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Abstrud -Hopfield’s neural networks show retrieval and speed capabili- 
ties that make them good candidates for content-addressable memories 
(CAM’s) in problems such as pattern recognition and optimization. This 
paper presents a new implementation of a VLSI fully interconnected 
neural network with only two binary memory points per synapse (the 
connection weights are restricted to three different values: + 1,O and - 1). 
The small area of single synaptic cells (about lo4 pm’) allows the 
implementation of neural networks with more thut 500 neurons. Because 
of the poor storage capability of Hebb’s learning rule, especially in VLSI 
neural networks where the range of the synapse weights is limited by the 
number of memory points contained in each connection, a new algorithm is 
proposed for programming a Hopfield neural network as a high-storage 
capacity CAM. The results of the VLSI circuit programmed with this new 
algorithm are very promising for pattern recognition applications. 

I. INTRODUCTION 

C 

ONNECTIONIST architectures offer very interesting 
possibilities to solve a large chss of associative mem- 

ory and pattern recognition problems. Hopfield [l] in 1982 
proposed a simplified model of the human brain’s struc- 
ture based on the approach of McCullogb and Pitts [2]. In 
this model, each processing element (neuron) can be con- 
nected to the other neurons through a resistive coupling 
network. The connections, called synapses, can be either 
excitatory (positive weight) or inhibitory (negative weight). 
All the information stored in the network lies in the 
connection values and is consequently distributed within 
the whole system; the neurons only perform the sum of all 
their inputs (which are the outputs of the other neurons 
weighed by the synaptic strengths). 

Hopfield’s model led a new class of VLSI neural asso- 
ciative memories using Hebb’s learning rule [3] to record 
patterns (i.e., to set the correct connection values). Al- 
though this rule is very simple to implement the results are 
not completely satisfactory: the storage capacity is poor 
compared to the number of memory points contained in 
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the network; Hopfield showed that only about 0.15n n-bit 
patterns could be correctly stored in a n-neuron network. 
Beyond this limit, poor retrieval occurs and even instabil- 
ity is experienced for input patterns close to stored pat- 
terns. Instability appears when we suppress Hopfield’s 
hypothesis that two changes in the neuron values cannot 
occur at the same time; this is indeed impossible to foretell 
in a VLSI neural network where all the neuron values are 
computed simultaneously [4]. Moreover, below the 0.15n 
limit, stored patterns have to be strongly different from 
each other to ensure a good learning behavior. When an 
input pattern is presented to the network, three different 
behaviors may be observed: convergence to the closest 
learned pattern, convergence to an unwanted pattern or 
instability (no convergence at all). This is illustrated in Fig. 
1 for Hebb’s rule (the X-axis represents the Hamming 
distance, i.e., the number of different bits between the 
input patterns and the closest learned pattern, while the 
Y-axis shows the percentage of each of the three observed 
states for three recorded patterns in a 1Zbit Hopfield 
network). 

Another problem arises when such a content-address- 
able memory (CAM) is implemented within a VLSI chip. 
A synapse weight computed accordingly to Hebb’s rule 
may take any integer value between p and - p, where p is 
the number of stored patterns [5]; since there are 2p + 1 
different synaptic values, a memory with log, (2p + 1) bits 
is necessary in each synapse. Hence the area of a synaptic 
cell grows quickly with the number of recorded patterns 
since p can be considerable in large networks. Further- 
more, in a fully interconnected VLSI neural network, the 
main part of the circuit area consists of synapses. To 
increase the number of neurons on a single chip one must 
therefore be able to decrease the area of synaptic cells. A 
good tradeoff between the requirements of Hebb’s rule 
and the restricted available area on the chip is thus re- 
quired. 

The objective of this paper is to propose a complete 
CAM system using a neural network; it is divided into two 
parts: the first one presents a VLSI implementation of a 
Hopfield fully interconnected neural network, with only 
three different weight values stored in each synapse 
(+ l,O, -l), and the second describes a new learning 
method to record patterns in the CAM. 
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Fig. 1. Hebb’s rule: simulation results. Three 12-bit patterns have been 
stored in a 12-neuron network using Hebb’s rule. All the 2t2 possible 
patterns have been introduced at the network inputs; the diagram 
shows the percentage of well-retrieved, nonretrieved and unstable pat- 
terns versus the Hamming distance (number of different bits) between 
the input pattern and the closest learned pattern. 

Fig. 2. 
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II. VLSI HOPFIELD NEURAL NETWORK 

The purpose of the proposed circuit is to allow the 
realization of very large neural networks. In the first 
implementations of fully interconnected neural networks, 
synapses consisted only of resistive connections between 
neurons [6]. Such a class of circuits introduces special 
technological requirements and therefore is not often used. 
In more recent applications [7], synapses consist of current 
sources controlled by the output of the connected neuron: 
the excitatory currents come from p-type transistors and 
the inhibitory currents from n-type ones (see Fig. 2). 

One of the problems that arises with this kind of synapse 
is that it is difficult to make the current injected by the 
p-type transistors equal to the one sunk by the n-type 
transistors. The mobility differences between the two types 
of transistors can be compensated by using a width scal- 
ing; however, threshold voltage variations due to the tech- 
nological processes involved in integrated circuit fabri- 
cation make it impossible to exactly compensate these 
differences by different transistor dimensions between p- 
and n-MOSS (a factor of 2.5 to 3 is usually used, but must 
be empirically determined). Since the function of each 
neuron is to detect the sign of the sum of the other neuron 
values, weighed by the synapses strengths, the possible 
mismatches between the sourced and sunk currents are 
summed with an increasing number of synapses. In order 
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Fig. 3. Synapse between neurons i and j. 

neuron i+ neuron i- 

Fig. 4. Neuron with differential amplifier. 

to make a neuron able to discriminate the sign of its inputs 
even when the difference between excitatory and in- 
hibitory currents equals only a single synaptic current, the 
latter must exceed n times the difference between the p- 
and n-type current sources; this limits considerably the 
size of the network. 

This paper proposes a new’ architecture for neural asso- 
ciative memories in which the sourced and sunk currents 
are summed separately on two different lines. Each synapse 
is a current source (Fig. 3) programmed by meml; if 
meml = 0, neurons j and i are not connected together. 

Mem2 determines the sign of the connection, i.e., if the 
current must be sourced or sunk. In the first case TZ 
derives current from the line i +, in the second one T2 
derives it from the line i -. The function of the neuron is 
thus to compare the total currents on lines i + and i - ; 
this is done by means of the current mirror described in 
Fig. 4. The currents on these lines are converted into 
voltages across transistors T3 and T4; these voltages are 
themselves compared in the differential amplifier formed 
by transistors T5 to T9. Because of the two-stage architec- 
ture of the neuron, its gain is very important and the . output (out) is either V,, if the current in neuron i - is 
greater than the one in neuron i +, or V,, in the opposite 
case. 

With an increasing number of connected synapses, volt- 
age drops in the neuron on lines i + and i - (V+ and 
V- in Fig. 4) of course tend to decrease. Hence the drains 
of TI and T2 may influence to some extent the currents 
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neuron i+ 

Fig. 5. Feedback loop to avoid current decrease. 

injected in the i + and i - lines. To avoid this effect, a 
feedback loop is introduced as shown in Fig. 5. The 
voltages V + and V- are thus fixed to I&, and the 
currents sunk in all synapses no longer vary. Since no high 
gain is needed for the feedback loop, the amplifier shown 
in. Fig. 5 can be very simple; SPICE simulations showed 
that with a single transistor for the feedback loop, voltage 
V+ is fixed with an accuracy of more than 95 percent 
with up to 500 synapses connected; moreover, with such 
accuracy, the drain voltages of Tl and T2 will no longer 
significantly influence the current sourced in the synapses. 
The same feedback loop is inserted in line i - to keep 
voltage V-fixed. 

Fig. 6. Photomicrograph of the chip. 

dent neuron value and is fed back in the synapse in about 
30 ns. Practically, this means that it takes about 120-150 
ns for a 12%neuron network to converge to a stable state. 

SPICE simulations of this circuit were carried out to 
determine the number of neurons that can be connected 
together. The criterion was that the output of the neuron 
(Fig. 4) must be either high or low enough to drive 
correctly a buffer inserted between the output of the 
neuron and the inputs of the synapses. Voltages of 3 and 
2, V were chosen respectively as lower bound for output 
voltage of the neuron if current in i + is greater than 
current in i - line, and as upper bound for output voltage 
in the opposite case; an inverter placed at the output of the 
neuron can indeed be easily designed to have its switching 
voltage between 2 and 3 V. The results of the SPICE 
simulations were satisfactory: about 110 neurons can be 
connected together without feedback loop, and about 520 
with a feedback loop. 

Since this circuit is fully programmable (each connection 
strength can be programmed to + 1, 0, and - 1 by setting 
appropriate values in meml and mem2 of Fig. 3), it can be 
programmed to solve optimization problems, or can be 
used as a content-addressable memory as described below. 
Fig. 6 shows a photomicrograph of the chip; its size is 
3 mmX 3 mm. The central and main part of the chip 
contains the 196 synapses (115 x 108 pm2 each); below the 
synapses are the 14 neurons (115 ~75 pm* each), and 
above the synapses is a decoder used to program the RAM 
contained in the synapses (meml and mem2 of Fig. 3). 
The technology used is CMOS 3-pm with single metal and 
single poly. 

III. THE LEARNING ALGORITHM FOR THE CAM 
A new way to compute the connection strengths is 

In order to prove the simulation results and to measure 
some interesting properties of this architecture (synaptic 
currents, maximum number of connected neurons), a test 
chip with 14 neurons and 196 synapses has been realized in 
a CMOS 3+m technology. In this circuit, the single synap- 
tic current equals 10 PA; to achieve this, the synaptic 
transistor connected to meml (TO in Fig. 3) is long (W/L 
= 0.1) while TZ and T2 are minimal (W/L =1.5). Such 
current of 10 PA is acceptable in a neural network with a 
restricted number of neurons; in larger networks, it has to 
be reduced for power density reasons. For example, the 
power dissipated by a 12%neuron network with synaptic 
currents equal to 1 PA will be about 100 mW; such circuit 
can be made in a 64-mm2 chip with a CMOS 2-double 
metal technology (power density is about 1 mW/mm2). 

proposed, using a linear algebra optimization method 
(Simplex) in order to maximize the stability of the recorded 
patterns. In Hopfield’s model, each neuron is connected to 
every other neuron. The connections between neurons can 
thus be represented by a (n X n) matrix where element q j 
is the value of the connection between neuron i and 
neuron j. The proposed algorithm allows the matrix to be 
asymmetric (Tij # Tjj). If K is the state of the i th neuron 
(which is supposed to be Boolean in our model) and 0 the 
threshold value, the dynamic behavior of the network can 
be described by 

v(t+At) =sign(CqjI$(t)-F)). 

The network reaches a stable state when 

q(t+At) =K(t) Vi. 

The stable states are programmed into the network by 
setting appropriate connection strengths (each synapse can 
be programmed via meml and mem2). 

Speed properties are one of the most interesting features 
of Hopfield neural networks. Tests showed that a change 
in a synapse value introduces a change in the correspon- 

To compute the connection values in a n-neuron Hop- 
field network where k n-bit patterns are to be stored, the 
different columns of the matrix are computed separately, 
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Fig. 7. Optimization method: simulation results (same simulation as in 
Fig. 1). 

and the following procedure shows how to compute the 
first one (i.e., the values of the connections between any 
neuron and the first one); the same procedure applies to 
the other columns. The following notations will be used. 

T/j value of the ith neuron from the jth pattern to 

T,, 
memorize (1~ i G n, 1 G j < k, vj =l or vj = -1) 
value of the connection between neurons Y and 1 
(l,<r<n), 

S,, CT,,V,,, input of the first neuron when the network 
outputs correspond to the training pattern k. 

In this model, each neuron acts as a Boolean threshold 
function whose output is 1 in the case of a postive input 
and - 1 in the other cases (0 is thus set to 0). The 
essential feature of this method is to choose the set Trl in 
order to maximize the difference between S,, and the 
threshold of the neuron. If the sign of S,, is forced to be 
the same as the one of Vlk, the highest stability for bit 1 of 
pattern k is obtained. To ensure the right sign to Slk, the 
quantity to maximize is Z,, = S,,T/,,. This has to be done 
simultaneously for all values of k. The equation solved by 
the Simplex method is then 

maximize A4 where M = min (Z,,) for all values of k. 

To avoid unbounded solutions (M 4 co), T,, are limited 
by the inequalities: 

-l<T,,gl. 

Practical algorithms able to solve such Simplex problems 
are available in the literature [8, pp. 20-461. 

The results of this method can be compared with those 
of the Hebb’s rule shown previously. Fig. 7 illustrates the 
convergence results for the same three memorized patterns 
in the same 1Zbit network as in Fig. 1. The two diagrams 
can easily be compared: while a small enhancement in the 
number of unrecognized patterns can be noticed (i.e., input 
patterns which converge to an unwanted stable state), the 
percentage of well recognized patterns is strongly in- 
creased, and the number of unstable patterns (i.e., input 
patterns which never converge) is reduced to less than 
5 percent. If the observations are restricted to the left side 
of the diagram (in pattern recognition problems, the Ham- 
ming distance between the input and recorded patterns is 
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supposed to be short), the conclusion is that all patterns 
are correctly retrieved, while unstable states no more exist. 
This is not true for Hebb’s rule. 

CONCLUSION 

This paper describes a system to realize a CAM with 
neural networks. A VLSI fully interconnected neural net- 
work has been designed, where the connection weights are 
restricted to only three different values; this has been done 
to reduce the area of a synaptic cell and thus to increase 
the number of neurons which can be put together in a 
network. The architecture proposed in this paper can be 
used for networks of hundreds of neurons: its only limita- 
tion is the size of the chip. A test chip with 14 neurons and 
196 synapses has been realized in CMOS 3-pm technology. 

A learning algorithm suitable for this architecture is also 
described. The convergence results obtained when pro- 
gramming the chip with the proposed algorithm corre- 
spond to the theoretical results of Fig. 7: the storage 
density is much better than the one obtained with Hebb’s 
rule, even with only three different weights for the connec- 
tions. 

This algorithm used with the described circuit allows the 
realization of a high-storage CAM; this memory shows 
enhanced speed and retrieval properties due to the ade- 
quate use of neural networks. 
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