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ABSTRACT This paper presents a unique two-fold adaptive linear neural network (ADALINE) for fast

and accurate measurement of fundamental, harmonics, sub-harmonics, inter-harmonics and decaying DC

components of a distorted current signal with additive noise. The preceding parallel approach is termed as

Master-Slave ADALINE (MSADALINE). The Slave-ADALINE adopts least mean square (LMS) algorithm

with a fixed and large step-size for weight vector adjustment. During the training interval or transients,

this filter performs a significant role. On the other hand, the Master-ADALINE uses a variable step-size

LMS algorithm for achieving a small steady-state error. At the end of each iteration, the local averages

of the squared errors of both the ADALINE’s are calculated and weights of the Master-ADALINE are

updated accordingly. The amplitudes and phases of desired frequency components can be worked out from

Master-ADALINE’s weights. The proposed architecture improves the convergence speed by establishing an

independent control action between the steady-state error and the speed of convergence. The simulation

results of this method under various operating situations are analyzed and compared with single fold

ADALINE structure that obeys dynamic step-size LMS (DSSLMS) adaptation rule. Eventually, a scaled

laboratory prototype has been developed for the validation of the proposed technique in real-time utilization.

This innovative research finding makes the power system smart and precise.

INDEX TERMS Adaptive linear neural network (ADALINE), dynamic step-size least mean square

(DSSLMS), harmonic estimation, power quality assessment, master-slave (MS).

I. INTRODUCTION

The wide application of power converters using semicon-

ductor devices controls the performance of many electri-

cal and electronic equipment. Due to the switching mode

operation, these nonlinear devices inject harmonics into the

AC system. As a consequence, accurate measurement of the

individual component is essential for power quality control

and protection. Finding an efficient method for fast and accu-

rate estimation of the parameters (i.e. amplitude, phase, and

frequency) of the fundamental, harmonics, inter-harmonics,

sub-harmonics and decaying DC components has become a

large scale research area for power engineers and researchers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Savaghebi .

In the past, several approaches have been reported for

parameter estimation, among them, Fast Fourier Trans-

formation (FFT) is most commonly used due to its low

computational complexity structure. However, the FFT based

technique suffers from spectral leakage and poor conver-

gence rate while determining sub- and inter-harmonic param-

eters [1]. Furthermore, this method is delayed by more than

two fundamental periods because it takes one period for

acquiring the data and another period for analysis of data [2].

Therefore, its performance gets deteriorated in real-time

implementation.

A widely used method for parameter estimation is the

least-squares (LS) technique, where the aim is to minimize

the squared error between the measured and modelled sig-

nal [3]–[7]. The performance of the algorithm is affected by

the width of the observation window, choice of the sampling
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frequency, selection of reference time, and Taylor Series

truncation. Pradhan et al. [8] and Subudhi et al. [9] suggested

the LMS algorithm for power system frequency estimation.

However, this method is not so effective for amplitude and

phase estimation. On the other hand, the recursive least

squares (RLS) technique is a well established numerical

method which can deal effectively with decaying DC offsets,

power system frequency transients and subsynchronous oscil-

lations [10], [11]. However, the computational complexity of

the RLS technique hinders its real-time implementation.

Another commonly used estimation technique is the

Kalman filter (KF), as a recursive stochastic technique that

gives an optimal estimation of state variables of a given

dynamic system from noisy measurements [12]–[14]. The

main drawback of this algorithm is the bulk calculations that

limit its online application due to the requirement of large

memory and high-speed microprocessor. This algorithm also

fails to track abrupt or dynamic changes of the signal.

In the last couple of decades, many power system harmonic

estimation techniques employing the learning principles have

become quite popular. These techniques are applied to over-

come the shortcomings such as inaccuracy on account of

incorrect modelling, noise present in the signal and non-

linearity. Jain and Singh [15] proposed an artificial neural

network (ANN) to estimate the harmonic components accu-

rately by taking 1/2 cycle sampled values of a distorted

waveform in noisy environments. Abdeslam et al. [16] and

Rodriguez et al. [17] have suggested a new approach using

an adaptive linear neural network (ADALINE) for online

harmonic estimation. In recent years, ADALINE structure

is widely used as harmonic estimator due to its simple

structure and nonstationary signal parameter tracking capa-

bility. It resolves the distorted current/voltage signal to its

Fourier series. Goh et al. [18] developed a unified approach

for mean square convergence analysis for ADALINE struc-

ture, including mean square stability, mean square evolution

(transient behaviour) and the mean square steady-state per-

formance. Recently, Chang et al. [19] proposed two-stage

ADALINE that is robust and capable of detecting har-

monics and inter-harmonics. Sarkar et al. [20] proposed

a modified ADALINE structure, namely self-synchronized

ADALINE (S-ADALINE) provides faster response and bet-

ter noise immunity than the conventional ADALINE struc-

ture. Garanayak and Panda [21] proposed a hybrid ADALINE

and filtered-x LMS technique to overcome the error in esti-

mation under highly impulsive noise. Some well documented

harmonic estimation approaches using ADALINE structures

along with weight updating rule provide accuracy and reduce

response time [22]–[24]. This multi-input and single output

architecture provides low complexity design structure, mini-

mum tracking error and faster convergence rate.

In general, the weights/coefficients of the ADALINE are

updated by the LMS adaptation rule due to its simple

structure and robustness. The step-size parameter is crit-

ical to the performance of the LMS algorithm and eval-

uates how fast the algorithm converges along the error

performance surface. To accelerate the speed of convergence

and minimize the excess mean squared error (MSE), sev-

eral time-varying step-size techniques have been reported

in the literature [25]–[32]. The basic principle is that at the

starting stages of convergence or transients, the step-size

parameter should be large, in order to achieve a faster

convergence rate and minimum error. After a number of

iterations, the filter coefficients are closer to the optimum

solution; a minimum step-size value should be used for

attaining a small steady-state error [28], [29]. Adaptation of

step-size highly depends on a few parameters like instanta-

neous square error, error autocorrelation and change in the

sign of gradient between the input signal and output error.

In addition, the steady-state misadjustment depends on all

constant parameters, thus the dependence between the speed

of convergence and the steady-state error exist [30]–[33]. For

these reasons, ADALINE followed by variable step-size LMS

learning rule converges prematurely during the estimation

of the signal having time-varying parameters, decaying DC

function, high-level measurement noise and inter-harmonics.

As a result, the accuracy of the estimation gets reduced, which

is the main disadvantage of conventional methods.

This paper contributes to a new Master-Slave ADALINE

(MS ADALINE) based two-fold architecture for real-time

detection of grid voltage/current fundamental and harmonic

components. Thismethod theoretically cancels out the depen-

dency between the speed of convergence and steady-state

errors, and at the same time enhances the convergence

speed. InMSADALINE technique, two ADALINEmodules,

i.e.Master-ADALINE and Slave-ADALINE are connected in

parallel. The reference signals are applied to both ADALINE,

i.e. common parallel input and the error outputs are collected

independently, i.e. parallel output. The Slave-ADALINE’s

coefficients are updated by the fixed step-size LMS algo-

rithm. Just to speed up the convergence, large step-size value

is a prominent choice. During the training interval or sudden

parameter changes, this filter coefficients close near to the

optimum solution. On the other hand, the Master-ADALINE

chooses a time variable step-size LMS algorithm for coef-

ficient adjustment. When this algorithm goes closer to the

steady-state, the value of error magnitude reduces, which

decreases the step-size. In the meantime, the obtained filter

coefficients are optimum. At the end of each iteration, the

local averages of the squared errors of both the ADALINE’s

are computed and applied to the decision control circuit.

Then, the decision controller circuit compares the twomagni-

tudes and adjusts theMaster-ADALINEweights accordingly.

In this way, the system can overcome the effect of estimation

error with a large magnitude by using MS ADALINE. The

Master-ADALINE is the filter of interest, and from its coef-

ficients, the amplitudes and phases are estimated. The pro-

posed architecture provides the fastest convergence speed and

smallest steady-state error than the single-fold ADALINE

structure with a low increase in computational complexity.

It has the advantage to estimate the vibration harmonic mag-

nitude and phase with high tracking accuracy. It can be easily
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expected that the performance of the recommended architec-

ture would be better than that of simple ADALINE structure.

This approach is not only used for power quality assessment

in the electrical system but also it can be implemented in other

research fields like equalization, active noise control (ANC),

acoustic echo cancellation and biomedical engineering.

In the simulation, we assumed a test signal that contains

fundamental, harmonics, inter-harmonics, sub-harmonics,

decaying DC components and random noise. By using the

adaptive technique, we have estimated the parameters of these

components. Then, these estimated values are compared with

the actual values to evaluate the percentage errors. But for

experimental analysis, we have collected the discrete values

of nonlinear current from the laboratory prototype. This dis-

torted current is considered as a test signal for estimation. For

validation of the proposed algorithm in a real-time environ-

ment, the parameters of the individual component present in

a test signal are estimated and compared.

II. ARCHITECTURE OF SINGLE FOLD

ADALINE STRUCTURE

A periodic and distorted current i (t) can be described by the

sum of the fundamental frequency and integral multiples of

the fundamental frequency (i.e. harmonics) with unknown

amplitudes and phases. It is assumed that frequency is known

and constant during the estimation process. The discrete-time

version of i (t) can be expressed as follows.

i (n) =
∑L

i=1
Iisin (ωin+ 8i)

=
∑L

i=1

[
Iicos8i Iisin 8i

] [
sin ωin

cos ωin

]

=
∑L

i=1

[
ai bi

] [
xai (n)

xbi (n)

]
(1)

where ωi, Ii and 8i represent the angular frequency,

amplitude and phase angle of ith components respectively.

{a1 = I1 cos 81, b1 = I1 sin 81} and {ai = Ii cos 8i, bi =

Ii sin8i}
L
i=2 denote discrete Fourier coefficients of the funda-

mental and harmonic components, respectively. References

{xai (n) = sin ωin, xbi (n) = cos ωin}
L
i=1, are generated

from the phase-locked loop (PLL) circuit.

The functional block diagram of single fold ADALINE

for harmonic parameter estimation is depicted in Fig. 1. It is

composed of 2L number of neurons, whose weight vector

w =
{
âi (n) , b̂i (n)

}L
i=1

is adjusted by dynamic step-size

LMS (DSSLMS) algorithm [21], [27], [29]. The reference

inputs are {xai (n) , xbi (n)}
L
i=1. The control signal y (n), which

is the algebraic sum of all the filter outputs, can be derived as

y(n)=
∑L

i=1
(yi (n)) =

∑L

i=1

[
âi (n) b̂i (n)

] [
xai (n)

xbi (n)

]

(2)

The preceding equation can be written in matrix form as

y (n) = wT (n)x(n) (3)

FIGURE 1. Functional block diagram of single fold ADALINE structure.

Then, the instantaneous error e (n) is the difference between

the sensed signal i (n) and the control signal y (n). Accord-

ingly, we can write

e (n) = i (n) − wT (n)x(n) (4)

After a number of iterations, the estimated amplitudes {Ii}
L
i=1

and phases {8i}
L
i=1 can be computed as follows.

Ii =

√
âi (n)

2 + b̂i (n)
2

(5)

8i = tan−1
(
b̂i (n)

/
âi (n)

)
(6)

A. DSSLMS WEIGHT UPDATING RULE

By employingDSSLMS algorithm, the estimated coefficients{
âi (n) , b̂i (n)

}L
i=1

at any sampling instant n are updated by

using the following expressions.

âi (n+ 1) = âi (n) + µai (n) e (n) xai (n)

b̂i (n+ 1) = b̂i (n) + µbi (n) e (n) xbi (n) (7)

where µai (n) = µbi (n) = µi (n) represents the time-varying

step-size parameters that can be adapted as

µ′
i (n+ 1) = C1µi (n) + C2p

2 (n) (8)

µi (n+ 1) =





µmax , if µ′
i (n+ 1) > µmax

µmin, if µ′
i (n+ 1) < µmin

µ′
i (n+ 1) , else

(9)

where (0 < C1 < 1) and (C2 > 0) are constant values to con-

trol the convergence rate, and µi (n+ 1) is restricted in some

pre-decided [µmin, µmax] to provide stability and learning

behaviour of DSSLMS algorithm. The error autocorrelation

p(n) can be expressed as

p (n) = C3p (n− 1) + (1 − C3) e(n)e(n− 1) (10)

where (0 < C3 < 1) is an exponential weighting factor that

controls the quality of the estimation of p (n). From Eq. (8)

and Eq. (10), it is seen that the autocorrelation between the

error output at adjacent time instants e (n) and e(n − 1)

regulate the step-size parameter. Therefore, the influence of

the measurement noise is reduced and the algorithm performs

better at the steady-state condition.
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FIGURE 2. Functional block diagram of proposed two fold MS ADALINE structure.

B. MISADJUSTMENT LEVEL

The steady-state performance of the adaptive algorithm is

commonly measured using a relative parameter, called mis-

adjustment. It is defined as the ratio of the steady-state excess

MSE function Jex(n) to the optimal MSE Jo. Referring [31],

the steady-state misadjustment level M is calculated as

M =
C1C2J

2
o (1 − C3)

(1 − C2
1 )(1 + C3)

tr[R] (11)

where tr[(·)] represents the trace of the matrix (·) and R is

the input autocorrelation matrix given by R = EX (n)XT (n).

The preceding equation states that M depends on all con-

stant parameters (C1, C2, and C3). The parameter C3 can

be selected such that a small M is attained while maintain-

ing a large C2, which increases the speed of convergence.

Thus, we conclude that dependency between the convergence

speed and steady-state misadjustment exists [32]. Due to

this reason, the variable step-size LMS algorithm employed

in ADALINE converges prematurely during some critical

conditions of estimation such as the presence of time-varying

parameters, decaying DC function, high-level measurement

noise and inter-harmonics in the signal. As a result, the algo-

rithm needs large time for convergence and the accuracy of

the estimation gets diminished.

C. STABILITY ANALYSIS

To ensure the stability of the DSSLMS algorithm,µi (n)must

be bounded within a certain positive range that yields the

following condition.

0 < µmin ≤ µi (n) ≤ µmax < 2
/
3tr[R] (12)

where µmin is selected to be a very small value and µmax is

chosen to be very close to the upper bound 2
/
3tr[R]. The

range betweenµmin andµmax plays a role in stability for such

time-varying step-size.

The required computational resources of ADALINE with

DSSLMS weight adaptation rule is (2L + 7) numbers of

matrix multiplications/divisions and (2L + 3) numbers of

matrix additions/subtractions for performing a single iter-

ation [21]. In addition, this algorithm necessarily needs

(2L + 12) memory locations to store the signal samples,

coefficients and variable parameters.

III. ARCHITECTURE OF PROPOSED MASTER

SLAVE ADALINE STRUCTURE

To eliminate the tradeoff between the speed of convergence

and steady-state misadjustment, and simultaneously accel-

erate the convergence rate in the above critical situations,

the authors have proposed a novel two-fold parallel architec-

ture named MS ADALINE. Fig. 2. illustrates the functional

block diagram of MS ADALINE for parameter estimation.

This recommended architecture consists of two ADALINE

i.e. Master-ADALINE and Slave-ADALINE, whose cor-

responding weights are denoted as
{
âiM (n) , b̂iM (n)

}L
i=1

and
{
âiS (n) , b̂iS (n)

}L
i=1

. The signals {xai (n) , xbi (n)}
L
i=1

are represented as common reference inputs for both

ADALINE. The error outputs eM (n) and eS (n) are col-

lected from Master-ADALINE and Slave-ADALINE, sub-

sequently. In this research work, the subscript ‘M ’ stands

for Master-ADALINE’s parameters, whereas subscript ‘S’

indicates the parameters associated with Slave-ADALINE.

The Slave-ADALINE uses an LMS algorithm with a fixed

and large step-size value µiS , which makes the convergence

faster. On the other hand, the Master-ADALINE follows

a variable step-size parameter µiM (n), which is reinitial-

ized by the decision controller circuit for producing a small

steady-state error. At the end of each iteration, the sum of

squared errors of both ADALINE is calculated and fed to

the decision controller circuit. The decision controller circuit

compares these magnitudes and updates the coefficients of

Master-ADALINE accordingly. If the sum of squared error

of Master-ADALINE is greater than the sum of squared

error of Slave-ADALINE, it means that the performance

of the Slave-ADALINE is much more superior to Master-

ADALINE. Its weights approach towards the optimum value.

In this situation, the Master-ADALINE has used the weights

of the Slave-ADALINE. At the same time, the step-size is
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increased from µiM (n) to (µiM (n) + µmax)
/
2, which raise

the speed of convergence of the Master-ADALINE. This

case arises at the starting stages of estimation or transients

when both adaptive filters are far from the optimum weights.

After a number of iterations, Slave-ADALINE close to the

steady-state and its sum of squared error will be larger than

the sum of squared error of the Master-ADALINE. At the

same time, the step-size of Master-ADALINE decrease from

µiM (n) to C4µiM (n), in order to maintain a low steady-state

misadjustment. Finally, µiM (n) approaching to a minimum

value µmin and the filter coefficients attain the wiener solu-

tion. So, the system can overcome the effect of large estima-

tion error by using MS ADALINE technique. By utilizing the

weights of the Master-ADALINE, the amplitudes and phases

are estimated.

A. PROPOSED WEIGHT UPDATING RULE

The weights of the Master-ADALINE and Slave-ADALINE

are updated by the following steps:

Step-1: Calculate the control signal yS (n) and the instan-

taneous error eS (n) of the Slave-ADALINE.

yS (n) =
∑L

i=1

[
âis (n) b̂is (n)

] [
xai (n)

xbi (n)

]
(13)

eS (n) = i (n) − yS (n) (14)

Step-2: Calculate the control signal yM (n) and the instan-

taneous error eM (n) of the Master-ADALINE.

yM (n) =
∑L

i=1

[
âiM (n) b̂iM (n)

] [
xai (n)

xbi (n)

]
(15)

eM (n) = i (n) − yM (n) (16)

Step-3: Update the Fourier coefficients
{
âiS (n), b̂iS (n)

}L
i=1

of the Slave-ADALINE.

âiS (n+ 1) = âiS (n) + µiSeS (n) xai (n)

b̂iS (n+ 1) = b̂iS (n) + µiSeS (n) xbi (n) (17)

Step-4: Compute the local averages of the square errors

{AS (m) ,AM (m)} of both ADALINE.

AS (m) =
∑n

m=n−Q−1
e2S (m), for n = Q, 2Q, 3Q · · ·

(18)

AM (m) =
∑n

m=n−Q−1
e2M (m), for n = Q, 2Q, 3Q · · ·

(19)

where Q is the length of the test interval that controls the

convergence rate of theMaster-ADALINE. IfQ is assumed to

be too large then the adaptation of the step-size of the Master-

ADALINE is lost. However, if Q is too small, the step-size

µiM (n) will have large variations in the steady-state. For

large values ofQ, the Slave-ADALINEmight converge inside

the test interval and µiM (n) is not sufficiently increased.

In this situation, the convergence rate will be very slow. Here

the value of Q is chosen as 50 for obtaining a satisfactory

result.

Step-5: Update the Fourier Coefficients {âiM (n), b̂iM (n)}Li=1
of the Master-ADALINE.

âiM (n+ 1) =

{
âiS (n+ 1) , if AS (m) < AM (m)

âiM (n) + µiM (n) eM (n) xai (n) , else

b̂iM (n+ 1) =

{
b̂iS (n+ 1) , if AS (m) < AM (m)

b̂iM (n) + µiM (n) eM (n) xbi (n) , else

(20)

Step-6: Reinitialize the step-size parameter µiM (n) of the

Master-ADALINE.

µiM (n+1)=





(µiM (n)+µmax)

2
, if AS (m)<AM (m)

max [C4µiM (n), µmin] , else

(21)

where (0 < C4 < 1) is the scaling factor that regulates the

adaptation of step-size and convergence rate. If C4 ≃ 0, then

the value of µiM (n) is reduced too fast and the convergence

of the algorithm is diminished. When C4 ≃ 1, the algorithm

will have poor convergence rate. By trial and error method,

the authors chose the typical value for C4 is 0.9.

Step-7: Estimate the amplitudes {Ii}
L
i=1 and phases

{8i}
L
i=1 from Master-ADALINE coefficients.

Ii(n) =

√
âiM (n)2 + b̂iM (n)

2
(22)

8i(n) = tan−1
(
b̂iM (n)

/
âiM (n)

)
(23)

Step-8: Calculate the MSE of Slave-ADALINE JS (n) and

Master-ADALINE JM (n).

The MSE of Slave-ADALINE JS (n) and Master-

ADALINE JM (n) can be obtained as

JS (n) = Jopt + tr[RKS (n)] (24)

JM (n) = Jopt + tr[RKM (n)] (25)

where Jopt is the optimal MSE, which can be expressed as

Jopt = lim
n→∞

E
{
e2opt (n)

}
. The value of Jopt for both filters

is equal. The correlation matrixes of the weight-error vector

VS (n) and VM (n) are expressed as KS (n) = E[VS (n)V
T
S (n)]

and KM (n) = E[VM (n)V T
M (n)]. Referring [32], [33], the

MSE of the LMS with fixed step-size is written as

J (n) = Jopt +
∑N

j=1
λj

(
1 − µλj

)2
v2j (0) (26)

where λj is the jth eigenvalue of the input autocorrelation

matrix, vj(0) is the jth element of the vector V (0). Taking

into account that during one test interval the step-sizes of both

ADALINE are constant, the MSE equations can be obtained

from Eq. 26 as

JS (kT )

= Jopt +
∑N

j=1
λj

(
1 − µSλj

)2T
v2Sj((k − 1)T ) (27)

JM (kT )

= Jopt +
∑N

j=1
λj

(
1 − µM ((k − 1)T )λj

)2T
v2Mj((k−1)T )

(28)
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where T is the number of iterations and k is an integer.

We assume that at the starting point of the test interval

the Master-ADALINE weights are re-initialized with Slave-

ADALINE, therefore we have

vSj((k − 1)T = vMj((k − 1)T (29)

Eq. 27 to Eq. 29, it is clear that MSE of the Slave-ADALINE

is smaller than the MSE of the Master-ADALINE at the

final point of the test interval. This evaluation was made for

a test interval (n from (k − 1)T to kT ) with the assump-

tion that the coefficients
[
âiM (n) b̂iM (n)

]
are initialized

with
[
âiS (n) b̂iS (n)

]
at n = (k − 1)T . The MSE of both

ADALINE, at time instant n = kT can be approximated by

JS (kT ) = Jopt +
∑N

j=1
λj

(
1 − µSλj

)2T
vSj((k − 2)T )

(30)

JM (kT ) = Jopt +
∑N

j=1
λj

(
1 − µM ((k − 1)T )λj

)T

×
(
1 − µM ((k − 2)T )λj

)T
v2Mj((k − 2)T ) (31)

It is conclude that the Slave-ADALINE has a smaller level of

MSE than Master-ADALINE. At the steady-state condition,

the MSE of Slave-ADALINE JS (n) can be approximated as

JS (n) = Jopt + Jopt
µmax

2
tr[R] (32)

Since the Slave-ADALINE converges faster than the Master-

ADALINE, the step-size µiM (n) will only be reduced after

Slave-ADALINE is converged. Finally, µiM (n) attains its

minimum bound µmin, the Master-ADALINE converges to

the following level of MSE.

JM (n) = Jopt + Jopt
µmin

2
tr[R] (33)

The proposed algorithm is summarized as the Slave-

ADALINE dominates the adaptive process at the training

interval or transients, while the Master-ADALINE takes over

during the last process. Their sum of squared errors at a

specific adaptive interval is selected as the transfer criteria.

B. MISADJUSTMENT LEVEL

For a stationary environment, the steady-state misadjustment

of the Slave-ADALINE is approximately

M =
µiS

2
tr[R] (34)

At the steady-state condition, the step-size of the Master-

ADALINE µiM (n) converges to µmin, then the misadjust-

ment is given by

M =
µmin

2
tr[R] (35)

Eq. 34 and Eq. 35, it is noted that the steady-state misad-

justment is independent of convergence speed. Therefore, the

algorithm needs less time for convergence and the accuracy

of the estimation becomes more exact.

C. STABILITY ANALYSIS

In the Slave-ADALINE, the fixed step-sizeµiS could be large

as long as stable convergence is maintained. A necessary and

sufficient condition for the mean square bounded weights is

that

0< µmin ≪ µiS ≤ µmax < 2
/
3tr[R] (36)

The stability, as well as the learning behaviour of the Master-

ADALINE, is guaranteed if we bound the time-varying

step-size µiM (n) [31]. According to

0 < µmin ≤ µiM (n) ≤ µmax < 2
/
3tr[R] (37)

The MS ADALINE requires (4L + 6) numbers of matrix

multiplications/divisions and (4L + 3) numbers of matrix

additions/subtractions per iteration. The computational cost

of the proposed architecture is effectively higher than the

conventional architecture due to the use of twice number

addition and multiplication blocks. The memory loads of the

MS ADALINE are (3L + 14).

In this work, the authors have further implemented

three-fold or higher version architectures for harmonic esti-

mation. But, it is observed that there is no such type of

advantages over the proposed two-fold architecture except

convergence speed. If the extra number of ADALINEs is

preferred, then the required computational resources are

effectively increased that undoubtedly inflation of cost. This

type of complexity architectures demoralizes for its practical

implementation. However, the steady-state MSE functions of

each ADALINE are nonlinear in nature, so their calculations

are very much complicated. In addition, optimum step-size

is required for minimizing the MSE. But, the calculation of

optimum step-size necessary requires many assumptions of

system parameters. Furthermore, the dependency between the

steady-state misadjustment and convergence speed exists like

single fold ADALINE with DSSLMS algorithm. Due to the

above reasons, the three-fold architecture or even more is not

an uncomplicated and cost-effective solution for harmonic

parameter estimation.

IV. SIMULATION RESULTS

Comprehensive simulation is carried out using MATLAB

to verify the effectiveness of the proposed MS ADALINE

approach for power system harmonic estimation. The current

signal considered for the simulation is composed of odd

harmonics of 3rd , 5th, 7th, 9th, 11th, 13th and 15th apart from

the fundamental. The expression of an assumed signal is

described as follows.

i (t) = 10.17 sin
(
ωt + 17.80

)
+ 2.02 sin

(
3ωt − 16.80

)

+ 1.62 sin
(
5ωt + 26.20

)
+ 0.89 sin

(
7ωt + 58.40

)

+ 0.75 sin
(
9ωt − 87.20

)
+0.58 sin

(
11ωt + 60.10

)

+ 0.4 sin
(
13ωt + 500

)
+ 0.13 sin

(
15ωt + 39.50

)

+Nrand(t) (38)
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FIGURE 3. Estimated waveforms under 20 dB Noise condition. (a) Test signal. (b) Fundamental component. (c) MSE.

FIGURE 4. Estimated amplitudes under 20 dB Noise condition. (a) 3rd . (b) 7th. (c) 11th.

FIGURE 5. Estimated phases under 20 dB Noise condition. (a) Fundamental. (b) 9th. (c) 15th.

Simulation results are analysed with different sets of

Gaussian noise of zeromean such as no noise, 20 dB SNR and

5 dB SNR corresponding to N = 0, 0.1 and 0.562 (assuming

S = 1 for all sets). Signal to noise ratio (SNR) is defined as

the logarithmic ratio of the signal and noise, i.e. SNRdB =

20 log10
(
S
/
N

)
. The supply and sampling frequencies are

considered as 50 Hz and 10 kHz, respectively. Table 1 sum-

marizes the values of the various constants selected for the

simulations of the two different adaptive techniques.

A. ESTIMATION OF SIGNALS WITH DIFFERENT SNR

Fig. 3(a)-(c) illustrates the estimated test signal, fundamental

component, MSE using two different techniques at 20 dB

SNR. From these figures, it is noticed that extremely accu-

rate estimation is achieved by employing the proposed MS

ADALINE method. However, the conventional ADALINE

method shows more irregularity and oscillation in the first

cycle based on 50 Hz fundamental waveform.

TABLE 1. Values of the constants parameters.

B. ESTIMATION OF STEADY STATE PARAMETER

Fig. 4 and 5 illustrate the corresponding amplitude and phase

estimation of fundamental as well as other individual har-

monic components present in the current signal added with

random noise of 20 dB SNR. It is evident from Fig 4(a) and
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Fig 5(a) that estimation based on ADALINE technique tracks

the actual value almost a fundamental period (i.e. 0.02 s)

while considering the lower order harmonics. But, when we

deal with the higher-order harmonics the tracking perfor-

mance is very much affected as shown in Fig 4(b) and (c),

and Fig 5(b) and (c). However, these estimated values are

slightly fluctuating in behaviour that degrades the power

quality assessment. On the other hand, the results obtained

from MS ADALINE are more accurate and zero oscillation.

These estimated values follow the actual value by taking less

than three-fourth of the fundamental period (i.e. 0.015 s).

Especially, for phase estimation, these collected results are

absolutely impressive.

C. ESTIMATION UNDER DIFFERENT NOISE CONDITIONS

Fig. 6(a) and (b) emphasizes the comparison of robustness

in estimating the 3rd harmonic amplitude and 11th harmonic

phase with the variety of noise level (i.e. 0dB ≤ SNR ≤

80dB), respectively. The results reveal that at 80 dB SNR,

the accuracies for estimation employing both the techniques

are very high and nearly equal. But with the decrease in SNR

value (i.e. with the increase in noise level), theMSADALINE

based estimation performs better, and less variation between

actual and estimated values as compared to ADALINE.

FIGURE 6. Steady state performance comparison with different SNR.
(a) 3rd harmonic amplitude. (b) 11th harmonic phase.

D. ESTIMATION IN THE PRESENCE OF SUB- AND

INTER-HARMONICS

Inter-harmonics are the non-integer multiples of the fun-

damental frequency. Sub-harmonics are treated as inter-

harmonics when the frequencies are less than the fundamental

frequency [13], [21]. In order to assess the performance of

the proposed MS ADALINE structure for harmonic estima-

tion, a sub-harmonic component of 30 Hz frequency and an

inter-harmonic component of 185 Hz frequency are consid-

ered along with the test signal. Now, we can represent this

distorted waveform as

i1 (t) = 0.47sin
(
0.6ωt + 23.40

)

+1.32sin
(
3.7ωt + 39.50

)
+ i (t) (39)

For assessment of parameters present in a distorted signal,

the reference signals {xaK (n) = sin (Kωn) , xbK (n) =

cos (Kωn)} apply to the MS ADALINE structure as pri-

mary inputs; where K = 0.6 and 3.7 for sub-harmonic

and inter-harmonic components respectively. The estimated

coefficients of Master-ADALINE and Slave-ADALINE are{
âKM (n) , b̂KM (n)

}
and

{
âKS (n) , b̂KS (n)

}
respectively as

shown in Fig. 7. In this figure, the authors displayed com-

mon inputs for sub- and inter-harmonic components. But

in simulation, we have considered two separate inputs for

corresponding parameter estimation.

Fig. 8(a)-(d) show the estimation of amplitude and phase

of sub- and inter-harmonic components present in the test

signal. The waveforms justify the superior performance of

MS ADALINE in affording a better accuracy even with the

signal containing 20 dB SNR. The estimated value based

on ADALINE maintains a steady-state reference value by

taking more than 0.02 s, whereas estimation employing MS

ADALINE attains the same value within 0.015 s or less.

E. ESTIMATION IN THE PRESENCE OF DECAYING

DC COMPONENTS

The existence of decaying DC components causes the power

system distorted. This signal is non-periodic in nature, so the

exact estimation of its parameter is a challenging task. The

test signal i2 (t) embedded with decaying DC component can

be represented as

i2 (t) = i (t) + Ae(−Bt) (40)

where A and 1
/
B are the magnitude and time con-

stant of the DC decaying offset respectively. Refer-

ring [13], [21], for parameter estimation, the reference inputs

are {xa (n) = 1, xb (n) = n} and the corresponding coeffi-

cients forMaster- and Slave-ADALINE are
{
âM (n) , b̂M (n)

}

and
{
âS (n) , b̂S (n)

}
, respectively. After a number of itera-

tions, the decaying DC parameters can be computed as

A = âM (n) and B = b̂M (n)
/
âM (n) (41)

In this test, A = 1.78 A and B = 1.59s−1 are chosen. The

estimated parameters of the decaying DC function for SNR

of 20 dB are shown in Fig. 8(e) and (f). It is observed that the

estimation of decaying parameter employing MS ADALINE

is very much accurate and the required convergence time is

0.012 s. Whereas the estimation utilizing ADALINE needs

0.02 s and 0.1 s to track A and B, respectively. Furthermore,

these estimated values employing ADALINE are not so much

accurate and marginally fluctuating in behaviour.
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FIGURE 7. Block diagram of sub-harmonic, inter-harmonic and decaying DC components estimation.

FIGURE 8. Estimated parameter at 20 dB SNR. (a) Sub-harmonic amplitude. (b) Inter-harmonic amplitude. (c) Sub-harmonic phase. (d) Inter-harmonic
phase. (e) Decaying DC Magnitude. (f) Decaying DC time constant.

F. ESTIMATION IN THE PRESENCE OF DYNAMIC SIGNAL

To verify the performance of the MS ADALINE in tran-

sients, a time-varying 3rd harmonic amplitude is introduced

in the test signal. In this study, the considered signal can be

represented as

i3 (t) = 10.17 sin
(
ωt + 17.80

)

+ (1.2 + id ) sin
(
3ωt − 16.80

)

+ 1.62 sin
(
5ωt + 26.20

)
+0.89 sin

(
7ωt+58.40

)

+ 0.75 sin
(
9ωt−87.20

)
+0.58 sin

(
11ωt+60.10

)

+ 0.40 sin
(
13ωt+500

)
+ 0.13 sin

(
15ωt+39.50

)

+ 0.1rand(t) (42)

where id is the 3rd harmonic amplitude modulating parame-

ter, it can be defined as

id = 0.96 sin 0.02ωt + 0.14 sin 0.12ωt (43)

The estimation of time-varying 3rd harmonic amplitude

in the presence of random noise is depicted in Fig. 9(a).

It is observed that the estimation based on the ADALINE

technique produces a vast amplitude deviation along with the

poor convergence speed. However, by implementing the MS

ADALINE technique, the convergence speed is found to be

faster, calculated data became more accurate and percentage

error is limited.

G. ESTIMATION OF TIME VARYING PARAMETER

The estimation of 5th order amplitude and 7th order phase

under sudden step change from 1.82 A to 1.62 A and 200

51926 VOLUME 8, 2020



P. Garanayak et al.: High-Speed MS ADALINE for Accurate Power System Harmonic and Inter-Harmonic Estimation

FIGURE 9. Estimation during transients at 20 dB SNR. (a) Time-varying 3rd harmonic amplitude. (b) 5th harmonic amplitude drift. (c) 7th harmonic phase
drift.

TABLE 2. Percentage of amplitude error in different architectures.

to 500 at t = 0.1 s are illustrated in Fig. 9(b) and (c),

respectively. It is observed from the waveforms that estima-

tion based onADALINE lost its capability to track the sudden

variations and chased the actual value within 0.4 s. However,

the MS ADALINE based estimation precisely followed these

changes with a minor delay of 0.05 s.

Finally, this study concluded that the tracking perfor-

mances of both algorithms are approximately equal under

steady-state without noise. But, steady-state with high

noise level and critical conditions, the performance of MS

ADALINE is much more superior to single-stage ADALINE.

H. PERFORMANCE EVALUATION OF MS

ADALINE COMPARING WITH OTHER

RECENT ARCHITECTURE

Table 2 and 3 exhibit the percentage error of correspond-

ing amplitude and phase of fundamental, harmonics, inter-

harmonic, sub-harmonic components using four different

adaptive algorithms. The percentage of error can be calcu-

lated for N length of the estimated signal as

Error (%) =
1

N

∑N

n=1

|i (n) − y(n)|

i (n)
(44)

From Table 2, it is noticed that at 20 dB SNR the high-

est error occurs in the fundamental amplitude of 11.3%,

10.02%, 7.79%, 5.67%, 4.91%, and 3.86%, and the lowest

error in the 13th harmonic amplitude of 5.75%, 4.5%, 1.50%,

1.25%, 1.00%, and 0.5%, by employing ADALINE with

fixed and large step-size LMS algorithm (Design 1), fixed and

small step-size LMS algorithm (Design 2), variable step-size

LMS algorithm (Design 3), Hybrid FFT (Design 4) [18],

Gauss-Newton (Design 5) [23], andMSADALINEwith both

fixed and variable step-size LMS algorithm i.e. proposed

technique (Design 6), subsequently. The phase estimation

using the above six adaptive techniques are shown in Table 3,

the corresponding highest error of 16.93%, 14.20%, 12.87%,

8.10%, 7.34%, and 3.58% arises in 15th harmonic and lowest

error of 5.95%, 3.09%, 1.32%, 1.14%, 1.01%, and 0.23%

achieve in 3rd harmonic. In Design 1, the convergence speed

is very fast, but the steady-state error is large. In Design 2

the convergence speed is slow, but the steady-state error is

small. Designs 3-5 is achieved a small steady-state error than

the above two designs, but the interaction exists between the

steady-state misadjustment and convergence speed degrade

its performance. In Design 6, the step-size adaptation is
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TABLE 3. Percentage of phase error in different architectures.

FIGURE 10. Line diagram of the test system for real time signal parameter
estimation.

fully controlled by a decision controller circuit, where the

steady-state misadjustment is independent of the rate of con-

vergence. Therefore, Design 6 claims least percentage error

among all four designs.

V. EXPERIMENTAL RESULTS

To demonstrate the comparative performance of proposedMS

ADALINE over conventional ADALINE, a scaled laboratory

prototype is developed. The experimental setup comprises

of a thyristor bridge rectifier fed DC load acting as a non-

linear load and another inductive load of the series combi-

nation of the inductance of rating 64.5 mH and resistance

of 22.5� in each phase acting as a linear load. Both the

loads are connected in parallel to the three-phase 415 V,

50 Hz source through an autotransformer and isolation trans-

former. This type of combinational load injects a huge

amount of time-varying harmonics and impulsive noise into

the system. Fig. 10 shows the line diagram of a test system

and Fig. 11 depicts a photograph of the real experimental

setup including other measuring instruments. Two Tektronix

DMM4020 digital multimeters are used for accurate mea-

surement of supply current and voltage up to three decimal

FIGURE 11. Photograph of the real experimental setup.

points. The current measurement system is comprised of Tek-

tronix TCPA303 current probe for sensing the supply current

and Tektronix TCPA300 current amplifier for proper amplifi-

cation of the sensed current. Both supply current and voltage

waveforms are collected online at the point of common cou-

pling (PCC) and stored by using Tektronix TPS2024B digital

storage oscilloscope (DSO) in the form of discrete data. The

sampling frequency of the current probe, current amplifier

and DSO are set to be 25 kHz. The DSO is interfaced with

the HP desktop personal computer (PC) through DSO PC

communication software. By using this software, the discrete

data points are transferred to the PC. The measured signals

are not filtered to avoid any phase lag due to filtering. The

implementation is done via MATLAB R2019a on the PC.

The collected instantaneous real-time discrete data has been
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FIGURE 12. waveforms recorded by DSO. (a) Three phase supply voltages
(X − axis = 10ms/div, Y − axis = 100V /div ). (b) Three phase supply
current (X − axis = 10ms/div, Y − axis = 2A/div ). (c) Spectrum of
phase-a supply current.

analyzed in the PC by implementing the proposed algorithm

with the help ofMATLAB. Themeasurement data is captured

and analyzed on the PC after the experiments. The values of

the constant parameters used for implementation are similar

to simulated values.

The experimental waveforms of three-phase supply volt-

ages, three-phase supply currents and phase-a supply cur-

rent spectrum as recorded by the DSO are displayed in

Fig. 12(a)-(c) respectively. From figures, it is observed that

the supply voltages are almost sinusoidal. However, the sup-

ply currents are fully distorted because of the nonlinear load.

This distorted current signal containing fundamental along

with harmonics, sub-harmonics, inter-harmonics and addi-

tive noise, which is considered as a test signal for real-time

analysis.

A. ESTIMATED SIGNAL FROM REAL

EXPERIMENTAL SETUP

By using this real-time discrete data, the fundamental,

the sum of harmonics up to 99th order and MSEs are

FIGURE 13. signals from the real time data. (a) Fundamental. (b) Sum of
harmonics up to 99th order. (c) MSEs.

estimated as shown in Fig. 13(a)-(c), respectively. It is evi-

dent from these figures that the proposed algorithm com-

pletely filters out the additive noise as generated from the

hardware and produces exact assessment results. The time

point of convergence of MS ADALINE is approximately

0.01 s, which is same as the result obtained from the

simulation study. However, estimation based on ADALINE

suffers from huge oscillation before achieving the steady-

state. This algorithm takes more than 0.02 s for settling

down to the actual value. The magnitude of MSEs employ-

ing the proposed method is lower than the conventional

method.

B. ESTIMATED AMPLITUDES AND PHASES FROM

REAL EXPERIMENTAL SETUP

The estimation of amplitude of sub-harmonic, fundamen-

tal, inter-harmonic, 7th, 13th, 19th are illustrated in Fig. 14.

Similarly, the estimated phase of sub-harmonic, fundamen-

tal, inter-harmonic, 5th, 11th, 17th are shown in Fig. 15.

At t = 0+ s, the signal parameter shows transient
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FIGURE 14. Estimated amplitudes from real experimental data. (a) Sub-harmonic of 30 Hz. (b) Fundamental. (c) Inter-harmonic of 175 Hz.
(d) 7th. (e) 13th. (f) 19th.

FIGURE 15. Estimated phases from real experimental data. (a) Sub-harmonic of 30 Hz. (b) Fundamental. (c) Inter-harmonic of 175 Hz. (d) 5th. (e) 11th.
(f) 17th.

behaviour due to the initial interaction between the harmonic

components. Therefore, for power quality assessment, the

first two cycles are neglected. After the settling time, the sys-

tem achieves a steady-state and parameter maintains a fixed

value, then it is considered for estimation. It can be noticed

from figures that MS ADALINE based approach approxi-

mately takes 250 iterations (i.e. 0.01 s) to track the actual

value of each harmonic component, whereas ADALINE tech-

nique requires more than 500 iterations (i.e. 0.02 s) to attain

the same value. The required rate of convergence for MS

ADALINE is around half of the ADALINE. By introduc-

ing the Slave-ADALINE along with the Master-ADALINE,

the overall performance has been improved drastically under

the real-time situation.
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TABLE 4. Settling time of different estimation algorithms.

VI. CONCLUSION

In this work, a high-speed MS ADALINE technique is

suggested for fast and exact measurement of the individ-

ual harmonic component in a distorted current signal. The

steady-state performance employing the proposed technique

is verified via MATLAB at various SNR values. It is evi-

dent from the simulation results that the highest amplitude

and phase errors by applying MS ADALINE technique are

3.86% and 3.58%, respectively, whereas ADALINE based

estimation provides the corresponding values of 7.79% and

12.87%. Moreover, the proposed structure is solid and robust

against the presence of sub-harmonics, inter-harmonics,

time-varying signals and decaying DC components. Subse-

quently, both techniques are implemented in the real-time

environment. In order to validate the performance of the

proposed structure, a comparison result between the simu-

lation test and experimental test with same parameters and

same scenarios are summarized in Table 4. It is observed

that by employing recommended estimation theory, the sim-

ulated and experimental values of settling time are mini-

mum and identical. The overall simulation and experimental

results have demonstrated that the proposed estimation tech-

nique is admirable and powerful as compared to conventional

ADALINE based estimation.

The future works of MS ADALINE are discussed in brief.

For sustainable growth in the power system, recently renew-

able energy sources are gaining a lot of attention. These

energy sources feeding power via power converters can be

taken up as a further investigation in the field of power quality.

This technique can be applied to the aircraft electrical power

system for exact measurement of the harmonic content and

thus the designing of dynamic filtering approach guaran-

tees the power quality standards. By utilizing this technique

simultaneously on load and source currents, we can evaluate

the compensation effect of the active power filter (APF)

system connected to the distribution power network.
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