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A high-speed search engine pLink 2 with
systematic evaluation for proteome-scale
identification of cross-linked peptides
Zhen-Lin Chen 1,2,4, Jia-Ming Meng 1,2,4, Yong Cao 3,4, Ji-Li Yin1,2, Run-Qian Fang1,2, Sheng-Bo Fan1,2,

Chao Liu1,2, Wen-Feng Zeng1,2, Yue-He Ding3, Dan Tan3, Long Wu1,2, Wen-Jing Zhou1,2, Hao Chi 1,2,

Rui-Xiang Sun3, Meng-Qiu Dong 3 & Si-Min He 1,2

We describe pLink 2, a search engine with higher speed and reliability for proteome-scale

identification of cross-linked peptides. With a two-stage open search strategy facilitated by

fragment indexing, pLink 2 is ~40 times faster than pLink 1 and 3~10 times faster than Kojak.

Furthermore, using simulated datasets, synthetic datasets, 15N metabolically labeled datasets,

and entrapment databases, four analysis methods were designed to evaluate the credibility of

ten state-of-the-art search engines. This systematic evaluation shows that pLink 2 outper-

forms these methods in precision and sensitivity, especially at proteome scales. Lastly, re-

analysis of four published proteome-scale cross-linking datasets with pLink 2 required only a

fraction of the time used by pLink 1, with up to 27% more cross-linked residue pairs identified.

pLink 2 is therefore an efficient and reliable tool for cross-linking mass spectrometry ana-

lysis, and the systematic evaluation methods described here will be useful for future software

development.
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C
ross-linking mass spectrometry (CXMS) has emerged as
an important tool for structural analysis of proteins and
protein complexes1–4. It also has the potential to analyze

protein–protein interaction networks at a proteome scale5–7. The
idea of CXMS had long existed for structural interpretation of
proteins, but its practice had been hindered by the lack of soft-
ware tools. Over the past decade, many software tools have been
developed to analyze CXMS data, such as xQuest8, StavroX9,
pLink10, xProphet11, Protein Prospector12, pLink-SS13 (together
with pLink referred to as pLink 1 hereinafter), Kojak14, Xi15,
Xilmass16, MetaMorpheusXL17, and Xolik18. pLink 1 and xPro-
phet were the first to propose a target-decoy based control of false
discovery rate (FDR) and hence enabled CXMS to be applied to
complex mixtures or even proteome-scale explorations in non-
specialist laboratories19. Recent years have witnessed an explosion
of successful applications of CXMS20–24 and an increasing
number of workflows have integrated CXMS to resolve the
structures of protein complexes25–28.

Although the CXMS approach has significantly improved, the
increasing demand of interactome analysis—which involves
identification of cross-linked peptides at a proteome scale—is
challenging for CXMS software. Currently available software tools
for CXMS data analysis suffer from poor speed and reliability.
The first obstacle is a quadratically expanded search space, known
as the n-square problem. Given M spectra cross-linked among N
peptides, then matching M spectra with possible peptide pairs of
O(N2) may result in a time complexity of O(MN2) for an
exhaustive search strategy, which is too high to support
proteome-scale identification of cross-linked peptides. Later, the
n-square problem was tackled by the open search strategy, which
considers one cross-linked peptide pair as two single peptides,
each bearing a modification of large mass yet unknown compo-
sition on linkable residues. This strategy identifies candidates for
two single peptides individually and then recombine the top
scored single peptides into cross-linked pairs based on the known
mass of precursor10,12–14,17. In order to reduce the number of
cross-linked pairs for fine-scoring, it usually filters single peptide
candidates with a coarse-scoring and only the top-k coarse-scored
single peptides are kept and combined to find the best fine-scored
peptide pair10,12,14. Thus, the coarse-scoring stage with time
complexity O(MN) becomes a new performance bottleneck in the
open search strategy and further acceleration needs reduction of
the number of coarse-scored peptides.

The second obstacle is the lack of systematic evaluation of
credibility, i.e., precision and sensitivity of search engines. As the
publications of pLink 1 and xProphet, the target-decoy approach
(TDA) has become the principal method to control the FDR of
cross-linked identifications and compare sensitivities. A number
of studies further validated a search engine by mapping the
cross-linked identifications to available crystallographic
structures8,10,12–14,16. However, in solution, proteins are more
dynamic and can exist in more conformations than reflected by
crystal structures measured in condensed states, and hence the
over-length cross-links may not be false29. Therefore, TDA
becomes the only general method for credibility evaluation, but it
has not been validated at a proteome scale, and whether or not to
separately control the TDA–FDR for inter-protein and intra-
protein cross-links is still controversial.

Here we present a search engine, pLink 2, to identify cross-
linked peptides at a proteome scale with high efficiency and
effectiveness. First, as we proposed earlier, a fragment index was
introduced to reduce the number of coarse-scored peptides30.
Different from the straightforward use of fragment index in
MetaMorpheusXL17, pLink 2 took full advantage of fragment
index to reduce the number of coarse-scoring by a factor of 100,
hence breaking the previous bottleneck of the open search

strategy. In addition, based on the observation that, of the two
linked peptides, one usually fragmented better than the other12,15,
pLink 2 adopted a two-stage open search strategy: for the first
peptide, only the top-5 coarse-scored candidates were retrieved
from the fragment index; then for each candidate of the first
peptide, the mass of the second peptide can be deduced and used
to retrieve all the candidates for the second peptide, whose
number is usually small under high-accuracy mass
spectrometry31,32. Speed comparison shows that pLink 2 was ~40
times faster than pLink 1 and 3~10 times faster than Kojak, at no
cost of sensitivity.

Second, to evaluate the credibility of search engines for cross-
linked peptide identification, we adapt ideas from related fields
and introduce four TDA-independent methods including the use
of simulated datasets33–35, synthetic datasets10,13, 15N metaboli-
cally labeled datasets36,37, and entrapment databases38–40 to
systematically evaluate the precision and sensitivity of pLink 2
and compare among ten different search engines. Each analysis
method contained two different types of datasets cross-linked
either by a chemical cross-linker (BS3 or Leiker22) or by disulfide
bonds. We show that the proposed four TDA-independent eva-
luation methods are indispensable for systematic evaluation of
CXMS search engines. After rigorous evaluation, it is clear that
pLink 2 has achieved the highest precision and sensitivity by a
large margin among the ten state-of-the-art tools.

Finally, to demonstrate the versatility and performance of
pLink 2, we re-analyzed four proteome-scale cross-linking data-
sets of Escherichia coli, Caenorhabditis elegans, or human cells
that had previously been analyzed using pLink 110,13. Up to 27%
more cross-linked residue pairs were identified only in a fraction
of the time used before. These results show that pLink 2 is capable
of supporting interactome analysis of higher eukaryotes
by CXMS.

Results
Experimental design of systematic evaluation. Evaluations were
performed on four types of datasets in order of increasing dif-
ficulty, i.e., simulated datasets, synthetic datasets, 15N metabo-
lically labeled datasets, and entrapment databases. The
simulated datasets were the simplest in that they were generated
in idealized conditions with full annotations. Only the search
engines that have achieved high precision and sensitivity on the
simulated datasets will be selected for further evaluations using
three types of real-world datasets. In the latter groups, the
synthetic datasets were fully annotated, the 15N metabolically
labeled datasets were semi-annotated, whereas the datasets used
in the entrapment database method had no ground truth or
labeling information and hence were the most challenging.
Detailed information for the 10 search engines used in this study
is shown in Supplementary Table 1 and the detailed information
of 12 datasets used in this study is shown in Supplementary
Table 2.

Workflow of pLink 2. For a given cross-linked peptide pair, the
α-peptide is defined as the one with the higher coarse-score,
whereas the lower coarse-scored one is the β-peptide. In general,
the α-peptide is often longer than β-peptide and is typically more
informatively fragmented12,15.

Cross-linked peptide pairs are identified using a two-stage open
search strategy (Fig. 1a). First, MS1 scans are preprocessed by
pParse, which extracts, after calibration, multiple precursor ions
for each MS2 scan41. Next, α-peptides and β-peptides are
retrieved in two stages. In the first stage, the α-peptide candidates
are retrieved from the fragment index by query peaks that
are generated from the MS2 spectrum (Fig. 1b). In the second
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stage, the mass of β-peptide candidate, equal to the precursor
mass minus the sum of the α-peptide candidate mass and the
cross-linker mass, is used to retrieve the β-peptide candidates
from the peptide index (Fig. 1c). Then, each α-peptide candidate
is paired with each of the complementary β-peptide candidates
and fine-scored against the MS2 spectrum.

Subsequently, pLink 2 searches for loop-linked, mono-linked,
and regular peptides in the same way as pFind42. The highest
scored non-cross-linked peptide or cross-linked peptide pair is
kept for each spectrum after considering all possibilities. Then,
the top scored candidate for each spectrum is separated into one
of five groups: intra-protein, inter-protein, loop-linked, mono-
linked, and regular peptide spectrum matches (PSMs). Each
group of PSMs is re-ranked by a semi-supervised learning
algorithm (Fig. 1d) that is similar to the widely used Percolator
algorithm43. This separation ensures proper machine learning
and FDR control, as the features and original error rates of each
group differ from one another11,12. Finally, PSMs are filtered
within group according to the specified thresholds (e.g., 5% FDR
at PSM level).

Credibility evaluation using simulated datasets. As so many
cross-linking search engines have been developed, tests on the
simulated datasets were used as a qualification for further eva-
luations. Specifically, two rather simple simulated datasets were
constructed: Simulated-BS3 and Simulated-SS, cross-linked by
BS3 and disulfide bonds, respectively. Each dataset consists of
10,000 spectra from the cross-linking of 100 E. coli proteins (see
Methods). The results of ten search engines on the Simulated-BS3
dataset are illustrated in Table 1, as sorted by sensitivity in
ascending order.

The analysis showed that exhaustive search engines are not
necessarily more sensitive. For xQuest, running light-only
searches threw a division-by-zero exception. Xilmass threw an
out-of-memory exception after 5 h of running with 32 GB
memory. Xolik finished the search in 0.7 min, but the sensitivity
was only 40.7%. This was in agreement with the test result on a
HeLa cell dataset18 (Supplementary Fig. 1). StavroX finished the
search in 6 h and recalled 50.4% of cross-linked spectra at a
precision of 78.6%, lower than the expected value considering that
the FDR was set as 5%.
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Fig. 1 pLink 2 workflow. a The general workflow. Step 1, MS1 scans are preprocessed by pParse to extract precursor candidates. Step 2, for each

MS2 spectrum, α-peptide candidates are retrieved from the fragment index using query peaks generated from the spectrum. Step 3, β-peptide candidates

are retrieved from the peptide index using the complementary masses of α-peptides. Step 4, α- and β-peptide candidates are paired and fine-scored with

the MS2 spectrum. Step 5, all top scored PSMs are re-ranked and filtered after FDR control. b The sub-workflow of α-peptide retrieval. For each

MS2 spectrum, the peaks are converted into regular b, y ions to query the fragment index. Only those peptides with at least two matched ions are coarse-

scored with the spectrum and the top-5 coarse-scored α-peptide candidates are kept. c The sub-workflow of β-peptide retrieval. For each α-peptide

candidate, the open mass is first calculated by subtracting the α-peptide mass and the cross-linker mass from the precursor mass, and this mass is used to

retrieve β-peptide candidates from the peptide index. Then, each of the five α-peptide candidates is paired with each of its complementary β-peptide

candidates and these pairs are fine-scored with the spectrum. Finally, the highest fine-scored peptide pair is kept. d The re-ranking algorithm. PSMs are

grouped into intra-protein, inter-protein, loop-linked, mono-linked, and regular groups, and a semi-supervised learning algorithm is used to re-score and re-

rank them in each group
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The open search engines all finished searching in a reasonable
time. As Protein Prospector ran on a web server and did not
provide an FDR value, we thus controlled FDR using the classical
method10. At 5% FDR, pLink 2 obtained the highest sensitivity
(99.9%) and precision (100.0%), followed in descending order by
pLink 1, Kojak, Protein Prospector, MetaMorpheusXL, and Xi.
Using the Simulated-SS dataset, the similar results were obtained
(Supplementary Table 3).

As the simulated datasets were generated under idealized
conditions and were rather simpler compared with the real-world
data, all of the qualified search engines were expected to achieve
high sensitivity and precision. However, only pLink 1 and pLink 2
reached above 95% in both aspects. Considering the sensitivity,
precision, search speed, and usability, Kojak, pLink 1, and pLink 2
were selected for further evaluation.

Credibility evaluation using synthetic datasets. Next, we com-
pared Kojak, pLink 1, and pLink 2 on two previously reported
datasets of chemically cross-linked synthesized peptides,
Synthetic-BS310 and Synthetic-SS13, which were cross-linked by
BS3 and disulfide bonds, respectively. The Synthetic-BS3 dataset
was obtained from cross-linking experiments among 38 synthetic
peptides, consisting of fully annotated 1030 positive PSMs and
1047 negative PSMs. The Synthetic-SS dataset was obtained from
cross-linking experiments among 72 synthetic peptides, consist-
ing of fully annotated 2289 positive PSMs and 2711 negative
PSMs (see Methods).

Take the Synthetic-BS3 dataset as an example. We first
searched all 2077 spectra against the smallest database containing
only the sequences of 38 synthetic peptides (original database). A
total of 904 spectra were correctly identified consistently by
Kojak, pLink 1, and pLink 2, so these spectra were unbiased to
three search engines (Fig. 2a). We therefore took these 904 PSMs
as a new and fair standard dataset for searching against
increasingly larger databases generated by appending the E. coli
(4489 proteins, downloaded from Uniprot on 2017–10–23),
worm (28,233 proteins, downloaded from WormBase on
2017–10–23), or human (71,579 proteins, downloaded from
Uniprot on 2017–10–23) as an entrapment database to the
original database. Supplementary Table 4 lists the search
parameters.

As expected, for all three search engines, the numbers of
correctly identified PSMs decreased as the database size increased
(Fig. 2b). However, the sensitivity and precision of pLink 2
decreased only slightly; even with the huge human entrapment
database, it recalled 97.0% PSMs while maintaining 98.7%
precision (Supplementary Fig. 2). This is followed closely by
pLink 1. In contrast, the sensitivity of Kojak decreased

significantly, down to ~57% with both the worm and the human
entrapment databases.

In the open search stage of pLink 2, we recorded the ranks of
correct α- and β-peptides among all candidates. As distraction
gets worse as the entrapment databases become larger44,45, the
ranks of both correct α- and β-peptides decreased with the larger
entrapment databases (Fig. 2c, d). However, thanks to sufficient
fragmentation of α-peptides in most cases12,15 and the well-
designed fragment index (see Fragment index based α-peptide
retrieval in Methods), the sensitivity of the coarse-scoring
algorithm of pLink 2 was as high as 98.8%, i.e., it was able to
retain the correct α-peptide sequence among the top-5 highest
scoring candidate sequences for 98.8% of the time, even when
searching against the human database (Fig. 2c). In contrast, as β-
peptides do not fragment as well, their ranks decreased
significantly as the entrapment database size increased (Fig. 2d).
Looking into the pLink 2 search process, we found that only
84.0% of the correct β-peptides ranked within top-250, which is
the default cutoff in Kojak, so it may be the reason why the
sensitivity of Kojak decreased significantly when the worm and
human databases were added to the search (Fig. 2b).

It is noteworthy that pLink 1 keeps the top-500 α-candidates
and the top-500 β-candidates separately, whereas Kojak keeps
both the α- and β-candidates together in the top-250; thus, the
search space for fine-scoring with pLink 1 is much larger than
that with Kojak46. As a result, although they have similar search
strategies, pLink 1 performed much better than Kojak. pLink 2, in
contrast, applies a two-stage open search strategy that is
facilitated by both fragment indexing and peptide indexing. It
not only retrieves correct α-peptides very efficiently, but also does
not lose any β-peptide candidates. The results obtained for the
Synthetic-SS dataset were similar to those obtained for the
Synthetic-BS3 dataset (Supplementary Figs. 3 and 4). Collectively,
the results from this performance evaluation using synthetic
datasets showed that pLink 2 outperformed the other two search
engines.

In addition to Kojak, pLink 1, and pLink 2, seven other search
engines were also evaluated using the two synthetic datasets
(Supplementary Note 1). The results show that pLink 2, pLink 1,
and Kojak were indeed the top-3 highest-sensitivity search
engines, in agreement with the conclusion drawn from the
simulated datasets.

Credibility evaluation using metabolically labeled datasets.
Then, two 1:1 15N metabolically labeled datasets, E.coli-Leiker-
15N and E.coli-SS-15N, were prepared and used to evaluate the
precision of search engines using the percentage of PSMs with
invalid quantitation ratios (Fig. 3a). Given the experimental

Table 1 The performance of ten search engines on the Simulated-BS3 dataseta

Search engine Search strategy Sensitivity (%) Precision (%) Run time (Min) Selected

xQuestb Exhaustive – – – No

Xilmassc Exhaustive – – – No

Xolik Exhaustive 40.7 93.7 0.7 No

StavroX Exhaustive 50.4 78.6 363.9 No

Xi Open 62.5 59.1 9.3 No

MetaMorpheusXL Open 71.0 97.7 0.3 No

Protein Prospector Open 78.6 97.2 16.9 No

Kojak Open 85.3 97.8 1.7 Yes

pLink 1 Open 99.8 99.8 12.3 Yes

pLink 2 Open 99.9 100.0 0.5 Yes

a For sensitivity, precision, and run time, the average values obtained using three randomly generated Simulated-BS3 datasets were shown
b xQuest threw an exception “Illegal division by zero at /home/xqxp/xquest/V2_1_1/xquest/bin/compare_peaks3.pl line 2246” and did not report any results
c Xilmass threw an exception “java.lang.OutOfMemoryError: GC overhead limit exceeded” and did not report any results
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design, if a spectrum is identified as an unlabeled peptide or
peptide pair, the corresponding 15N-labeled precursor ion should
be observed in the MS1 scans. The mass distance between the
unlabeled and 15N-labeled precursors is determined by the
number of nitrogen atoms. In general, a falsely identified peptide
or peptide pair carries an unexpected number of nitrogen atoms;
thus, the chance is small that the calculated 15N-labeled version
happens to have matched signals in the experimental spectra. As
such, falsely identified peptides or peptide pairs will most likely
have invalid quantification ratios, i.e., Not-a-Number (NaN),
when quantified by pQuant47 (Supplementary Fig. 5). The per-
centage of NaN ratios reflects the collective confidence level of
given PSM identifications; a smaller percentage of NaN ratios
corresponds to higher precision.

Take the E.coli-Leiker-15N dataset as an example. To guarantee
the performance of the 15N-labeling experiment, we first analyzed
the unlabeled regular peptides (Supplementary Fig. 6a). A total of
45,393 regular PSMs were identified by pFind37, of which only
0.3% were quantified as NaN ratios by pQuant47. In addition, the
median of all valid quantification ratios was 1.03:1.00, showing
that the performance of the 15N-labeling experiment was good.
Then, three search engines were used to identify unlabeled cross-
linked peptide pairs (Supplementary Table 5). At 5% FDR, pLink
2 reported the largest number of cross-linked PSMs (5196) with
only 0.5% NaN ratios, whereas Kojak reported about half of that
(2672) with 6.4% NaN ratios (Fig. 3b). pLink 1 came in between,
reporting 4774 cross-linked PSMs with 3.8% NaN ratios.

With 5% FDR at the PSM level, pLink 1 reported the most
cross-linked peptides (558), of which 5.4% were NaN-ratio
peptides that were supported only by PSMs with NaN ratios

(Fig. 3c). Although pLink 2 reported slightly fewer cross-linked
peptides (541), only 1.3% of them were NaN-ratio peptides. So,
the number of credible (non-NaN ratio) peptides reported by
pLink 2 (534) was actually larger than that reported by pLink 1
(528). Kojak reported the fewest cross-linked peptides (467), with
16.9% NaN ratios. Results uniquely identified by each search
engine were also investigated; Supplementary Fig. 7 shows that
the PSMs and peptides uniquely identified by pLink 2 had the
lowest percentage of NaN ratios.

The percentage of NaN ratios is an independent criterion to
evaluate precision and we can also use it to compare different
TDA–FDR control strategies. Several studies have shown that the
use of separate control of the FDR for inter-protein and intra-
protein identifications, rather than global control, is an effective
means of improving credibility of inter-protein results11,12. Our
data analysis confirmed this and found that intra-protein PSMs
and inter-protein PSMs show different changes when switching
from global FDR control to separate FDR control (Fig. 3d, e). For
intra-protein PSMs, more results were reported under separate
FDR control and its percentage of NaN ratios was only slightly
higher than that under global FDR control (Fig. 3d). For inter-
protein PSMs, many fewer results were reported under separate
FDR control and its percentage of NaN ratios decreased notably
(Fig. 3e). This phenomenon also existed in the results of Protein
Prospector (Supplementary Fig. 8), which recommended separate
FDR control in its study12. Furthermore, our theoretical analysis
about the relationship between the global FDR and subgroup
FDRs of intra-protein and inter-protein identifications was
accordant with the above experimental phenomenon; please see
Supplementary Note 2 for details.
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An interesting observation was that although pLink 2 reported
many more inter-protein PSMs under global FDR control, its
subgroup percentage of NaN ratios only increased to 2.8%,
significantly lower than that of either Kojak (16.0%) or pLink 1
(18.8%). Considering that many more inter-protein results will be
reported without causing a big increase in the subgroup
percentage of NaN ratios, pLink 2 provides global FDR control
as an option. In the present paper, however, all search results
were filtered using the separate FDR control strategy.

Using the E.coli-SS-15N dataset, we obtained similar test results
and conclusions (Supplementary Figs. 6b, 9 and 10). Based on the
percentage of NaN-ratio results, a new kind of FDR called NaN-
FDR can be estimated, different from the normal TDA-FDR
(Supplementary Note 3)37. The results in Supplementary Note 3

together show that the conclusions we reached based on the
estimated NaN-FDRs were essentially the same as those reached
based on the percentage of NaN ratios. Worth noting is that in
the process of streamlining NaN-ratio analysis, pLink 2 has
integrated pQuant47, making quantitative CXMS a routine tool to
reveal protein structural dynamics in solution.

Credibility evaluation using entrapment databases. Finally, we
compared the three search engines on two real-world samples: the
SCF(FBXL3) complex cross-linked by BS3 (used by Kojak14) and
the Cav1.1 complex cross-linked by disulfide bonds (used by
pLink 148).

Take the SCF(FBXL3)-BS3 dataset as an example. In addition
to three cross-linked proteins SKP1, CRY2, and FBXL3, several
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Drosophila melanogaster proteins and lab contaminants were
added to the sequence database, resulting in a total of 146 target
proteins (original database)14. As we had done with the two
synthetic datasets, the intersection of cross-linked PSMs identified
by Kojak, pLink 1, and pLink 2 were then searched against the
original database, to which increasingly larger entrapment
databases (E. coli, worm, and human) were appended. An
identification was deemed correct if it is identical to that in the
intersection; otherwise it was considered incorrect. All parameters
were the same as those in previously reported publications about
Kojak14 and pLink 113 (Supplementary Table 6).

Please note that the pLink 1 settings used in the present study
yielded many more uniquely cross-linked residue pairs than did
the pLink 1 settings used in the initial Kojak publication14, where
the precursor tolerance was set inappropriately (Supplementary
Fig. 11). Although pLink 1 and pLink 2 reported many more
PSMs than Kojak (Fig. 4a), the fact that this was a real-world
sample made it difficult to assess and compare sensitivity and
precision. Nevertheless, many studies have shown that the
credibility of intersection results is greatly enhanced49–51. So,
we took the 850 cross-linked PSMs consistently identified by the
three search engines as a new and fair standard dataset to assess
sensitivity and precision when searching against the original
database plus entrapment databases of different sizes.

Similar to the results in the synthetic datasets, the sensitivity
and precision of pLink 2 decreased only very slightly as the
database size increased: it recalled 93.2% of the PSMs, while
maintaining 96.8% precision, even with the huge human
entrapment database (Fig. 4b). In contrast, the sensitivity and
precision of Kojak decreased to 43.2% and 87.4%, respectively,
with the human entrapment database. The performance of pLink
1 with the E. coli entrapment database was comparable to that of
pLink 2, but unless a computer cluster is used, pLink 1 did not
finish searching against the worm or the human entrapment
databases within 1 week on a single computer when five variable
modifications were set.

The results obtained for the Cav1.1-SS dataset were similar to
those for the SCF(FBXL3)-BS3 dataset (Supplementary Fig. 12).
This test once again illustrated that pLink 2 can maintain high
sensitivity and precision even with a very large entrapment
database, and hence is very useful when analyzing datasets at a
proteome scale.

Among the four evaluation methods above, the simulated
datasets and the synthetic datasets contain only mascot generic
format (MGF) files. For search engines that do not accept MGF

files, we compared their performances using the 15N metaboli-
cally labeled datasets and the entrapment databases (Supplemen-
tary Notes 4 and 5).

Speed evaluation of search engines. Kojak, pLink 1, and pLink 2
were also compared in terms of computing time. Where possible,
eight threads were used for each comparison, except when ana-
lyzing the Synthetic-BS3 and Synthetic-SS datasets with their
original databases, because when fewer than 100 proteins are
searched, pLink 1 takes an exhaustive approach that cannot
support multi-threading.

The normalized computing times for the three search engines
(Windows Server, Intel Xeon E5-2670 CPU with 32 cores, 2.6
GHz, 128 GB RAM) are shown in Table 2. On average, pLink 2
was 40 times faster than pLink 1 and was 3 times faster than
Kojak. With the E.coli-SS-15N dataset, pLink 1 took ~9 days and
Kojak took ~14 h, whereas pLink 2 took only ~3 h. The speed-up
on the Synthetic-SS dataset was obviously larger than the speed-
up on the Synthetic-BS3 dataset. This difference was likely due
to the fact that a majority of the precursor masses in the
Synthetic-SS dataset are larger than those in the Synthetic-BS3
dataset (Supplementary Fig. 13), and both Kojak and pLink 1
examine all peptides whose masses are lower than the precursor
mass in their coarse-scoring stages. Therefore, for Kojak and
pLink 1, the higher the precursor mass, the larger the number of
coarse-scored peptides, and the longer the search time. For
pLink 2, thanks to both the fragment index and the MIC filter
(Methods), fewer than 1% of candidates are retrieved and
coarse-scored, resulting in a very efficient procedure for finding
the top-k coarse-scored single peptides (Supplementary Note 6).
In addition, owing to the good fragmentation of α-peptides and
the well-designed coarse-scoring algorithm, pLink 2 only kept
the top-5 coarse-scored single peptide candidates during α-
peptide retrieval, making the number of α–β combinations
increase linearly with the number of peptides in the database.
This time saving with pLink 2 is highly advantageous
considering the intensive computing resources that are required
when performing proteome-scale studies.

Beyond the fact that pLink 2 was ~3 times faster than Kojak, it
was also notable that the sensitivity of pLink 2 was much higher
than Kojak, even on the two synthetic datasets. Figure 2 and
Supplementary Fig. 3 show that with pLink 2, ~16% of the correct
β-peptides ranked beyond the top-250, the default value in Kojak.
When more single peptides are kept by Kojak, its sensitivity

Sensitivity + E. coli + Worm + Human

Kojak 66.8% 50.5% 43.2%

pLink 1 96.9% – –

pLink 2 98.5% 94.9% 93.2%

Precision + E. coli + Worm + Human

Kojak 94.8% 92.1% 87.4%

pLink 1 99.5% – –

pLink 2 99.4% 98.8% 96.8%

a b

850

754

479 338

125

112 77

pLink 1                     pLink 2

Kojak

Fig. 4 Performance evaluation on the SCF(FBXL3)-BS3 dataset. a A real-world protein complex sample was searched using Kojak, pLink 1, and pLink 2. A

total of 850 cross-linked PSMs were identified consistently by the three engines; these were used to be a new and fair standard dataset. b The sensitivities

and precisions of the three engines. “+ E. coli” database contains sequences from 146 target proteins and the E. coli whole proteome database and “+

Worm” and “+Human” are similar to “+ E. coli”. pLink 1 did not finish searching against the worm or the human entrapment databases within 1 week on a

single computer when five variable modifications were set
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increases and comes closer to that of pLink 2, and then
comparing the running time would be more reasonable. Figure 5
shows that, upon increasing the number of single peptides kept by
Kojak until its sensitivity remains steady, pLink 2 achieved a
speed-up of 3.9, 11.0, and 7.2 for the E. coli, worm, and human
entrapment databases, respectively, representing an average

speed-up of 7.4 times over Kojak. This speed-up was 10.2 times
on the Synthetic-SS dataset (Supplementary Fig. 14). An
interesting observation is that even when the top-5000 scored
single peptides were kept for the human entrapment database, the
sensitivity of Kojak (73.2%) was still lower than that of pLink 2
(97.0%).

Table 2 The normalized computing times of the three search engines on eight datasets

Dataset pLink 1 Kojak pLink 2 Real timea

Simulated-BS3 24.6 3.4 1.0 0.5

Simulated-SS 12.7 1.7 1.0 0.7

Synthetic-BS3+Original 35.5 2.3 1.0 0.1

Synthetic-BS3+ E. coli 45.4 1.7 1.0 0.5

Synthetic-BS3+Worm 50.8 2.4 1.0 3.5

Synthetic-BS3+Human 38.3 2.1 1.0 6.4

Synthetic-SS+Original 32.7 2.6 1.0 0.2

Synthetic-SS+ E. coli 60.2 3.3 1.0 1.2

Synthetic-SS+Worm 64.3 3.8 1.0 17.7

Synthetic-SS+Human 69.7 4.0 1.0 31.9

E.coli-Leiker-15N 31.4 1.6 1.0 142.9

E.coli-SS-15N 62.6 4.2 1.0 200.7

SCF(FBXL3)-BS3+Original 20.0 1.7 1.0 260.6

SCF(FBXL3)-BS3+ E. coli 46.0 3.8 1.0 22.0

SCF(FBXL3)-BS3+Worm –b 4.5 1.0 275.7

SCF(FBXL3)-BS3+Human –b 4.2 1.0 385.1

Cav1.1-SS+Original 20.4 2.7 1.0 2.9

Cav1.1-SS+ E. coli 31.8 3.4 1.0 1.8

Cav1.1-SS+Worm 36.1 4.0 1.0 34.5

Cav1.1-SS+Human 40.2 5.1 1.0 45.7

Average 40.2 3.1 1.0 –

aThe real search times for pLink 2 are shown in minutes
bpLink 1 did not finish searching against the worm or the human entrapment databases within 1 week when five variable modifications were set
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Fig. 5 Increased speed of pLink 2 over Kojak on the Synthetic-BS3 dataset. a pLink 2 achieved a 3.9 times speed-up when searching against the E. coli

entrapment database. The horizontal axis is the number of top-k scored single peptides kept in Kojak, starting from its default value of 250. Speed-up was

measured when the sensitivity of Kojak remained steady. b, c Similar to a, but against b the worm and c the human entrapment database, respectively
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Application of pLink 2 at a proteome scale. To demonstrate the
versatility and performance of pLink 2 at a proteome scale, pLink
2 was used to re-analyze four previously published datasets
including E. coli and C. elegans whole-cell lysates cross-linked by
Leiker, a BS3-like linker with enrichment function22, and the E.
coli and human disulfide proteomes13 (Supplementary Note 7). In
the original publications, PSM validations by TDA–FDR control
were different for these two types of datasets, i.e., global FDR
control for intra-protein and inter-protein PSMs in combination
was applied to two Leiker datasets, separate FDR control was
applied to two disulfide bond datasets, and 3121 (E.coli-Leiker),
882 (C.elegans-Leiker), 197 (E.coli-SS), and 553 (Human-SS)
cross-linked residue pairs were identified by pLink 1, respectively.

In the present paper, pLink 2 applied the separate FDR control
for all four datasets. A total of 2861 and 799 cross-linked residue
pairs were identified for E.coli-Leiker and C.elegans-Leiker
datasets, respectively, which were fewer in numbers but more
credible than results of pLink 1 with the global FDR control. A
total of 251 and 688 cross-linked residue pairs were identified for
E.coli-SS and Human-SS datasets, respectively, which were 27%
and 24% more than results of pLink 1, respectively. Supplemen-
tary Data 1−4 show detailed results for these four datasets.

Previously for pLink 1, large database search had been
conducted on a computer cluster10. In the present study, all of
the datasets were analyzed on a personal computer. For each of
the cell lysate dataset, the search time was several months for
pLink 1, but 1~3 days for pLink 2. These results highlighted that
pLink 2 is capable of analyzing datasets cross-linked by a
chemical cross-linker as well as native disulfide bonds, efficiently
and effectively at a proteome scale.

Discussion
CXMS is a valuable technique for investigating protein structures
and protein–protein interactions, but data analysis at a proteome
scale suffers from poor speed and credibility. Here we introduced
pLink 2, which enables several substantial advances to the field of
proteome-scale cross-linked peptide identification. First, we
developed a two-stage open search strategy facilitated by frag-
ment indexing. Benchmarking showed that pLink 2 was ~40
times faster than pLink 1 and 3~10 times faster than Kojak.
Second, we designed four evaluation methods, using simulated
datasets, synthetic datasets, 15N metabolically labeled datasets,
and entrapment databases, to systematically evaluate the cred-
ibility of search engines, including the precision and the sensi-
tivity. Each evaluation method was performed on two different
types of datasets cross-linked by a chemical cross-linker (BS3 or
Leiker), and by disulfide bonds, respectively. pLink 2 achieved the
highest precision and sensitivity among the ten state-of-the-art
tools. More importantly, we demonstrated how to evaluate a
search engine systematically, which is especially lacking in the
field of CXMS. Third, we demonstrated the versatility and per-
formance of pLink 2 on four previously published cell lysate
datasets of E.coli-Leiker, C.elegans-Leiker, E.coli-SS, and Human-
SS. pLink 2 took only a fraction of the time used by pLink 1, with
up to 27% more cross-linked residue pairs identified.

Although pLink 2 is much faster compared with pLink 1 and
Kojak, there is still room for improvement to achieve higher
speeds. Sequence tags are short amino acid sequences that can be
directly inferred from fragment peaks in MS2 and they have been
used to screen peptide candidates in regular peptide search
engines37,52,53, e.g., a 5-tag has high specificity and can select only
tens of peptide candidates for further scoring37. Supplementary
Fig. 15 shows that 72%~87% of the identified cross-linked PSMs
contained at least a 5-tag. That means, the number of coarse-
scored peptides per spectrum is expected to be reduced from

hundreds by fragment indexing to only tens by tag indexing,
which will further speed up the cross-linked peptide
identification.

Another way to overcome the n-square problem is through the
use of MS-cleavable cross-linkers, which were not discussed in
this paper. With MS-cleavable cross-linkers, such as PIR54,
BuUrBu55, and DSSO56, two peptides of one cross-linked peptide
pair are detached, and can be identified by regular peptide search
engines, making the cross-linked peptide identification in a linear
time complexity57. Nevertheless, the fragment indexing used in
pLink 2 can also be used to accelerate search engines for MS-
cleavable cross-linked identification and systematic evaluations
such as those proposed in this paper are still needed.

For CXMS, problems related to the credible identification still
remain serious. On the one hand, the identification rate is still
low. Supplementary Fig. 16 shows that the identification rates
of four cell lysates were 35%~54%, indicating that about 50% of
spectra were not interpreted. In contrast, the identification rate of
spectra for regular peptide search can reach 70–85%37. Another
similar challenge is the low abundance of cross-linked peptides in
complex mixtures. Supplementary Fig. 16 also shows that even
with the enrichable cross-linker Leiker22, the identified cross-
linked scans accounted for at most 15% of all identified scans and
this proportion was no more than 5% on disulfide bond datasets,
hence making a strong appeal for a more powerful enrichment
method, either in sample preparation22,58 or in data acquisition15,
or both.

On the other hand, the FDR controls at the peptide pair and
residue pair levels still remain open. As correctly identified PSMs
tend to cluster, while incorrectly identified PSMs tend to scatter
and do not cluster to the same extent, FDR propagates from
PSMs to peptide pairs and further to residue pairs59. The per-
centage of NaN ratios at PSM and peptide pair levels also showed
similar propagation trends (Fig. 3).

Methods
Datasets. A total of 12 datasets were used to evaluate the credibility of pLink 2.
They can be categorized into two classes. The first class contained eight datasets
serving for demonstration of four evaluation methods. Specifically, they were
Simulated-BS3 and Simulated-SS for the simulated dataset evaluation, Synthetic-
BS3 and Synthetic-SS for the synthetic dataset evaluation, E.coli-Leiker-15N and E.
coli-SS-15N for the 15N metabolically labeled dataset evaluation, and SCF(FBXL3)-
BS3 and Cav1.1-SS for the entrapment database evaluation. These datasets were
used to systematically evaluate the performance of different search engines, i.e., the
speed, sensitivity, and precision, independent of common evaluation methods such
as the TDA–FDR method and crystal structures.

The second class contained four previously published proteome-scale datasets
already analyzed by pLink 1, including E.coli-Leiker, C.elegans-Leiker, E.coli-SS,
and Human-SS, and they were re-analyzed to demonstrate the performance and
versatility of pLink 2. The detailed information of these twelve datasets is shown in
Supplementary Table 2.

Preparation of the Simulated-BS3 and Simulated-SS datasets. The fragmen-
tation characteristics of synthetic peptides cross-linked by the BS310 and disulfide
bonds13 were used to generate Simulated-BS3 and Simulated-SS, respectively. The
Simulated-BS3 dataset consists of cross-linked, loop-linked, mono-linked, and
regular MS2 spectra, 2500 for each type, resulting in 10,000 MS2 spectra in total. As
there are no mono-linked peptides in a disulfide bond sample, the Simulated-SS
dataset only consists of 2500, 2500, and 5000 for cross-linked, loop-linked, and
regular MS2 spectra, respectively, resulting in 10,000 MS2 spectra in total. The
simulation method is described in Supplementary Note 8.

Preparation of the Synthetic-BS3 dataset. The Synthetic-BS3 dataset was a
collection of 2077 annotated high-energy collisional dissociation (HCD) spectra
obtained from 38 synthetic peptides cross-linked pairwise through BS310. Of the
2077 spectra, 1030 were from light [d0]-BS3, and 1047 were from heavy [d4]-BS3.
The 1047 spectra of cross-linked peptides containing heavy [d4]-BS3 served as
negative samples, because in this study we searched with the mass of light [d0]-BS3
and the precursor mass tolerance was as small as ± 20 p.p.m.
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Preparation of the Synthetic-SS dataset. The Synthetic-SS dataset was a col-
lection of 5000 annotated HCD spectra obtained from 72 cysteine-containing
synthetic peptides cross-linked pairwise through disulfide bonds13. Of the
5000 spectra, 2289 were high-quality HCD spectra of disulfide-linked peptide pairs
obtained from 72 synthetic peptides and 2711 were negative samples that were not
identified as regular peptides or disulfide-linked peptide pairs.

Preparation of the E.coli-Leiker-15N dataset. Leiker bAL222 was used to cross-
link the E. coli MG1655 whole-cell lysates. MG1655 was cultured in unlabeled or
15N-labeled M9 medium and collected at OD600 0.6–0.8. Pellets of 40 OD*ml E. coli
cells was resuspended in 0.4 ml lysis buffer (50 mM HEPES, pH 7.5, 150 mM
NaCl). Cell lysates were prepared using a FastPrep homogenizer (6.5 m/s, 20 s,
repeat 5 times). After measuring protein concentration, 1 mg of unlabeled and 15N-
labeled lysate was cross-linked separately with 0.33 mg [d0]-bAL2 for 0.5 h at room
temperature. Cross-linking reactions were quenched with 20 mM ammonium
bicarbonate. The two reactions were mixed together and then precipitated by
trichloroacetic acid (TCA) followed by Trypsin digestion. After filtering with a 50
kDa cutoff Amicon Ultra-0.5 Centrifugal Filter Unit, the digested peptides were
brought to a volume of 3 mL with 2% ACN, 20 mM HEPES, pH 8.2; the pH was
adjusted to 10.0 with ammonia. High-pH reverse-phase separation was used for
fractionation. The peptides were eluted with buffer B (80% ACN, 5 mM
NH4COOH, pH 10) gradient. A total of 39 two-minute fractions were collected and
then combined into five fractions of similar shades of color (bAL2-linked peptides
are bright yellow before cleavage of the biotin tag). Each pooled sample was eva-
porated to 200–300 µl before enrichment of bAL2-linked peptides on 50 µl high-
capacity streptavidin beads. After release of beads and desalting through a C18
column, the five fractions of bAL2-linked peptides were analyzed by liquid
chromatography–tandem mass spectrometry (LC-MS/MS) using a Q-Exactive HF
mass spectrometer coupled with an EASY-nLC 1000 system (both from Thermo
Fisher Scientific). Precursors of the + 1,+ 2,+ 8, or above, or unassigned charge
states were rejected and dynamic exclusion was set to 20 s.

Preparation of the E.coli-SS-15N dataset. The E. coli strain BL21 was cultured in
unlabeled and 15N-labeled NH4Cl (Cambridge Isotope Laboratories, Inc.) M9
medium separately and collected at OD600= 0.75. From a mixture of 35 OD*mL
unlabeled and 35 OD*mL 15N-labeled cells, periplasmic proteins were prepared
using the osmoticshock method13. Periplasmic proteins were released into 6 mL of
pre-cooled solution of 5 mM MgSO4 supplemented with 2 mM NEM and then
precipitated on ice with 25% TCA followed by cold acetone wash twice. Pre-
cipitated proteins were air dried, resuspended in 8M urea, 100 mM Tris, 2 mM
NEM, pH 6.5. After the protein concentration was measured using the BCA
Protein Assay Kit (Pierce), the sample was brought to 1–2 mg/mL, digested
sequentially with Lys-C, trypsin, and Glu-C before SCX fractionation60. Eight SCX
fractions were collected by sequential elution with 35 μl of 50, 150, 250, 350, 500,
650, and 800, and 1M ammonium acetate, pH 2–3, at a flow rate of 1.0–2.0 μL/
min. The LC-MS/MS analysis was performed on a Q-Exactive HF mass spectro-
meter coupled to an Easy-nLC 1000 II system (Thermo Fisher Scientific). Peptides
were loaded on a pre-column (75 μm ID, 6 cm long, packed with ODS-AQ 120
Å–10 μm beads from YMC Co., Ltd) and further separated on an analytical column
(75 μm ID, 14 cm long, packed with C18 1.9 μm 100 Å resin from Welch Materials)
with a linear reverse-phase gradient from 100% buffer A (0.1% formic acid in H2O)
to 28% buffer B (0.1% formic acid in acetonitrile) in 56 (or 71) min at a flow rate of
250 nL/min. The top-12 most intense precursor ions from each full scan (resolution
60,000) were isolated for HCD MS2 (resolution 15,000; normalized collision energy
27) with a dynamic exclusion time of 40 s. Precursors with 3+ to 6+ charge states
were included. Each sample was analyzed a second time using the same parameters,
except that 2+ precursors were also included for HCD MS2 to find more disulfide
bonds in loop-linked peptides.

Preparation of the SCF(FBXL3)-BS3 and Cav1.1-SS datasets. The RAW files of
SCF(FBXL3)-BS3 dataset14 and Cav1.1-SS dataset48 were kindly provided by the
authors of ref. 14 and ref. 48, respectively. Two complexes were expressed and
purified as described therein.

Preparation of four cell lysate datasets. The RAW files of E.coli-SS and Human-
SS datasets cross-linked by disulfide bonds13, and E.coli-Leiker and C.elegans-
Leiker datasets cross-linked by Leiker22 were kindly provided by the authors of
ref. 13 and ref. 22, respectively. They were prepared as described therein.

Fragment index construction. As shown in Fig. 1b, a fragment index is an
inverted index data structure, which stores a mapping that associates index keys
(mass values) with index values (in silico-digested peptides or their locations in a
sequence database file). Supplementary Fig. 17a depicts the workflow of con-
structing a fragment index for all modified peptides. First, each protein in the
specified database was in silico enzymatically digested into peptides, then modified
peptides were generated according to user-defined modifications. For each mod-
ified peptide, it was represented by its length (l), start position (p) in the sequence
concatenating all proteins in the database, and the modification identifier (m)

among all modified peptides from the peptide sequence. Next, for each modified
peptide, all neutral masses of b, y fragment ions were generated. The ion type
information (t) and the modified peptide information make up a tetrad code, which
was encoded into a 64 bit integer (Supplementary Fig. 17b). Finally, the fragment
index was constructed by hashing all integerized masses (original masses × 1000) of
fragments and pointing to their parent modified peptides.

Supplementary Fig. 17b depicts an example of encoding and decoding a tetrad
code (t, l, p, m), which used 1 bit, 7 bits, 46 bits, and 10 bits, respectively. The 1-bit
ion type t was able to represent b ion (t= 1) or y ion (t= 0). The 7-bit length l
enabled it to encode peptides with a maximum length of 128 amino acids. The 46-
bit start position p gave it possibility to handle database files with a maximum size
of 64 TB, which was large enough even for human proteome-scale identification.
The 10-bit modification identifier m allowed each peptide sequence to have at most
1024 modified forms. Once the fragment index was constructed, all modified
peptides containing one specific fragment mass could be efficiently retrieved in
protein databases.

Fragment index based α-peptide retrieval. Once the fragment index was con-
structed, α-peptides were retrieved in four steps as shown in Fig. 1b.

1. Generating query keys. The experimental peaks in MS2 spectra were
converted into possible fragment masses as the query keys to query the
fragment index.

In the fragment index described above, each modified peptide was indexed by
its b, y fragment masses. To use this index, we first converted each peak in an
MS2 spectrum to four possible fragment masses, assuming that it could be a regular
b ion, a regular y ion, an xlink b ion, or an xlink y ion. Xlink b and y ions referred to
those that contained a covalently linked β-peptide through the linker, and regular b
and y ions were those that do not. The fragment masses were used as the keyword
in the next step to retrieve the encoded α-peptide information from the
fragment index.

Let m be the mass of a singly charged peak, mHþ be the mass of a proton, mH2O

be the mass of a water molecule, and M be the precursor mass (converted to the
singly charged state).

If a peak was a regular b ion, its fragment mass was:

mb ¼ m�mHþ : ð1Þ

If a peak was a regular y ion, its fragment mass was:

my ¼ m�mHþ �mH2O
: ð2Þ

If a peak was an xlink b ion, then its complementary ion was a regular y ion and its
fragment mass was:

m~b ¼ M �mH2O
�mb ¼ M �mH2O

�mþmHþ : ð3Þ

If a peak was an xlink y ion, then its complementary ion was a regular b ion and its
fragment mass was:

m
~y ¼ M �mH2O

�my ¼ M �mþmHþ : ð4Þ

2. Retrieving encoded α-peptides. By querying the fragment index with
fragment masses ( ± 20 p.p.m. for high-resolution MS2 data), we knew the number
of matched peaks, or matched fragment ion counts (MICs), for each retrieved
encoded candidate α-peptide. Peptides with MIC= 1 were removed.

3. Decoding α-peptides. From the code of each candidate α-peptide, the
modification identifier, the start position, and the length of each retrieved sequence
were extracted. As such, the sequences of all α-peptide candidates with MIC ≥ 2
were obtained and the ones whose masses exceeded the precursor mass were
removed.

4. Coarse-scoring on α-peptides. For each spectrum, coarse-scoring was
performed on α-peptide candidates as described previously (i.e., pre-scoring in
pLink 110), and a dynamic list of top-5 results were kept. Coarse-scoring continued
if the upcoming candidate sequence had a MIC no smaller than the least MIC of
the five candidates in the dynamic list, and the list was updated if the coarse-score
of the new candidate was larger than the least coarse-score of the list. For each α-
peptide, all possible modifications and all possible cross-linking sites were
considered, and only the top scored form was kept.

Peptide index based β-peptide retrieval. As shown in Fig. 1c, β-peptide candi-
dates were retrieved from a peptide index, which was a special case of the fragment
index. For β-peptides, due to the possible scarcity of matched ions, a peptide index
was constructed in the same way as the fragment index, except that the index keys
were the masses of intact modified peptides rather than the masses of peptide
fragments.

Once the peptide index was constructed, β-peptides were retrieved in three
steps as shown in Fig. 1c.

1. Generating query keys. The difference between the precursor mass and the
sum of the α-peptide candidate mass and the cross-linker mass was taken as the
mass of the β-peptide candidate, which was called as the open mass for α-peptide.
Five open masses of five α-peptide candidates were used as the query keywords.

2. Retrieving β-peptides. Each keyword ( ± 20 p.p.m. for high-resolution MS2
data) was used to query the peptide index to obtain a list of β-peptide candidates.
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3. Fine-scoring on peptide pairs. All retrieved β-peptide candidates were paired
with the corresponding α-peptide candidates for fine-scoring as described
previously (i.e., fine-scoring in pLink 110). Only the top scored result was kept.

Re-ranking of PSMs. pLink 2 inherited the fine-scoring method of pLink 110,
which was adapted from KSDP10,61. However, the score values of different spectra
could not be compared without normalization. In pLink 1, normalization was
realized through E-values. However, for each spectrum, E-value calculation
required additional 5000 fine-scorings against peptide pairs of random sequences,
which was time-consuming. pLink 2 adopted a semi-supervised learning frame-
work to fulfill the normalization task, which was more efficient and flexible.

A machine-learning classifier provides a way to fuse a variety of features and
normalize them into a single score. The supervised learning method requires an
annotated training set, which is impossible to build, to accommodate different
proteomics experiments. Percolator introduced a semi-supervised learning method
for peptide identification43, which eliminated the need to construct a manually
curated training set for each experiment. We adopted the same approach in pLink
2 for the identification of cross-linked peptides as shown in Fig. 1d. This contained
five steps.

1. Extracting features. There were nine features for cross-linked PSMs:
KSDPScore, AlphaIntRatio, BetaIntRatio, AlphaTagRatio, BetaTagRatio, ShortLen,
ScoreDiff, ModRatio, and PrecursorErrFreq (Supplementary Table 7). Loop-linked,
mono-linked, and regular PSMs contained all above features, except those related
to β-peptides. These features were extracted from PSMs and later were combined
into one score called SVM score.

2. Selecting training samples. pLink 2 selected positive and negative training
samples in an iterative process. In each iteration, the FDR was controlled as

FDR ¼
NTD � NDD

NTT

; ð5Þ

where NTT denotes the number of PSMs that both α- and β-peptide sequences are
from the target database, NDD denotes the number of PSMs that both α- and β-
peptide sequences are from the decoy database, and NTD denotes the number of
PSMs that one single peptide sequence of the pair is from the target database and
the other is from the decoy database. FDRs for intra-protein PSMs and inter-
protein PSMs were calculated separately, and if a PSM matched to target and decoy
versions of the same protein, this PSM was interpreted as a TD PSM of intra-
protein.

FDR threshold was maintained at ≤ 1% while the cutoff value of the KSDP score
(for the first iteration) or the SVM score was varied. Positive training samples were
PSMs above the cutoff, with both α- and β-peptide sequences from the target
database. Negative training samples were formed by the PSMs with either or both
α- and β-peptide sequences coming from the decoy database.

3. Updating feature values. The features were separated into static features and
dynamic features as shown in Supplementary Table 7. At each iteration, the values
of static features were kept unchanged, whereas values of dynamic features were
updated based on the positive samples.

4. Training models. An SVM classifier62 was used to train the model. The
maximum number of iterations was set to 5. At any iteration, if the selected
positive training set was the same as the one before, the training stopped.

5. Re-scoring and re-ranking. At the end of each iteration, the trained model
was used to re-score all top-1 results. We chose L2-loss and L2-regularized linear
SVM for the model and the final score was converted to a probability as in logistic
regression; the tolerance of termination criterion was set to 0.0001. In addition, L2-
regularizer was adopted to avoid overfitting.

The SVM score was given by liblinear with –b option, which means to output
probability estimates. The probability was computed using logistic regression and
had a range from 0 to 1, which could be interpreted as the probability of a PSM
being a random match. The results with scores no more than 0.5 were classified to
be positive samples, otherwise negatives.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
A total of 12 datasets were used in the present paper, which were listed in Supplementary
Table 2. Eight of 12 datasets were obtained from previous published studies and were
referenced appropriately in Supplementary Table 2, and 4 of 12 datasets were prepared in
the present paper. Among four new datasets, two were simulated datasets, which were
published along with the source code of the simulation method at GitHub [https://github.
com/pFindStudio/pLink2/tree/master/pSimXL], and two were 15N metabolically labeled
datasets, which were deposited into ProteomeXchange with Project identifier
PXD012109.

Code availability
pLink 2 was developed in the C/C++ language. The standalone software package can be
downloaded at http://pfind.ict.ac.cn/software/pLink/index.html. The source code of the
simulation method used to generate simulated spectra, termed as pSimXL, is publicly

available at GitHub [https://github.com/pFindStudio/pLink2/tree/master/pSimXL].
Anyone can review and download the source code of pSimXL under the open source
GNU General Public License v3.0.
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