

obvious sooner or later if you have been spoofed. The objective is to minimize the amount of

time required to detect the spoofing. I t would therefore seem tha t authentication algorithms

would not have to be changed nearly as often as encryption algorithms, and that there is perhaps

less need fo r secrecy in their design.

In the papers presented to date, our primary concern was to find an authentication algorithm

that would be more e f f i c i e n t than a MAC (especially when implemented in so f tware on a

microprocessor), and/or would not require a traditional encryption operation. Only secondarily

did we focus on what this author now believes to be the fundamental dist inction between an

MDC and a MAC, i.e., tha t whereas a MAC involves one or more secret keys, an MDC makes use

1. Jueneman, Robert R., "Analyria of Certain Aspect8 of Output Feedback Mode", Advances in Cvpto logy: Proceeding8 of
Crypto82, Plenum Presd, Ncr York, 1983, pp 99-127.

2. Jueneman, R. R., C. H. Meyer, and S . M. Matysa, "Message Authentication With Manipulation Detection Codes", P m e c e d i w u of

the 198s IEEE Sppos ium on Security m d Prirrey, IEEE Computer Society Press, 1984, pp 33-54.

3. Jueneman, R. R., C . H. Meyer, and S. M. Matysa, "Measage Authentication", IEEE Communications Magasine. Sept. 1985 -
Vol. 23, No. 9, pp 29-40.

329

of only publicly known quantities, a n d is therefore considerably more convenient f r o m the

standpoint of key management.

1.1 Cryptographic Checksum Requirements

Let us assume t h a t we wi sh to a p p l y a c ryptographic seal to some e lec t ronic message o r

document, and that we will ei ther use a digital signature approach, or else use link or end-to-end

encryption to protect the MDC result. We must assure tha t the set of all checksums is very

nearly one to one with respect to the set of all message texts, so that we can easily check the

checksum (for example in t h e d ig i ta l signature) instead of having to process the en t i re text.

That is, given two messages A a n d B with checksums, we desire that checksum (A) and checksum

(B) be identical if a n d only if the messages A and B are themselves identical. Assuming a good

checksum algorithm, the chances tha t A and B are not identical given that checksum (A) equals

checksum (B) should be 2-k, where k is the number of bits in the checksum and the probabilities

a re averaged over all possible messages.

More specifically, the algorithm should have the following properties:

1. If two d i f fe ren t texts (of a rb i t ra ry length) a re checksummed, the probability tha t the two

checksums will be t h e same when the two documents a re no t i den t i ca l should be a

uni formly distributed random variable that is independent of the text, with a n average

value over all possible texts of 2-N where N is the number of bits in the checksum.

2. The checksum must be sensitive to permutations, so that the message ABC will produce a

different value than ACB, etc.

3. AS will be seen, the resulting checksum must be on the order of 128 bits i n length, in

order to resist a so-called "birthday attack" against the text itself.

4. Finally, all of the bits of the checksum must be an over-determined function of all of the

bits of the tex t a n d a l l of the bits of the checksum of the previous block, in order to

defeat several a t tacks tha t will be discussed below.

In addition, in a number of applications it is necessary to add a random Initialization Vector to

the text itself, and to cha in the blocks of messages together by including the checksum of the

previous block in the checksum of the current block, so that one properly authenticated value

cannot be substituted f o r ano the r in a playback arrack. For example, if a par t icu lar dialog

occurs f r e q u e n t l y , a n d t h e answer t o some ques t ion is e i ther "Yes" or "No", wi thou t the

appropriate cha in ing t h e a t t a c k e r could easily substi tute the entire contents of a previous

message, together wi th its valid checksum, and the message would be accepted. A 64-bit random

Initialization Vector will suf f ice to initialize the authentication, but message chaining may still

be required. It should be noted tha t a n Initialization Vector may also be necessary to ensure that

the same text is encrypted d i f fe ren t ly each time it is transmitted, in order to prevent a so-called

dictionary attack. In general it appears that the same Initialization Vector (sometimes called a

Message Indica tor) could be used f o r both purposes, but i t would be necessary t o carefu l ly

examine both the encryption and the authentication scheme before making a blanket statement.

330

Finally, we must point o u t that although a DES-based Message Authentication Code or MAC

could be used to authenticate either an encrypted or unencrypted text without further encryption

because i t makes use of a secret key', t ha t is not t rue of a Manipulation Detection Code.

Although the text itself does not need to be encrypted, the MDC must be, so that the attacker

cannot substitute his own MDC with any significant probability of success. In most cases, the

MDC can simply be appended to the message, and if the entire message is encrypted together

with the MDC, that will provide adequate protection. If the MDC is easier to calculate than an

MAC, then if the message would be encrypted for secrecy in any case the MDC technique would

be more efficient than a MAC.

2 Attacks Against Checksum Techniques

In the three previous papers i n this series, we have addressed different aspects of the problem of

authenticating the contents of a message against possible modification or corruption. In the

first , a f law in a d r a f t of a f ede ra l standard regarding Manipulation Detection Codes was

pointed out briefly, a n d a quadra t i c residue technique suggested as an al ternat ive f o r m of

checksum. That paper also pointed out the need for two independent keys for encryption and

authentication if a Message Authentication Code (MAC)5 is generated through the use of a secret

(DES) key a n d appended to the message, for i t was shown that the errors introduced in the

plaintext by an error or by manipulation were exactly the errors needed to cause the MAC to be

erroneously computed so as to validate the manipulated text.

The second paper presented an extensive analysis of various forms of Manipulation Detection

Codes, including block XOR and linear addition techniques, when used in combination with

Cipher Block Chaining, C iphe r Feedback, and Ou tpu t Feedback modes. T h a t p a p e r also

discussed the architectural advantages of a Manipulation Detection Code that was independent

of an encryption algorithm, particularly in those cases where low-level link encryption may be

used to protect the t r a f f i c flowing into or out of a main-frame host processor, yet i t is desired

for an application program in the host to verify the authenticity of the messages received. In

addition, the potential speed advantages of an MDC technique compared to the calculation of a

MAC were discussed.

During the course of wri t ing that paper and reviewing it with our peers, a number of attack

scenarios were iden t i f i ed that must be considered whenever new schemes are proposed. In

particular, Dr. Don Coppersmith introduced several attacks which he called under-determined

knapsack attacks. These have also been called "birthday" attacks, because they generally involve

generating random variat ions in the text and calculating a MAC or an MDC, then working

4. This is not recommended, however, because an unencrypted MAC reveals something about the message itself, and may form the
basis for a dictionary attack.

5. ha defined in Federal Information Processing Standard FIPS PUB 46, "DES Modes of Operation" publiahed by the Nationd
Bureau of Standarda. "A MAC may be generated using either the CFB [Cipher Feedback] or CBC [Cipher Block Chdningl mode.
In CFB authentication. a -e is encrypted in the normal CFB manner except that the cipher text is diwarded. After
encrypting the final K bits of data and feeding the resulting cipher text back into the DES input block, the device h OFMted one
more time and the most siplifrclnt M bits of the resulting DES output block a n rued aa the MAC, where M is the number of bit.
in the MAC. In CBC authentication, a message is encrypted in the normal CBC manner but the cipher text b dircarded.
Meaaages which terminate in partial data blocks muit be padded on the right (LSB) with ceron. In CBC authentication. the moat
significant M bits of the final output block are uaed am the MAC."

33 1

forward and backward until two matching MACs or MDCs are found. Making random variations

in the text i n two places a n d then sorting and comparing the results for a match allows the

attacker to take advan tage of the so-called Birthday Problem in statistics to reduce the work

required to approximately the square root of the e f fo r t required to match a particular given

MAC or MDC.

2.1 The Fundamental Birthday Attack.

The third paper abstracted the second for a more general audience, but also added some new

information. In particular, i t was recognized that any Manipulation Detection Code (MDC) or

Message Authentication Code (MAC) is susceptible to a birthday attack against the text itself,

unless the MDC or MAC is on the order of 128 bits in length. This fundamental attack proceeds

as follows, and assumes that one user is attempting to defraud another by devising a version of a

bogus or unfavorable contract or agreement which would have an identical checksum as would

an acceptable version of a legitimate one, having the other party digitally "sign" the legitimate

version, and then produce the bogus version in front of a judge and claim that the other party

has defaulted on his obligations:

1. Assume that a 64-bit MAC or MDC is used, and that if necessary the attacker can exercise

the authentication system ad infiniturn to generate a MAC or an MDC. even if a secret key

which he does not know is used in the case of the MAC.

2. The attacker secret ly prepares a number of subtle variations of the legitimate text in

advance, and calculates (or has the system calculate) the MDC or MAC for each one. In

the case of a n electronic mail message or document, for example, suppose that a number

of l ines contain the ASCII character sequence "space-space-backspacen6 between selected

words. The at tacker might prepare a set of variations of that document in which the

sequence in selected lines would be "space-backspace-space". The length of the text would

not be al tered thereby, and all of the variations of the document would appea r to be

identical , both when pr inted and when displayed on the normal video display, unless

"dumped" in hexadecimal format. Other, more consequential changes to the text could also

be made, of course. By systematically altering or not altering the text in each of say 32

d i f f e ren t l ines, 232 o r 4.3 bi l l ion var ia t ions could be generated. A f i l e of records

consisting of t h e MAC o r MDC plus a 32-bit permutation index could be used to

summarize wha t lines were altered by a given variation, and what MAC or MDC resulted.

3. The attacker then prepares an equally large number of variations on the bogus text he

would like to substi tute for the legitimate text, and calculates (or has the system calculate)

the MDC or MAC f o r each one of those variations as well, producing another fi le Of

MAC/MDC results plus the permutation index records.

4. The attacker then compares the two files, searching for a pair of identical MACS or mcs
a n d not ing the permutat ion indices. (If no match is found, the at tacker can simply

generate a f e w more random variations of the legitimate and the bogus texts unti l a match

6 Other eombinationa, such w null-charactcr, or carriage return - line feed would dm work, 8. well M lwa subtle variations such
changing "the" to 'an", or inserting or deleting commas or spaces in a numenc field

332

is found.) He then recreates t he fu l l text of both the acceptable and the unacceptable

documents with the specific modifications necessary to produce the matching MACS or

MDCs, based on the permutation indices.

5. Finally, he offers the appropriate variation of the legitimate contract to the other party

and both "sign" it. A t some time in the future the attacker substitutes the unfavorable

contract, and tells the judge that the digital signature containing the MAC/MDC "proves"

i t was that version that was signed by both parties.

This is Yuval's' classic "How to Swindle Rabin" form of a so-called "Birthday Problem" attack.

According to the famous birthday paradox' problem in statistics, this kind of an attack is likely

to succeed i f t he number of variations of each document that are generated a n d compared

approaches the square root of the total number of possible MAC/MDC values. Tha t is, if a 32-

bit checksum were used, the probability of a successful attack would be about 50% a f t e r only 216

or 65536 variations were computed, and would increase rapidly after that point. If a 64-bit MAC

or MDC were used, then the 4.3 billion iterations produced by systematically varying 32 lines of

text would be likely to suffice.

In order to see whether this attack would be computationally feasible against a 64-bit MAC, let

us assume that t he var ia t ions all occur a t the end of the text and that exactly one variation

occurs in 8 bytes of text, so that only one DES iteration would be required to account for that

variation. The brute-force way to calculate the resulting MAC for the entire text would be to

recalculate the last 32 DES blocks fo r each variation, which would require 2 x 32 x 232 DES

iterations for the two sets of variations of the text. However, by only encrypting those blocks

tha t have changed a n d those fo r which earlier blocks have changed, the number of DES

iterations can be reduced to 2 x (2ss-1). A hardware DES implementat ion r u n n i n g a t 10

microseconds per i teration could complete the task in just under 2 CPU days.

However, the amount of 1 / 0 required to sort and compare the data must not be neglected. A 64

bit MAC and a 32 bi t permutation index per variation would require 12 bytes per entry times 2"

entries, or 51.5 gigabytes per file. At an effective rate of 20 microseconds pe r va r i a t ion

(including encrypting due to the requirement to reencrypt blocks after a change), da t a would be

generated a t the rate of 4.8 Mbps or 600 kilobytes per second, which is well within the channel

capacity of a mainframe computer to record. The process of comparing two files consisting of

340 reels each of 6250 bpi high-density tape (151 megabytes per reel), searching f o r a n y one

value on one fi le that matches any one value on the other file, would admittedly be a lengthy

task even for a mainframe computer, but it is not infeasible. One approach would be to presort

the information by dis t r ibut ing the da t a across 22 tape drives while the information is being

generated, producing 22 files of approximately 15 to 16 reels each for each variation. Each of

those files could in tu rn be distributed onto 20 reels of tape at maximum tape speed, and then

those approximately 680 individual reels could be sorted one at a time using a conventional tape

7. Yuvai, G . , "How to Swindle Rnbin', Cryptoloda, Val 3., No. S, July 1979, pp 187-190.

8. How many people must them bz in a room in order to have a good chance that at hart two people in the room dl have the S a m e

birthday.

or disk sort routine, a n d finally compared. Assuming each reel requires 15 minutes to sort, the

total process could be completed in about a week.

An interesting alternative technique wan suggested by Caron and Silverman's distributed proceasing approach to factoringg. Let Us

mume that the attacker has a t least the occasional use of 256 Intel 80386-based micmpmcessors or similar machines which are

connected via a high-weed LAN. Each of them slave machines will be sasumed to have h o boards of 8 megabytee." each of the new

1 megabit memory chips. In addition, a master station will be equipped with a hard-- DES implementation, four 8-megabyte

memory boards. and two 85 megabyte hard duka.

The total amount of memory in the 256 slave processors would be 4.295 gigabytes, or 235 bits. Let us m u m e that after each

CalCuhtiOn Of a MAC in the first set of variationa, the maater workstation sends 24 bits (bits 8 through 32) of the MAC to the

appropriate slave Processor b w x i on bits 0 to 7 of the MAC. Each slave processor would then uae thoae 24 bits to addresll a

particular bit within its memory, and would turn on that bit. At the end of the fvrt p a n through all of the variatiom of a single

document (requiring about 24 hours), the contents of the fint 32 bits of dl s2 MAC, calculated would be represented as a *et of bits

turned on in d l of the memorim. Because there M ZS2 bits turned on out of z35 bits totd, the probability that a particular bit will

be on after the first Pass is 1/8, with many bits having been turned on multiple times within this pans. At the end of the first Pass,

all of the slave processors would dump memory to a hard disk, then zero all of the bit ntorage area.

The maater procesaor would then begin pmceuing the second 8et of variations and would again send 24 b i b of the MAC to d of the

slave processon. This time, however, the slave processon would check to see if that particular bit had dready been turned on. If it

had, it would signal the master CPU, which would record that permutation index. Becauw the probability of a particular bit being

turn on in both the first and the second psssea is 1/64, a 1 byte increment from the previous permutation index would normally

suffice and there would be appmximately Z32/M or 67,108,859 values to record, BO one 85 megabyte hard disk would be sufficient to

contain one set of permutation indices.

The master CPU would then repeat the calculations of the first pau in a third psas, sgain broadcasting 24 bits of the MAC to the

appropriate slave stations, which would replay whenever a collision waa found. The master station would then record the

permutation indicea aaeociated mth those collisions on the second 85 megabyte hard disk.

This entire thr- P W procorm would then be repealed, but instead of examining the firrt 32 bits of the MAC the last 32 bits would be

Wed. The fourth P u s would initially turn a set of bits based on the first document, m d the fifth p m would check for a pouible

collieion. However. the master CPU would not have to generate all 232 variations, but rould only p m c ~ the variationa that sere

previously recorded as potential match- after the second and third pames. Therefore. h t e a d of taking two days for this pmceaaing,

it would only take about 4s minutes.

'

During the fifth and sixth p a u a , the various slave pnxesom would send back acknowledgements as before, and the maater station

would erase any permutation index that did not produce a collision. Thin time, the probability of a false alarm colliaion is Only

1/4090, so the expected number of collisions remaining to be processed is 1,048,576.

The maater station would then make two internal passes over the remaining permutation indices for the two different documents,

using a haah table lookup scheme to atore/searcb the M-bit MAC and 32 bit permutation indices.

2.2 Other Opportunities For Bir thday Attacks.

Similar attacks could potentially succeed against command and control systems, especially if the

attacker is able t o send bogus commands and random variables over a channel tha t cannot be

shut down without denying service to the legitimate users as well. An example would be an

attacker who a t t empt s to take over or disrupt a communications satellite by sending spur ious

commands via the Telemetry, Tracking, and Control channel to the satellite in a n a t tempt to get

9. Camn, Thomas R. and Robert Silverman, "Parallel Implementation of the Quadratic Sieve", Adranees in Computer S d a C e -

10. Sixty-four microprocessors r i t b 64 megabytes of memory would be significantly cheaper, but that would be a Very I F i d i Z e d

CRYPT0 '86 Proceedings, Springer-Verlag. Berlin, 1987.

system, M opposed to a configuration that might be used for other purposes and could be 'borrowed" for OUT P U m .

334

it to move out of position, use up all of the maneuvering fuel, go into a spin, etc. There is no

easy way that the attacker can be located, and if he is operating out of a foreign country there

may be nothing that can be done to stop his transmissions. The attacker can simply send random

data, a n d even if the command link were encrypted there is a possibility that the decrypted

information might be accepted as a valid command. Unless a sufficiently long checksum is used,

random da ta and a r andom MDC o r MAC will eventually result in a random command being

accepted".

I

Another instance could arise i n a multilevel-secure system, where a cryptographic "seal" is

applied to a n "object". i n o r d e r t o prevent classified information from being disclosed or

modified without proper authorizat ion. For example, if the security classification associated

with the object could be manipulated by a Trojan Horse program, a classified object's label could

be changed to "unclassified", and the information released. Similarly, the contents of a properly

marked, unclassified object could be changed and classified information inserted. Because the

sensitivity label must be very closely associated with the contents of the object (to prevent a

simple cut-and-paste attack), the security seal of the object typically includes both the sensitivity

label and the contents of t he object as well. In this case, the Trojan Horse program could

conceivably man ipu la t e t h e label together with some innocuous port ion of t he data , and

repeatedly present the information to the cryptographic seal mechanism until two versions, one

good and one bad, happened to produce the same cryptographic checksum. The substi tution

would then be prepared.

2.3 Recommended Length For Cryptographic Checksums.

Based on these attacks, we conclude tha t it is essential that any MAC or MDC checksum be on

the order of 128 bits in length, in order to protect against situations where the opponent could

systematically change both the text and the MAC/MDC until he finds a combination that works.

A 128-bit checksum is suff ic ient , because in addition to the sorting and searching problem

rapidly becoming insurmountable (a f t e r about 80 bits), the 265 basic MAC/MDC calculations

required by the bir thday problem a t t ack would not be computationally feasible, even if they

were to take only I nanosecond apiece. I t must be stressed that this attack has nothing to do

with the cryptographic strength of the MAC or MDC algorithm, or whether conventional keys,

public keys, or no keys a t all are used, but only whether the length of the result is sufficient to

withstand any computationally feasible number of random "birthday attack" trials.

In this connection, i t is worth observing that the recently revised ANSI X9.9-1986 authentication

standard'* specifies the use of a 32-bit MAC, although the future use of a 48-bit or 64-bit MAC

is also discussed. In analyzing the protection afforded by that standard, we should consider both

external attacks and internal f raud. With respect to an external threat in this environment, a 32-

bit MAC is arguably sufficient. Even though an attack against such a system would be likely to

11. Actually, satellite command procesnon typically echo the command received back to the ground, and then require an "Execute"
Auuming that the Execute command is also command within a certain period to make the received command take effect.

encrypted and authenticated it in much I- likely that this particular attack would succeed, but the point is clear.

12. Financial Institution Message Authentication (Wholesale) X9.9-1986 (Approved August 16, 1986), published by the x 9
Secretariat, American Banken hsociat ion, 1120 Connecticut Avenue, Washington. D.C. 20036.

335

succeed af ter only 65 thousand attempts, hopefully all of the false MACs should generate some

alarm, and the investigative agencies would be called in to stop the perpetrator before he (or

she!) was successful.

,

With respect to a possible internal threat or Trojan Horse program, however, it is obvious that if

the security of the system were to rest solely on the authentication provided by the MAC, then a

32-bit MAC is grossly inadequate. It should be apparent from the preceding discussion that even

a 64-bit MAC would provide inadequate protection from a member bank or insider who might

attempt to defraud another institution, if that were the only mechanism used to protect against

such attacks. In the b a n k i n g env i ronmen t , of course, there a re a l l sorts of reconciliation

processes tha t would presumably uncover such attempts a t f raud sooner or later, but i n other

environments this might not be the case. System developers are therefore cautioned not to a p p l y

the X9.9-1986 authentication standard outside of the specific wholesale banking environment for which

it was developed.

2.4 The Need For Super-Authentication.

It should b e noted t h a t if a n MDC technique were used to authenticate a message t h a t is

protected by Ou tpu t Feedback (OFB) mode (or worse yet, not protected a t all), the opponent

could easily calculate a valid MDC to go with the modified text, and append the new MDC to

the text a t will, since there is no separate cryptographic key used to protect the authentication

information. Even though the attacker doesn’t know the key used to encrypt the message, if we

assume that he does know the plaintext (perhaps because he generated it) he can determine the

keystream o u t p u t f r o m OFB by XORing i t with the plaintext, a n d can then change the

keystream to suit his purposes. This particular attack can be defeated by having the system

introduce a secret , v a r y i n g , r a n d o m component wh ich the opponen t doesn’t k n o w (an

Ini t ia l izat ion Vector) i n t o eve ry message, and including that r andom value i n t h e MDC

calculation. The Init ialization Vector is not a key, since it doesn’t have to be known in advance

by either party. I t doesn’t even have to be deterministic, and it can be discarded by the receiver

after the MDC is checked. However, the random value should be at least 64 bits long, so that the

attacker cannot discover i ts va lue a n d then the t rue value of the MDC and therefore the

corresponding bits of t he key s t ream by exhaustively trying all possible values of the initial

random component.

With this in mind, let us reconsider the delayed transmission OFB attack that was discussed in

the second and third papers. That attack made use of a lengthy message whose plaintext was

known to the attacker, so that an extensive amount of keystream would become known. The

beginning and end of t h e message would then be jammed, and an invalid message substituted

based on the keystream. The invalid message could even contain a random component, since the

attacker would have already recovered the keystream bits for that portion of the output.

In order for this attack to succeed, i t is necessary for the attacker to precisely synchronize the

plaintext and the ciphertext, know the current message sequence number, intercept the ciphertext

and block it, jam the portion of the message containing the secret, random component t o make it

look l ike a noise burst on the transmission medium, and then fabricate any desired random

value, bogus message, a n d a corresponding fraudulent MDC, and follow it with a valid HDLC

336

frame check sequence. Finally, the end of the message containing any remaining message text.

the old MDC, f r ame check, and the start of the next message would be replaced wi th random

characters to cause another noise burst to be simulated, which would then be rejected by the

standard HDLC error recovery mechanism a t the receiver.

,

It should be clear that this real-time interception and modification technique, although difficult

to put into practice, could theoretically be applied to m y MDC scheme that does not involve the

use of a secret key fo r authentication, if the message text being sent is known to the attacker.

Although this attack was previously considered legitimate, and a potentially serious obstacle to

the use of an MDC technique, i t can only succeed if the message being attacked is considered in

isolation, as if i t were the only message being sent. In order to defeat the at tack i t is Only

necessary to chain the ind iv idua l messages together i n such a manner that a change in One

message will a f f e c t the MDC in the next message. Therefore, instead of the MDC i n a given

message pertaining to that message, i t should instead pertain to the previous message. The MDc

contained in the f i r s t message should cover the Call Request/Call Acknowledgement or other

session establishment message sent b y the olher correspondent, and containing a secret, random

component known to that correspondent, or the system a t that end. By MDCing something that

the other correspondent a l ready knows, the chain is anchored a t the beginning, defeating an

attack that would systematically change every message in the sequence.

Each MDC should therefore cover not only the data contents of the previous message, but the

previous MDC as well, so t h a t changing a single bit of a message will affect all of the MDC

results f rom then on. The MDC fo r the previous message then satisfies the requirement for a

secret, random component i n each message if OFB is used. In order to detect an attempt to

delete the f i n a l message o f a session, a unique end-of-session message should be sent that

includes the MDC of the previous message, plus the MDC of the end-of-session message itself. If

a digital signature capabili ty is implemented, it would be desirable to sign this f inal message. If

the final MDC is digitally signed, then the initial MDC could be a constant. This would avoid

the necessity of having a session established in real time so that the other correspondent can

check the original value of the MDC a t the time of session startup. This would be particularly

useful i n s tore-and-forward message systems, including electronic mai l a n d bu l l e t in board

systems, where the receiver is not i n direct contact with the originator and the intermediate

system may be a public or untrusted system. It would also apply to unidirectional transmission

systems, i nc lud ing some command and control systems as well as systems that t ransmit to

destinations operating under radio silence rules.

Finally, i t should be noted t h a t i n some cases the communications system may employ some

device such as an Automated Teller Machine to screen the messages being sent, allowing only the

"good" messages through. But in this case the system (the ATM machine and the bank) and the

user do not necessarily share common interests. The user may wish to ensure that his messages

are kept secret , a n d t h e legi t imate user may also be interested in assuring the end-to-end

integrity of his messages. But the system, in this case the ATM machine, may also have a role to

play in assuring that the user does not compromise the integrity of his own messages.

We should not t ry to s a t i s f y both of these possibly diverging requirements t h r o u g h one

mechanism. Instead, just as we sometimes use super-encipherment (for example using end-to-end

337

DES enc ryp t ion to e n s u r e wr i te r - to- reader pr ivacy , plus l i nk encrypt ion us ing c l a s s i f i ed

algorithms to protect against a n ex terna l threat), we should talk about super-authentication.

That is, if the system has a requirement to assure that messages are not modified af ter they exit a

secure processing f a c i l i t y . then the s y s t e m must independently provide that assurance without

depending upon the user's mechanisms.

8

3 A Quadratic Congruential MDC

Now tha t we have developed the rationale fo r the use of an MDC algorithm, we should certainly

try to def ine a suitable implementation:

3.1 The Original QCMDC,

The original Quadra t ic Congruential Manipulation Detection Code (QCMDC) function proposed

in the second paper in th i s series was defined as:

Z, = C = MDC in i t ia l value

Zi = (Zi-l + Xi)* modulo N

MDC = z,,

where C, Zi, a n d MDC a r e a l l 32-bit integers i n two's-complement notation, and N was the

Mersenne prime 2'l-1, chosen so that the modulo result would f i t in a 32-bit word.

In order to prevent a n a t tack against the MDC in the case of Output Feedback Mode (where both

the text and the MDC could easily be changed), it was first proposed to make the first 32 bits of

the message a secret seed, S, withheld even from the message originator, so that i f the opponent

attempted to attack his own message he would not know the secret seed and would therefore not

be able to intelligently modify the MDC.

However, a var ia t ion o f t h e under-determined knapsack attack of Coppersmith involving the

taking of square roots modulo N and working backwards from the MDC in a meet-in-the-middle

attack showed tha t the use of t he secre t seed, S, was not sufficient; and tha t e i ther a secret

quant i ty C would have to be in t roduced into the accumulator or the MDC would have to be

extended to 80 bits or more.

When the QCMDC algorithm was first implemented on the 8087, some variations were also coded

and tested which used a n Exclusive OR operation (denoted e or XOR). These variations were

intended to defea t Coppersmith's technique of working backwards taking square roots modulo p.

Although these operations were felt a t the time to increase the cryptographic s t r eng th of the

algorithm by denying the attacker the opportunity to work backwards (by making the algorithm

non-invertible), the additional operations were quite time consuming.

However, we concluded in the third paper that the MDC must be on the order of 128 bits long in

order to foil the b i r thday problem attack in any case, and for that reason i t was recommended

338

that four separate i terations of the MDC algorithm be performed over the text resulting in a 124-

bit MDC. It was thekefore thought that Coppersmith's attack on the QCMDC would be defeated '

because of the diff icul ty of generating the requisite 2*, different variations. We then concluded

that none of the variations on the basic QCMDC approach were necessary.

3.2 The Triple Bir thday Attack

Ironically, one week before the publication of the third paper, C o p p e r ~ m i t h ' ~ pointed Out a

weakness in a double-iteration DES signature scheme by Davies and Price which also applied (to

a somewhat lesser degree) to the quadruple-iteration MDC scheme, as follows:

- Assuming t h e use of a n a rb i t r a ry invertible function F(X,H) as a checksum funct ion

operating over t h e message M = (Ml, M,, .._ M,), intermediate results H,, H,, ... H, are

produced f r o m the relation H i = F(Mi,Hi-&, or alternately from the inverse of F, Hi-1 =

F - ~ (M , H ~) .

- During a precomputation phase, select some arbitrary n-bit quantity Z, which is going to

be the value of H,, H,, H,, ... ,HI,. Then randomly select approximately 2" values x,
compute the values F(X,Z), and store these values. Then randomly select 236 values y,

compute the inverse function F"(Y,Z), and store those values as well. Then compare all

of the Y values to all of the X values searching for a matching pair, using a sort and

compare technique as required. This constitutes the first birthday problem. We expect to

f ind 256 such matching pairs, and if not, we will examine a few more values of X or Y or

both. Note that each such pair (Xi, Yi) can be used as a message pair (M3,M4), (M.&Q, ...,
or (M17,M18) such that if H, = 2, M3 = Xi, M, = Yi then H, = Z, etc.

- Given a message M' = (MI% M,, ... , M,,), the chosen value of 2, and the 256 pairs (Xi, Yi)

obtained during the precomputation, our task is to select values of M,, M,, ... , M, which

will make H,, a valid hash of M = (Ml, M,, ...,M,,). We therefore f ind values of Ml and M,

such that F(M,,Z) = Fel(M,Z) to put ourselves in a standardized position. Th i s takes on

the order of 2= hashing operations and 232 storage. This is the second birthday problem.

- Working b a c k w a r d s f r o m H,, (note that this requires the checksum func t ion to be

invertible), using the values M,, M,-,, ... , M,,, we find the value of Hn+18. the value of

the hash function on the second iteration. Finally, we make use of the precomputed pairs

(Xi ,Yi) . For each of the 256' = 232 choices of the four pairs (Xi,Yi) to be the values Of

(M3,M4), (Ms,Mg), (M7,M8), and (M*MIO), we compute the value of Hnf10 that would result

then d o the same thing w i t h the values of (Mll,MlP), (M,&i14), (MlSrM16)r (M1,.M18),

computing backwards f rom H,, to get a value for HlP We again sort and compare these

values as the third birthday problem. We expect one match, and the corresponding values

of M3 through M,, finish our task for a two-pass checksum process.

- The process could be extended to attack a triple-pass hash algorithm by constructing eight

"super-pairs" 'consisting of M,, through M,, plus M,, through M,,, etc., up to M 2 5 ~ Each

13. Coppemmith, D . , "Another Birthday Attack", Advanca in Cryptdog). - CRYPT0 '85 Pmceedinp, Lecture Note. in
Computer Science, Vol. 218, Springer-Verlag, Berlin, 1986, pp 14-17.

339

super-pair would be manipulated during the precomputed phase to continue to produce the

value of 2, even on the third pass. Only slightly more computation would be required,

but obviously 258 blocks of the message M would be constrained, limiting the messages

that could be attacked to fa i r ly long ones. Finally, this process could be extended even

fur ther to attack a quadruple-pass hash algorithm by computing eight "super-dooper" pairs

consisting of 512 blocks each, or a total of 4098 blocks.

The multiple bir thday a t t a c k therefore serves to reduce the strength of an N-pass signature

scheme from an apparent 2N*k/2 to an almost trivial N*2k/2.

It is worth mentioning that the Coppersmith's attack also applies to attempts to extend the MAC

of FIPS PUB 46 or ANSI X9.9 to 128 bits (in order to try to overcome Yuval's attack against the

p l a in t ex t) b y s imply c o n c a t e n a t i n g t w o o r more MACs u s i n g t w o o r m o r e d i f f e r e n t

authentication keys. T h e reason is t ha t the MAC function, i.e., DES Cipher Feedback mode

encryption, is invertible, a n d in addition the components are separable and individual ly too

small to resist a birthday attackI4. As a result, and contrary to the advice in the second and third

papers in this series, the 64-bit Message Authentication Code technique by itself cannot be considered

sufficiently strong, and is not recommended if there is any possibility t ha t the or iginator may

attempt to defraud the message recipient, or if a Trojan Horse could circumvent security controls

through such a mechanism. In addi t ion, the use of a MAC in certain command a n d control

situations where the at tacker may attempt to spoof computer-controlled equipment or processes is

also not recommended.

In practice, the Iikelihood of all of these blocks of being substituted without being noticed may

be remote, f o r in the case of the quadruple-iteration QCMDC routine this amounts to 16392 bytes

that would have to be inserted in the text. However, in the previous papers we had committed

ourselves to detecting even a single inserted, deleted, or manipulated bit, regardless of the

amount of text and independent of any internal syntactical or semantic content. After all, if we

were to rely solely on internal consistency checks to detect such manipulations we would first

have to invent a suitable manipulation detection scheme!

It should therefore be observed that Coppersmith's triple-birthday attack will succeed against a

multiple-iteration QCMDC routine if two conditions are true:

1. If t he checksum func t ion is invertible, so that it is possible to work both forwards and

backwards to produce matching values in a birthday-problem attack.

2. If t h e checksum f u n c t i o n is subject to decomposition into separate and independen t

elements, each of which is sufficiently small that the birthday-problem attack is feasible

from the standpoint of computation time and storage. If the checksum function were to

involve a 128-bit result that could not be broken down into something smaller, then the

bir thday at tack would be infeasible because it would involve generating, storing, and

comparing on the order of 2H 128-bit checksums and 64-bit permutation indices, or about

8.8*1OZ0 bytes of storage, or 5 quadrillion reels of 6250 bpi magnetic tape.

14. Thin is no: to aay that e auitable 128-bit checksum could not be constructed wing DES or aomc other 64-bit block cipher. but
only to caution that tho task is not nearly M trivial M it may appear a: firat glance.

340

In the case of the simple QCMDC routine (where Hi = ((Hi-, + Mi)*) modulo N), the addition of

Hi-1 and Mi makes the func t ion technically non-invertible from the standpoint of exactly and

uniquely reproducing the input Fi-l given some Fi, since the Hi is a function of two independent

variables. But i t is suff ic ient if the attacker can construct a value Yi-l = F-'(Xi) which, when I

computed in the forward direction, will produce the desired result for Hi. T o do this, note that

(K*N + x) mod N = X. Therefore, multiply the modulus N by some variable K such that the

result is a perfect square, and take the square root of the result. Then Yi-, = Hi - K*N, and the

value of Xi that will satisfy this relation is SQRT(K*N) - Y,

This suggests a variation of the QCMDC routine that would involve XOR(s) or some other non-

linear combining function that would not be susceptible to a square root attack. If in addition

the routine involved all 128 bits of the text and all 128 bits of the MDC of the previous block,

then neither of the two conditions would be true and the triple-birthday attack would therefore

be defeated. However. as the indefatigable Dr. Coppersmith pointed out, this is not necessarily a

trivial task.

In order to make the MDC funct ion non-invertible it is necessary to introduce a history function,

i.e., some value t h a t wou ld no t yet be known when working in the backwards direct ion,

calculated in some non-linear manner so that the square root attack will not work. In addition,

it appears necessary to incorporate multiple references to both the text to be authenticated and

to the previous MDC result, so that the only value that would satisfy the forward relationship is

the Proper one. Not only must each bit of the checksum function be a function of all of the bits

in the ful l 128-bit text block together with all of the bits in the MDC of the previous block, but

additional dependencies should be introduced to ensure that the function is not just minimally

dependent on those bits but is over-constrained instead.

Finally, as stated previously, the MDC function must produce a value on the order of 128 bits in

length in order to defeat the various birthday attacks against the text itself.

3.3 The New, Improved QCMDCV4 Algorithm

The following algorithm, dubbed the Quadrat ic Congruential Manipulation Detection Code,

Version 4 (QCMDCV4) fo r brevity, is proposed to satisfy these requirements:

Consider a 128-bit (16 byte) block of text, divided into four 32-bit words, T,, ... ,T,. For reasons

that will be explained later, we will be operating on a 31-bit subset of each of those 32-bit words

which consists of the sign bi t a n d the low-order 30 bits, i.e., Pi = Ti AND BFFFFFFF. In

addition, we will def ine a 30-bit f i f t h component, T**, consisting of the 6 high-order bits of TI

(with the 6 bits shifted right two bits and 2 leading zero bits introduced on the lef t or most-

significant-bit position), concatenated with the high order 8 bits of T,, T,, and T,, to make a 32

bit word with two high order zero bits.

Let the 128 bits of the MDC result (obtained from the previous block of text) also be divided

into four 32-bit integer components M,, M,, M,, M,; and let the 32-bit components of the new

MDC result be designated as M',

341

Finally, define a set of moduli N,... N,. consisting of the four largest prime numbers less than

the maximum 32-bit integer, namely 2147483629 (231-19), 2147483587 (2s1-61), 2147483579

(231-69), and 2147483563 (2%5).

-

Then calculate:

Several f ea tu re s of t h i s a lgo r i thm should be noted. First, each of the 16 d i f f e r e n t X O R

combinations is unique. Second, even if a significant amount of the text contains a l l zeroes

(with the result that the XOR does nothing), the alternating signs for the Mi and T** components

operate in such a manner that the contribution of the various terms will be different in each

case. Finally, the M’i values are introduced into the computation of the subsequent components

as soon as they are available, so that there is a great deal of inter-dependency and mixing. AS a

result, each 32-bit component of the MDC result is an over-constrained function of all of the text

and all of the prior MDC.

The previous papers had proposed a constant value for the modulus, N, equal to the Mersenne

prime 2’l-I (2147483647), f o r all four of the 32-bit M’i results. But as Don Coppersmith pointed

out when reviewing a d r a f t of the current procedure, because 2$l-1 is the largest number that

can be contained in a f o u r byte integer in two’s complement form, XORing the hexadecimal bit-

string 80000001 has the effect of inverting the sign and the low order bit, which can be the

equivalent of adding or subtracting the modulus. As a result, even when the intermediate sum is

squared, t h e d iv i s ion b y t h e 2’l-I modulus f requent ly produces no change i n the result,

depending on the sign of the Ti and whether a carry would be required, and a modification to

the text could thereby escape detection.

Coppersmith proposed picking up the text only 24 bits a t a time to avoid this problem, using

additional i terations to get back to around 128 bits. In an attempt to overcome this problem

without the overhead of a n add i t iona l iteration, the f o u r different primes fo r the moduli Nj

342

were introduced, all of them smaller than 2s1. However, it was found that if the text consisted

of one 32-bit word of random bits and three words of zeroes, then in about 10% of the cases it

was possible to either a d d or subtract the value of the first modulus and have the change go

undetected i n the corresponding 32-bit word of the MDC result. Although the use of fou r

different values f o r the moduli means that the substitution does affect the remaining 3 words, or

a t least 96 bits, i t was fel t that the ful l 128-bit strength should be preserved.

For this reason, only 30 bits plus the sign bit of each 32-bit word of text is used in forming the

intermediate sum. Since the moduli are all greater than 250, i t is impossible to add or subtract

the modulus f rom the text without detection. The final addition or subtraction of T** ensures

that all of the bits in the text affect all of the bits of the result.

One fu r the r improvement is possible. Because of the squaring operation, each 32-bit MDC

component will be positive, producing a 124-bit result. But we can calculate the parity of the

intermediate MDC result, just prior to the multiplication, and then change the sign of each 32-bit

result if the parity is even.

Finally, because t h e a l g o r i t h m o p e r a t e s on 16-byte blocks, i t i s necessary to somehow

differentiate between a text string that is say 1 byte long and one that consists of the same byte

extended with up to 15 bytes of zeroes. For that reason the last few bytes (less than 16), if any,

are moved to a 16-byte buffer , the rest of the buffer zeroed, and the MDC algorithm executed

N+1 times on that same buf fe r , where N is the number of the last f e w bytes. N+1 is used

instead of N, because a block that is 16 bytes long has to be processed once, and therefore a 1

byte block has to be processed twice in order to be distinguished from the previous case. If

improved performance is needed, the length code of the text can be prefixed to the text, and the

size of the buffer extended to be an exact multiple of 16 bytes. This technique m u ~ t be used if

it is necessary to deal with text strings that are not multiples of 8 bits in length.15

In order to avoid a strong correlation between the text and the MDC result in the case where the

text is very sparse (contains mostly zero bits), i t is desirable to use different values f o r the

start ing values of Mi. For purposes of s tandardizat ion the values 141421356, 271828182,

314159265, and 57721566 a re suggested.

4 Implementation Considerations

The QCMDCV4 a l g o r i t h m h a s been implemented a n d t e s t ed o n t h e I B M P C a n d A T

microcomputers and the Compaq 286 Portable, and should run correctly on any similar machine

which uses the Intel 8088, 8086, 80188, or 80286 CPU chip in combination with the 8087 or 80287

Numeric Data Processor chip. The 8087/80287 is used to significantly speed up the calculation

of the various ari thmetic operations, in particular the division modulo the large primes.

15. It may be worth mentioning that the ANSI X9.9-1986 authentication atandard and the definition of the MAC in FIPS PUB 46 do
not take this problem into account, and therefore do not differentiate between a short mensage (one that is not a multiple of 8

bytes in length) that must be padded with =roes. and one that is a multiple of 8 bytm in length and happens to contain zeroes at
the end. Although binary zeroes would bc interpreted M ASCII null characters and would not be confused with the ASCII "0"
(hexdecimal SO) character in coded text, formatted binary information is allowed by paragraph 5.1 of that standard. which does
not specify that a length indicator field must be used. The confusion therefore could occur in thin cane.

343

During the calculations the results a r e kept in IEEE Binary Floating Point 80-bit Temporary

Real format with a 64-bit mantissa, a n d Ti and Mi a re in Intel 32-bit integer (IBM/Microsoft

Pascal INTEGER4) fo rma t . (Note tha t the Intel format loads and stores register contents in

"reversed" order, i.e., wi th the low order byte coming first in memory, so that the text bytes are

processed in the order 4, 3, 2, 1, 8, 7, 6, 5 , etc.)

In the worst case, the total resulting from the alternating sign terms could range f rom -2" to

23'-4, in which case the squaring operation would produce a value as large as 266. Because the

operation is carr ied o u t i n f loat ing point an overflow cannot occur, but a number t h a t large

cannot be represented i n the 64-bit mantissa without loss of precision. If the 8087/80287 control

word status were set to enable the precision interrupt then an interrupt would occur in that

event, but the normal Pascal setting is to disable such interrupts. The result in the normal case

will therefore be to round up or down to the nearest even value as appropriate (assuming the

normal setting fo r the rounding mode), and discarding up to four low order bits of the sum. It

should be noted that f o r precision loss to occur, the signs of the 32-bit result of the XOR must

be +, -, +, -, to match the order of operations. As a result, it would be extremely unlikely for a

loss of precision to occur on all four of the 32-bit intermediate result computations because of

the way the text is cycled through the algorithm. In addition, if the intermediate result is

viewed as the sum 2x + y, where x represents the 31 high order bits and y the two low order bits,

then the square is 4x2 + 4xy + y2. Therefore, even though the low order yz bits are dropped

after the multiplication this does not mean that the low order bits of the original quant i ty are

ignored, since they a f f ec t the mid-square (4xy) component of the result. For this reason it is not

possible for the low order bit or bits of one or more of the 32-bit words of text to be changed

without causing a change in all 128 bits of the result.

The 8087/80287 FPREM instruction computes an exact remainder by successive subtractions the

way division is done by hand, instead of using the more usual technique of dividing, rounding,

multiplying, and subtracting from the original. The FPREM instruction is as fast as a divide,

and is guaranteed to be accurate , without any roundoff. However, because the modulus is

slightly less than 2'l and the maximum value of the result after the squaring operation is zrn, the

FPREM operation is not guaranteed to be completed in one operation (since the difference in

magnitude between the dividend and the divisor may be larger than 264 and FPREM shifts a t

most 64 bits in one operation), but i t will always be complete in two operations. For this reason,

the 8087/80287 condition code is tested af ter each FPREM and an additional FPREM performed

if necessary.

In order to produce the fastest possible implementation, the XORs and other CPU instructions

are executed in parallel with the coprocessor addition, subrraction, multiplication, and FPREM

operations whenever possible. The FWAIT instructions necessary to ensure that the coprocessor

has finished with i ts computations before the CPU reads the results are delayed as long as

possible to permit the maximum possible overlap. Although the original version was coded using

a macro that was invoked fou r times f o r the four different iterations within one block, in the

final version the code was "unwound" and hand-optimized to permit maximum overlap.

On an IBM-PC with an 8088 & 8087 and a 4.77 MHz clock, the time to MDC check 1,000 512-byte

blocks was 43.5 seconds, or 1359.5 microseconds per 16 bytes. This corresponds to 94.2 kilobits

344

per second. By comparison, the time fo r the fastest known software implementation of DES for

the PC is 2801 microseconds per 8 bytes for the PC (22.8 Kbps, or 171K bytes per minute). With

an 80287 speedup kit (consisting of an 8 MHz 80287 with its own clock crystal on a plug-in

daughter-board) installed in a n IBM AT with the standard 6 hfHz 80286, the same test took 813.6

microseconds for 16 bytes (157.3 Kbps), or 1.18 megabytes per minute, compared to the DES time

of 933 microseconds per 8 bytes. We are currently awaiting the availability of t h e new Intel

80386 CPU together with the 80387 coprocessor to time that configuration. We expect to recode

the algorithm to take advantage of the new 386/387 instructions, and anticipate that the result

will run abou t 4 t imes f a s t e r t han on the IBM AT. Depending on the clock speeds of the

Processors involved, then, the 128-bit MDC technique is anywhere from 4.6 to 8.1 times faster

than computing two independent 64-bit Message Authentication Codes in sof tware using the

fastest known software DES implementation for the IBM PC or AT.16 From a human factors

s t andpo in t , this means t h a t t h e e n t i r e con ten t s of a f loppy d i sk (362K by tes) c a n be

a u t h e n t i c a t e d to t h e most s t r ingen t s t anda rds in less than 1 5 to 30 seconds on c u r r e n t

microprocessors, without benefit of any special cryptographic hardware.

4.1 MDC Test Program

The following program, writ ten in IBM/Microsoft Pascal for the IBM PC, can be used to verify

the proper operation of the QCMDCV4 algorithm:

($TITLE:lCHECXMDC1 - Verify MDC algorithm.)
($FLoATCAUs- (Generate native 8087/80287 code.)}

PROGRAM checkmdc(input,output);

TYPE
checksums= ARRAY[l. .4] OF INTEGERI;

VAR [PUBLIC]
text: PACKED ARRAY[l..33] OF CHAR:
textg: ADSMEM ;

result: checksums ;
n-bytes : WORD ;

i,j: INTEGER;

VAR [EXTERN]
mdc-name: PACKED ARRAY[1..8] OF C H A R ;

{ "QCMDCV4)

CONST
mdc-init = checksums(

14142 1356 ,
271828182,
314159265,
57721566) ;

check = checksum(
-1900412449,
676867420,
-689076088,
1333643940) ;

16. In addition, two independent 64-bit MAC8 are not believed to be nearly M necure m a single 128-bit MDC.

345

PROCEDURE mdc (textgtr : ADSMEM;
n-bytes:WORD;

VARS result: checksums) ;
EXTERN;

BEGIN ;

WRITE (output,
'Verifying MDC routine (I ,

mdc-name,) . . . ') ;
FOR i:= 1 TO 33 W text[i] := CHR(0);
text[l] := CHR(1);
text2 := ADS text;
result := mdc-init;

FOR i:= 1 TO 50 DO
BEGIN ;

IF i<34 THEN n-bytes := WRD(i)
ELSE n-bytes :- 32;

mdc(textg,n-bytes,result);

FOR j:= 32 WWNTO 1 DO
text[j+l] := text[j];

text[l] :=
CHR(LOBYTE (LOWORD (result [4]))) ;

END :

IF result[l]=check[l] AND THEN
result[2]=check[2) AND THEN
result[3]=check[3] AND THEN
result[4]=check[4]

THEN WRITE ('OK. I)
ELSE

BEGIN ;
WRITE ('MDC is INCORRECT! I) ;
WRITELN (result [11 , result [2 3 ,

result[3],result[4]);
END ;

WRITELN ;

END.

5 Summary and Conclusions

Several architectural justif ications have been presented an authentication algorithm which does

not require a tradit ional c rypto "black box" approach using secret cryptographic keys, wi th all of

the key management d i f f icu l t ies tha t entails. In particular, the relatively common practice of

using l ink encrypt ion f o r secrecy a t t he OSI Data Link layer and implementing end-to-end

authentication a t the Presentation Layer would profit from "keyless", non-cryptographic means Of

authentication that could be easily implemented in both PCs and general-purpose main-frame

computers.

346

The need for a checksum on the order of 128 bits in length was reaffirmed, both in the case of

two mutually suspicious, potentially deceitful users where one may attempt to defraud the othep,

and in the command a n d control case where the attacker may.have an almost unlimited ability to

attempt to spoof the system. Contrary to the author's previous position, i t was concluded that

the 64-bit Message Authentication Code (MAC) approach of FIBS PUB 46 cannot be considered

sufficiently strong in the case where the originator of a message may attempt to defraud the

recipient, as well as i n some command and control and multi-level security situations.

The MAC checksum technique used by ANSI X9.9-1986 is viewed as particularly unfortunate,

both because of the inadequate 32-bit length and because no provision was made to distinguish

between short block t h a t was padded and a block that is a multiple of 8 bytes that happens to

end with the same characters.

Coppersmith's Triple B i r thday a t t ack as it appl ied to the or iginal QCMDC a lgor i thm was

summarized, and i t was concluded that i n order for that attack to be defeated i t was necessary

to ensure that the checksum funct ion is not invertible, and that the length of the checksum be on

the order of 128 bits i n length.

The QCMDCV4 algorithm was described, which uses XORs plus a history function to ensure that

the function is not invertible. The function computes a 128-bit result that is an over-determined

function of 128 bits of the text and the 128-bit MDC result of the previous text block than

cannot be decomposed. A "birthday attack" against the QCMDCV4 result cannot succeed, because

of the enormous number of variations that would have to be computed, sorted and compared. In

order to ensure that a message that is not an even multiple of 128 bits can be distinguished from

the same message extended with zeros, the algorithm is executed N + 1 times on the last buffer,

which contains the last N bytes of data extended with zeros.

The QCMDCV4 a l g o r i t h m is r ecommended f o r use i n microcompute r a n d m a i n - f r a m e

applications where encryption will be provided separately and i t is desirable no t t o have to

replicate the encryption funct ion fo r authentication. It is also suitable fo r use in combination

with a public-key algorithm when implementing a digital signature function to protect against

fraud.

