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We consider an approach to fault tolerant quantum computing based on a simple error-detecting code
operating as the substrate for a conventional surface code. We anticipate that the approach will be efficient
when the noise in the hardware is skewed towards one channel (e.g., phase), or alternatively when the
hardware is modular in such a fashion that the local error-detect operations have higher fidelity. We employ
a customized decoder where information about the likely location of errors, obtained from the error-
detection code, is translated into an advanced variant of the minimum-weight perfect-matching algorithm.
A threshold gate-level error rate of 1.42% is found for the concatenated code given highly asymmetric
noise. This is superior to the standard surface code and remains so as we introduce a significant component
of depolarizing noise; specifically, until the latter is 70% the strength of the former. Moreover, given the
asymmetric noise case, the threshold rises to 6.24% if we additionally assume that local operations have
20 times higher fidelity than long-range gates. Thus, for systems that are both modular and prone to
asymmetric noise our code structure can be very advantageous.
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I. INTRODUCTION

To realize the promise of large-scale quantum computers
that outperform classical machines, a protective mecha-
nism must be employed as quantum states are fragile and
easily damaged by their noisy environment. Many error-
correction codes have therefore been developed, that can
detect and correct errors. In essence, a group of physical
qubits (such as ions, superconducting elements, etc) are
used to collectively store a smaller number of “logical”
qubits. The group of topological codes [1,2] are partic-
ularly attractive solutions because they typically have a
local structure for the stabilizer check operations that must
be performed to identify errors. This leads to relatively
simple protocols supporting fault-tolerant quantum com-
puting, i.e., ensuring a single error occurring during an
error-correction cycle will not itself corrupt the logical
qubit(s) that are the subject of the cycle. This leads to a
threshold rate for errors at the physical level [3,4]; for
many topological codes, when error rates are within this
threshold, one can achieve an arbitrarily low logical error
rate by having a suitable large ratio of physical qubits
to logical qubits. The surface code, as a two-dimensional
(2D) topological code, is regarded as a highly promising
code due to its modest requirement of a 2D nearest-
neighbour connectivity, a high threshold (resulting from
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low-degree stabilizer checks), and simple gridlike lattice
structure [5—7]. As the surface code deals with bit-flip and
phase-flip errors independently, we can perform checks for
X -type and Z-type errors alternatively. However, in prac-
tice many systems experience an asymmetric error source
that makes the standard surface code no longer the optimal
choice; relevant cases are reported in Refs. [8—10].

In this Paper we consider the scenario where phase
errors are more prevalent than bit-flip errors (it immedi-
ately applies to the converse case where bit-flip, rather than
phase, is prevalent). Commonly in real systems the noise
processes are complex, involving both environmental ele-
ments and aspects due to the active gates, but generally
phase processes take place with a different severity to flip
processes [11—13]. Note such a case has been considered
in recent theoretical studies [14,15], where high thresh-
olds were found for extremely asymmetric noise from the
environment while the active operations of the computer
were presumed perfect. Here we consider a range of noise
models (degrees of asymmetry) and moreover we track
noise events up from gate-level events, all of which are
assumed imperfect to some degree. We note that such
a case has been discussed very recently [16], where the
authors obtain a very high threshold by using the symmetry
of the code system. Our approach is to introduce a variant
of the canonical surface code by concatenating it with a
two-qubit phase-detection code. Thus, the ‘data qubits’ of
the surface code are no longer physical qubits, but rather
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are qubit pairs in the phase-detecting code (this can be
trivially adjusted to the bit-flip-detecting code if instead
bit-flip errors are prevalent). We note that a similar case
of the surface code concatenated with the full [[4,4,2]]
error-detecting code has been considered by Criger and
Terhal [17], who note the equivalence to variants of other
topological codes and thus obtain an estimate of the thresh-
old (however, for the case of gate-level errors, this is lower
than the canonical surface-code threshold). Another com-
parable work has considered a cluster-state topological
code concatenated with the repetition code and observed a
marked threshold gain in the case of extremely biased gate-
level noise [18]. In that work, errors are corrected by the
repetition code and the surface code independently. Here
our base-level code is different and moreover, rather than
mapping to an equivalent code, we propose a new surface-
code decoder (the algorithm that attempts to infer optimal
error-correcting operations) by feeding in the information
on likely error locations obtained by the lower-level error
detection. We find this results in significantly enhanced
thresholds, as presently noted.

The error-correction cycle in the present study is com-
posed of two phases: (1) local checks where we measure
the XX stabilizer for the pairs of physical qubits, each such
pair constituting an individual surface-code data qubit, and
(2) parity checks for each unit of four data qubits, as per
the normal surface code, but here of course this must be
performed in such a fashion as to respect the lower-level
code. By concatenation we double the number of physical
qubits, and thus increase the number of gates required to
perform one cycle of stabilizer check. It can be foreseen
that the noise introduced from the extra gates increases
the logical error rate of the concatenated code, however,
by applying local error detection for each data qubit, we
gain extra information concerning the locations of poten-
tial errors. This extra information is crucial: we describe
an algorithm through which it is translated into modified
weights for a minimum-weight matching decoder, allow-
ing superior decisions to be made at the surface-code level.
Consequently we observe a threshold increase from 1.20%
to 1.42% with pure phase noise, even assuming that local
(pairwise) and long-range (surface-code level) gates have
the same fidelity. We then apply the additional, physically
plausible assumption that the computer is structured in
such a way that the base-level gates have a high fidelity,
and that therefore the local error detection applied to each
data qubit has a lower error rate than that in the logi-
cal parity check. We observe a further boost of threshold
to 2.48% and 4.72% for the error-rate ratios of 1 : 3 and
1 : 10, respectively.

In a real system, phase errors may dominate but other
forms of error will also be present at a nonzero level.
We model this by having both a pure dephasing process,
and a homogeneous depolarizing process, simultaneously
present with different strengths. Here of course we must

note that when there is an asymmetry between Z and X
errors, then even with the normal nonconcatenated sur-
face code one should change the frequency with which the
X - and Z-stabilizer checks are applied. Therefore, for fair
comparison, the ratio of X and Z checks is optimized for
both codes. We find that our concatenated code yields a
higher threshold if the strength of depolarizing is smaller
than about 70% of the dephasing model’s strength, when
the long-range gates have the same fidelity as the short-
range ones, and can be further increased if the short-range
gates have a lower error rate than the long-range ones.

The remainder of this Paper is organized as follows. In
Sec. II, we introduce the structure of the concatenated sur-
face code. Then, we propose a new surface-code decoder
in Sec. III, which modifies the minimum-weight perfect-
matching decoder by exploiting the potential error loca-
tions observed by the lower-level error detection. Numer-
ical implementation of the concatenated surface code is
presented in Sec. IV. The Paper is concluded in Sec. V
with a discussion of potential future works.

II. THE CONCATENATED SURFACE CODE

We concatenate the standard surface code with the two-
qubit error-detection code, i.e., encode two physical qubits
to constitute one data qubit of the surface code, as shown
schematically in Fig. 1.

A. Standard surface code and two-qubit
error-detection code

1. Standard surface code

The surface code has a 2D square lattice structure where
the data qubits and ancillas sit one next to another. As
shown in Fig. 1(a), in one representation we can locate four
data qubits at the edge of each plaquette (the white dots),
while the black and purple ones are ancilla qubits located at
the center. In this picture, each plaquette defines an oper-
ator of either X = X, X,X3X; (with the purple ancilla) or
AV AVAYAYA (with the black ancilla), where X and Z are
Pauli matrices, referring to the stabilizer generators. When
performing the X parity check, a suitable protocol is to per-
form CNOT gates from the ancilla qubit to each of the four
data qubits, then to measure the ancilla qubit in order to
learn the parity of the four data qubits. Consequently, one
error on a given data qubit will be identified by two ancilla
qubits adjacent to that data qubit. If the error location can
be exactly identified, such an error can be corrected by
applying another gate of the same type.

However, stabilizer measurements cannot uniquely
determine the error locations and errors in measurements
can lead to wrong syndrome outcomes. Therefore, a clas-
sical algorithm is used to infer the error locations given
the stabilizer measurement information, to determine what
operations should be performed in order to recover the
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FIG. 1. Schematic view of the surface code and the circuits
used for error detection and stabilizer checks. (a) The standard
surface code. (b) Our surface-code variant. When concatenated
with a two-qubit phase-detection code, each data qubit becomes
a logical qubit that consists two physical qubits (plus one ancilla
for error detection, though not shown here). Two physical qubits
are required to do a Z-stabilizer check, and a single qubit is
needed for an X -stabilizer check. (c) The circuit for an X check,
starting with error detection on each qubit. Once an error is
detected, a phase gate is applied to either of the two qubits.
(d) The circuit for a Z check, where transversal controlled NOT
(CNOT) gates are applied. In the end, both the two ancillas are
measured and the parity of the four qubits is represented by the
parity of the measurement outcomes.

correct logical state of the quantum system. (Note that in
practice, it can suffice to record the corrections that one
would make rather than to actually make then, at least
until a non-Clifford operation is scheduled.) This infer-
ence algorithm is referred to as a “decoder.” A number
of decoders then have been developed for such a pur-
pose, such as minimum-weight perfect matching [19-21],
maximum likelihood based on tensor network [1,4,22-27],
renormalization group [28-30] and so on, each with its
own advantages and disadvantages. Presently we describe
a decoder we create for the unique demands of our con-
catenated code.

2. Two-qubit error-detection code

The two-qubit error-detection code is the smallest code
that can detect one type of single error. We choose the
phase-detection code because biased phase noise is more

commonly seen in experiments, however, for any sys-
tem with biased X errors, a bit-flip detection code can
be adopted under basically the same concept. We employ
the encoding |+), = | + +), and |—);, = | — —). The log-
ical gates are X = XI = IX, Z = ZZ, and the stabilizer is
XX . Any single phase-flip error is detected when the sta-
bilizer is measured, e.g., by the circuit in the upper left of
Fig. 1(b). However, it is not possible to determine which of
the two qubits received the phase error; therefore the code
is detecting but not correcting. It remains possible to map
the defective state back into the code space, by applying a
Z operation to either qubit, but this leads to a logical error
Z with a significant probability (a 50% probability, if no
other information influences our choice—we discuss this
in Appendix A).

B. Concatenated surface code

As more information concerning error locations is
obviosuly beneficial for the decoder to determine the cor-
rect recovery operations more accurately, we concatenate
the standard surface code with a two-qubit error-detection
code. Consequently our basic building block, correspond-
ing to the white dots in Fig. 1(b), is actually three physical
qubits: the two encoded qubits and one additional ancilla
qubit (not shown in the graph). In Fig. 1, black dots repre-
sent the ancilla qubit for a Z-stabilizer check of the surface
code; it involves two physical qubits. However, the ancilla
for X checks is different: it is simply a single qubit.

With the concatenation, the number of physical qubits
is doubled. Undesirable as it is to increase resource costs,
we can expect that the new code may offer advantages
because information obtained at the (lower) error-detection
level can be a powerful resource for acting correctly at the
(higher) surface-code level. When detecting a phase error,
we choose to flip one physical qubit and thus restore the
data qubit to the proper code space, albeit with the signif-
icant probability of having thus implemented an unwanted
phase flip on that data qubit. Therefore, we record the loca-
tion of all data qubits where we observe a phase error;
these are now at “high risk” of an error whereas data qubits
that pass the phase-error-detect stage without issue are at
“low risk.” This partitioning is very valuable for surface-
code-level inference as we presently discuss. We show
the circuit of error detection as the green-shaded area in
Fig. 1(c).

To do a Z-stabilizer check, two ancilla qubits are initial-
ized and prepared to be at |0);, followed with transversal
CNOT gates applied from the data qubit to the ancilla qubits,
with the circuit depicted in Fig. 1(d). Note that by doing
so, we also ensure that this circuit is fault tolerant. Mea-
suring an X stabilizer needs only one ancilla qubit since
X = XI = IX. For simplicity we apply the CNOT gate
always on the first qubit, as shown in Fig. 1(c). The merit of
this simplification relies on the data qubit being within its
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correct two-qubit code space; to maximize this probability
we apply the X -stabilizer check on all data qubits imme-
diately after the local error detection. Conversely since the
Z-stabilizer check detects only X errors in the data qubits,
we opt not to perform an error-detection cycle ahead of
it, since this would provide no beneficial information but
could add more errors to the system. Thus, the overall
cycle is local error-detect, then the X -stabilizer checks, and
finally the Z-stabilizer checks, before repeating.

As an aside, we remark that given the circuits in Fig. 1
one might wonder whether the Z check shown on the right
can also be performed with four, rather than eight, long-
range gates, as is done for the X check. Regrettably this
would require altering the two-qubit encoding in such a
fashion that phase noise from the long-range gates cannot
be subsequently detected, which would be a net loss to the
power of the approach.

ITII. CONCATENATED SURFACE-CODE
DECODER

A. Standard surface-code decoder

For the threshold estimates presented in this Paper, we
use a standard approach of simulating a certain number
of full stabilizer cycles, recording classical information at
each stage, and finally applying the error-inference pro-
cess, i.e., the decoder, as a single-shot analysis, which
may either “succeed” or “fail.” (Note that alternatives
involving a continuously rolling model also exist in the lit-
erature [31].) We summarize the canonical approach here,
and refer readers to Ref. [32] as an example of a prior study
where the same threshold-finding technique is more fully
described.

To estimate a surface-code threshold for a given quan-
tum machine, a typical numerical model involves the fol-
lowing stages. Note one does not model the qubits as full
quantum entities (which would obviously be exponentially
costly in time and memory) but rather one tracks the errors
as discrete Pauli events.

1. A total of n imperfect stabilizer checks are mod-
eled, where n is proportional to the size of the code. In
each cycle, the full set of surface code stabilizers, Z and
X type, are measured. (This can be done simultaneously,
if the modeled quantum hardware would permit, or in a set
of subtasks.)

2. The result of each stabilizer measurement is
compared to the previous recorded outcome for that sta-
bilizer—if it differs then we record that point in time and
space as a stabilizer “syndrome event.”

3. After all cycles are complete, we apply our classical
decoder software to analyze the recorded information.

This analysis exploits the observation that any data
qubit error, or chain of errors, leads to two stabilizer

syndrome events. By successfully sorting all such events
into matched pairs, we can infer a proper correction to our
surface-code state. We therefore assign a weight to each
potential pairing of events according to their separation
(in time and space), with a higher weight indicating that
it is less likely that the specific pair is associated with one
another.

In order to find the most likely set of pairings, the
minimum-weight perfect-matching (MWPM) algorithm is
used. As the name suggests, the algorithm pairs all events
in such a way that the total weight is minimized. Finally,
this proposed matching is used to derive a corrective action
that should map the entire array back to a correct surface-
code state; by comparison to the actual record of quantum
errors that are introduced in the simulation (which of
course would be unknown in a real quantum machine) we
are able to record the decoding effort as either a “success”
or “failure.” Repeating the entire experiment many times,
we determine the percentage success rate. Restarting the
complete exercise with a different code size, we discover
whether increasing the code size lowers the probability of
failure; if so, we are within threshold for quantum error
correction.

The minimum-weight perfect-matching algorithm is
commonly used as the algorithm at the heart of decoders
for topological codes. Studies based on this approach have
reported high thresholds for the surface code ranging from
0.75% to 1.4%, according to the specific variant and error
model [4,24-27]. In this Paper, we use it in our decoder
for the concatenated code, and we also employ it when
we compute results for the standard surface code as a
reference.

B. Concatenated surface-code decoder
1. Wizard decoder

There is additional information to feed into the clas-
sical decoder in the present approach, in addition to the
record of syndrome events. We introduce this by the fol-
lowing thought experiment: suppose that we augment the
standard surface code with a “wizard” who has the power
to detect errors perfectly, and can correct any error with
a 50% chance. Whether he corrects it or not, he always
records the information into a list; thus half of the list (on
average) refers to data qubits with errors, while half refers
to those without errors. Note all data qubits that have suf-
fered an error are certainly on the list. In the remainder of
the Paper when we refer to “the list” we mean this record of
the qubits that are at a high risk of error, here provided by
the “wizard” but in practice coming from the error-detect
circuits.

During the decoding phase, we have access to this list
in addition to our usual syndrome information. We then
only permit pairing of syndrome events that can be con-
nected by a path along which all data qubits lie in the list
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(we could give infinite “weight” to pairs that cannot be so
linked, to prevent our MWPM algorithm from matching
them). If the errors are sparsely located, the decoder would
then be very powerful—its pairings are correct with a high
probability. In fact, we confirm that the threshold-data
qubit-error rate in this circumstance is 59%, which is in
fact the lattice-percolation threshold [33,34]: the decoder
fails only when the errors are so dense that we can always
find a path, connected by listed potential errors, from one
boundary to another—this is a logical error and can not
be corrected. Finally note that if, in the above story, the
wizard were only able to detect phase errors, then a very
high threshold would still be achieved but would apply
specifically to errors of that type.

2. Realistic decoder

For our real concatenated code we do indeed have such
a list, which is simply the record of the space and time
coordinates where phase errors are detected. However, the
idealization described above cannot be achieved for two
main reasons: (1) the error-detection process is imperfect
due to noise (it can create errors, or incorrectly report
the error status of the pair), (2) it is possible that both
physical qubits constituting a data qubit receive errors
leading to a logical error, which is undetectable. Because
of these imperfections we need to permit our decoder to
pair syndrome events even when we cannot connect the
two through a path along which all data qubits lie in the
list. However, we can assign such cases a higher weight,
and thus input the knowledge represented by our list in a
“softer” form. This is illustrated in Fig. 2, which depicts a
scenario where we would chose a different pairing than a
regular surface-code decoder would select because of the
additional information from the list.

We now describe the approach we take to implement a
decoder that exploits the valuable, albeit imperfect, infor-
mation represented by our list. Note that there are many
ways to further improve our decoder, but its use provides
us with a lower bound on the resulting threshold. That is
to say, if we had a large-scale quantum computer available
now then we could use the decoder exactly as developed
in this Paper, and then we would expect to realize the per-
formance predicted by our models here; but more likely
a superior decoder would be available by the time large-
scale quantum-information processing (QIP) is possible,
in which case we would expect to realize even better
performance.

We apply Dijkstra’s algorithm [35], which is widely
used to efficiently find the shortest paths between nodes
in a graph. We employ it to determine a suitable weight
for each possible pairing; this replaces the simple “Man-
hattan distance” calculation that is usually employed in
surface-code analysis. We can regard each ancilla qubit
for X checks as a node, and similarly (but as a separate

o e o e o e o e o
O data qubit
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FIG. 2. Pairing of ancilla qubits based on spatial locations
and potentially faulty qubits. All of the qubits shown are in the
higher-level surface code. The ancilla qubits with a change of
error syndrome are denoted as the big purple dots. The orange
crosses represent data qubits identified as likely to have suffered
an error according to the lower-level error-detection code, i.e.,
they are on the “list” as described in the main text. Two possi-
ble pairings are shown in this graph: Q1&Q2 and Q3&Q4, or
Q1&Q4 and Q2&Q3, connected by the green and purple curves,
respectively. The weights for the connections between two adja-
cent ancilla qubits with and without the listed data qubits are w
and z. Therefore, while the algorithm based purely on spatial dis-
tance always opt for the first pairing option, the second option
gives a lower total weighted distance if z > 3w.

problem) for Z checks. For each two adjacent nodes, if
the data qubit in the middle is on the list, the distance of
these two nodes is set to be w, otherwise z. After setting
all the distances for each pair of adjacent nodes, Dijkstra’s
algorithm can determine the minimal distance for each pair
of syndrome ancilla qubits and the corresponding path con-
necting them. It is this “shortest path” that then provides
the proper weighting for each pair of syndrome events.
Given this weighting, we can use the standard MWPM
algorithm to match them. Note that the weight parameters
w and z influence the performance of decoder significantly
and can be optimized in different practical cases. The ratio
w: z is of course dependent on the hardware error rates,
with an infinite weight for z being the idealized limit cor-
responding to the “wizard” in the earlier illustration. In
addition to these spatial weights, we also consider the syn-
drome events occurring in different stabilizer cycles, there-
fore apart from w and z, we introduce the time weight .
Paths over time are permitted only when the ancilla qubit
is connected to itself. The distance of two syndrome events
is thus the sum of distance in space and time.

There is a further nontrivial feature related to the use of
Dijkstra’s algorithm. Since it specifies the entire optimal
path connecting each pair, once we opt to pair two syn-
drome events then we should correct errors along the low-
est weighted path, instead of correcting errors following
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the shortest spatial path. We confirm that doing so has an
advantageous effect on the logical error rate.

We note, however, that Dijkstra’s algorithm is compu-
tationally expensive. The complexity is O(Sn*/4) in our
problem where S is the number of syndrome events found
in X checks (Z checks). Fortunately, in order to reduce the
complexity of Dijkstra’s algorithm in a large-scale graph,
we do not always need to calculate the accurate mini-
mal distance between two syndrome events but instead
we can give an approximate distance. Here we predeter-
mine a rather large cut-down threshold, which is related
to the hardware error rates and weight parameters z, w, ¢
and can be optimized in different cases. If the distance
between a certain pair of nodes exceed this threshold, the
program will stop and set this value as their distance.
The complexity for this modified Dijkstra’s algorithm is
O(SCn?/2), where C is a constant number related to the
cut-down threshold, independent of . This modified Dijk-
stra’s algorithm can improve the efficiency at the expense
of the performance of the decoder.

Another important factor in the new decoder is the fre-
quency to apply X and Z checks. As described above, in
the case with equal probability of X and Z errors, one
should perform an equal number of X and Z checks. How-
ever, we find that a biased environment in which phase
errors dominate necessitates a higher rate of X checks
in order to obtain the lowest logical error rate. With the
standard surface code, one finds that the ratio of the total
number of X and Z checks for the optimal behavior of the
code is roughly the same as the ratio of the probabilities for
occurrence of Z and X errors, defined as «. Such a discov-
ery is not surprising, as the surface code handles phase and
bit errors independently with equal power. Strictly speak-
ing, this is true when the number of basic gate operations
involved in an X check is the same as that for a Z check,
so that the rate of introduced errors is the same. This is
approximately true in real devices. However, our concate-
nated code is rather different, not only because it is capable
of correcting more phase errors, but also it requires more
gates to perform a Z check. In a sense, these two facts
have conflicting implications, since when we increase the
number of Z checks to achieve balanced performance ver-
sus the X checks, more gates are conducted and thus we
introduce more errors into the quantum hardware. In our
simulation, we find that the code handles Z errors much
better than the X errors, therefore more Z checks lead to
a higher threshold. The optimal ratio of X and Z checks
applied in the simulations is found to be smaller than «.
We discuss this further in Appendix A.

IV. NUMERICAL SIMULATION

A. Error models

In our simulation, we consider a mixture of dephasing
and depolarizing noise, motivated by their popularity and

TABLE I. Pauli-type errors applied to the circuit based on the
dephasing and depolarizing models.

Dephasing Depolarizing

X,Y,Z
IX,IY,1Z,XI,XX,XY,XZ, Y],
YX,YY,YZ,Z1,.ZX,ZY,ZZ

Single qubit Z
Two qubit 71,727,117

practical soundness. The noise is stochastic such that each
operation can be modeled by a superoperator NI/ with

N =01-p)T+pé&.

Here U is the ideal operation, and N is the noisy super-
operator with identity channel Z and error channel £
occurring with probabilities 1 — p and p, respectively. For
simplicity, we consider the same error rate p for both
single- and two-qubit operations. As shown in Table I,
for a single qubit, the dephasing error is a Z error and
the depolarizing error is a uniform mixture of X, 7,
and Z errors. For two-qubit gates, the dephasing error
is a uniform mixture of errors: ZI, IZ, and ZZ; and the
depolarizing error is a uniform mixture of the 15 errors:
IX,IY,IZ, XX, XY,...,ZZ. We add noise to every gate,
ancilla initialization, and ancilla measurement.

When mixing the two error models together, we choose
the depolarizing model and the dephasing model with
probabilities pgepo and paeph, respectively. That is, the
noise superoperator is N = (1 —p)T + P PdepoEaepo +
Ddeph€aepn) With depolarizing noise operator Egepo and
dephasing noise operator Egeph, and Paepo + Paeph = 1. In
the simulation, a gate is applied perfectly with probability
1 — p, otherwise an error is applied with either the depo-
larizing model or the dephasing model based on the biased
ratio. Note this ratio is not the actual ratio of the proba-
bilities of X and Z errors. When the ratio is unity, i.e.,
when the dephasing model and depolarizing models are
applied with an equal chance, the probability for a Z error
is roughly 2.8 times of that for an X error.

We also consider a quantum hardware with a modu-
lar structure, where local gates involved in error detection
(green boxes in Fig. 1) may have a lower error rate than
that of the long-range gates involved in the surface-code
parity checks (red boxes). Therefore, we have two overall
error rates, pg and p,, which we refer to as the local error
rate, and the global error rate, respectively. In summary,
the noise superoperator of local and global errors are

Nd = (1 —Pd)I +pd(pdepogdepo +pdephgdeph)’

e))

/\/'g = (1 _pg)I +pg(pdepogdep0 +pdephgdeph)a
respectively. In the threshold calculation, the threshold is
based on p,, as it is no smaller than p,; and thus be more
dominant. In the following, we consider scenarios with
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different ratios of global to local error rates py/pg, and
different ratios of depolarizing to dephasing error rates

Pdepo /pdeph .

B. Simulation results

We numerically test the capacity of the concatenated
code. Each simulation cycle follows the procedure as
described before, including stabilizer checks, pairing of
ancillas, correction of errors and finally determination of
whether there is a logical error. To reduce correlated errors,
the CNOT gates between the data and the ancilla qubits
follow a “Z” shape, following the same approach used
in Ref. [36]. A given experiment is successful if it suf-
fers neither a logical X error nor a logical Z, i.e., errors
can be perfectly corrected. A Monte-Carlo simulation is
applied, with each data point being the average result of
at least 40000 runs. Our main focus here is the thresh-
old of the code under different circumstances, as it is an
important measure when comparing two codes, not only
because a code with a higher threshold can permit fault-
tolerant QIP on a more noisy system, but also because the
higher-threshold code can be expected to achieve a given
target logical error rate with a smaller resource overhead.

1. Case 1: paepn = 1, paepo = 0, and p; < p,

To begin with, we consider the case with pure dephas-
ing errors, i.€., Pgeph = 1 and pgepo = 0. Since X errors
do not occur in this scenario, we only apply X -stabilizer
checks for both the concatenated and the standard surface
codes for a fair comparison. We first do not distinguish
between the fidelity of local and global gates, i.e., with
Pa = pg. It is found that the threshold of the concatenated
code is 1.42%, as shown as the first data point in Fig. 3,
higher than that of the standard surface code, which is
1.20% (plots shown in Appendix B). The result suggests
that with only phase noise, the benefits obtained from the
extra information exceeds the extra noise introduced from
the error-detection circuits.

We now move to the case that qubits exist in a modular
structure such that certain short-range two-qubit gates have
higher fidelity than other longer-range gates, i.e., ps < pq.
As shown in Fig. 3, when we gradually increase the ratio
Pq/Pa, the threshold error rate is observed to have a con-
tinuous gain. Note that the error rate for the determination
of threshold is based on py,, as it is larger than p,; and thus
plays the more dominant role. We see that the increase of
the threshold slows down with a larger ratio pg/ps. How-
ever, if the error detection is perfect, the code should never
fail, as no error is introduced to the second qubit [in the
circuit in Fig. 1(c)], while the error detection always iden-
tifies the error—it can only possibly be on the first qubit
and can be simply corrected once it is found.

To further assess the performance of the concatenated
code versus the standard surface code, we also compare

‘ ‘
0.06/24/*
6 _ - 1
-
-
_
/E\ 5 | _ - - -
S ¥ 0.0472
~ -
ki 7
S 4 e ]
= 7
o X 0.0334
= 3 7 1
F /7
¥ 00248
2 /* 0.0202 1
¥ 0.0142

1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Ratio of global to local error rates (p,/p,)

FIG. 3. Increase in noise threshold as we alter the relative error
rates for local error detection and global parity check, in a sce-
nario with pure phase errors. The threshold error rate represents
the error rate applied for global parity check. A larger ratio leads
to an increase of threshold.

each code’s probability of successfully protecting its log-
ical qubit given that each embodies the same number
of physical qubits, e.g., with the same resource require-
ments. Here we consider the standard surface code with a
size of 20 % 20(= 400), and the concatenated code of size
14 % 14, which actually requires 392 qubits when we allow
for the additional resources needed for our phase-error-
detect layer. Thus, the two have nearly the same number of
physical qubits. A total of 3 % n stabilizer cycles are per-
formed, where n is the code size. The result is shown in
Fig. 4, where the y axis “success rate” is 1 - logical error
rate, and the x axis is the error rate in the parity check
cycle. The orange curve represents the concatenated code
where the error rate for local error detection p, is the same
as the error rate in parity check p,, while the yellow one is
the same code but with p; = 0.5p,. We see that reducing
the error rate for error detection yields a large gain in the
success rate considering the same error rate of the parity-
check cycle. Over the whole range, both the curves for the
concatenated codes are superior to the blue curve, which
corresponds to the standard surface code. The gray dashed
curves from left to right indicate the thresholds for the blue,
orange, and yellow curves as references.

For the concatenated code in the simulations above, as
previously discussed, the weights for space and time are
adjusted for the highest success rate. We do this empiri-
cally though a certain trend has been found and is presented
in Appendix A. A more rigorous study on the weights is
not within the scope of this work but represents a direction
for future works.

2. Case 2: paepo[Paepn € 10,1]

So far our comparisons made in the previous simula-
tions are for gates with pure phase noise, now we move on
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FIG. 4. Code success rate as a change of the gate error rate
applied in the parity-check cycle under the circumstance of pure
phase error. The blue curve represents a standard surface code
with a size of 20 % 20. The orange and yellow curves refer to
the concatenated surface code of size 14 * 14, with p; = p, and
pa = 0.5p,, respectively. The code sizes are chosen such to make
the total number of physical qubits (almost) the same for the two
different codes. The gray dashed lines (from left to right) denote
where the threshold is, for the blue, orange, and yellow curves,
respectively.

to a more realistic scenario where both phase and bit-flip
noise is present but the former still has greater severity.
In this case Z-stabilizer checks are required to detect X
errors, and as mentioned above, in a biased environment,
we may employ multiple X -stabilizer cycles for each Z-
stabilizer cycle. For both the standard surface code and
the concatenated code, we determined the optimal pattern
by trialing different frequencies and selecting the one that
leads to the highest success rate. Full details are given in
Appendix A. Note that for accurate simulations, we need to
apply a deep enough simulation (i.e., sufficient number of
stabilizer cycles) to ensure that a large number of X errors
occur in each run—otherwise, the results would be skewed
by the “edge effect” that the simulation starts from a clean,
error-free state.

The data plotted in Fig. 5 show the threshold change as
we gradually increase the relative strength of the depolar-
izing versus the dephasing error model. It is not surprising
to see that all the three curves representing the threshold,
which is the error rate in the stabilizer check cycle, decline
as the ratio rises. The green curve referring to the standard
surface code starts from the lowest value but goes down
slowly. The purple curve stands for the concatenated code
whose gate error rate in the error detection is one third of
that in the stabilizer check, i.e., ps = p,/3. We see that it
decreases fast and crosses the green curve when the ratio
is roughly 0.8, indicating that the concatenated code is no
longer beneficial when the strength of depolarizing error is

2.6
247 Standard surface code| |
290 | New code errors 1:1 i
——New code errors 1:3
Q27
=]
=18
=
©16
=
14 F
1.2
1 |
0.8 L L L L
0 0.2 0.4 0.6 0.8 1
pdepo/pdeph
FIG. 5. The dependence of threshold on the relative strength

of dephasing and depolarizing errors. The “threshold” quantity
along the y axis is the total probability of a physical error; each
such error is assigned to one of the two possible models with rel-
ative probabilities given by the x axis. The purple (brown) curve
corresponds to the concatenated code where the gates in error
detection have three times the error rate (the same error rate) as
the gates in parity check. For reference, the standard surface code
is plotted as the green curve.

higher than this value. The concatenated code, which has
an equal probability for errors happening in error detec-
tion and parity check, p; = p,, is plotted as the brown
curve, which as we would expect lies between the other
two curves.

V. CONCLUSION

We propose a variant of the standard surface code by
concatenating it with a simple two-qubit phase-detection
code. We develop a new decoder that efficiently takes into
account the likely location of errors, obtained from the
error-detection stage, with a modified minimum-weight
perfect-matching algorithm. The concatenated code sub-
stantially outperforms the canonical surface code (by
allowing a significantly higher threshold) for the common
scenario where phase error dominates. In this work every
gate operation is considered noisy, while environmental
noise is not explicitly introduced to the code. Neverthe-
less, as passive noise is nearly equivalent to gate noise
(which is Pauli-type errors followed with a perfect gate),
introducing it into the system will not significantly change
the error syndrome and the threshold will change within
a reasonable range depending on the relative strength of
environmental- and gate-error rates, and how frequently
the environmental error is applied. A similar scenario has
been considered in Ref. [14], where a tensor network
decoder has been applied to find very high thresholds while
assuming perfect active operations. It is an open ques-
tion to make use of the tensor network decoder or other
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decoders to efficiently handle the information of the likely
location of errors. In this work, we consider a square sur-
face code with equal width and length. However, with the
biased noise model where phase error dominates, it might
be possible that a rectangular code would have a higher
threshold, if the logical qubit is encoded in such a way that
the code distance for a logical Z operator is larger than for
a logical X operator. As the rectangular code normally has
a lower threshold than the square code, it remains an open
question when the rectangular code becomes beneficial and
to what extent the threshold can be boosted.

The concatenated code becomes yet more advantageous
when one considers the likely scenario that local gates
(among the groups of three qubits associated with error
detection) may have a lower noise rate compared to the
gates that link between such groups. Such a scenario would
correspond to modular hardware with exquisite local quan-
tum control and more noisy global links. Modular quantum
computing has been extensively studied and shown to
be feasible even with near-term hardware [32,37]. Our
work studied the concatenation of the surface code with
a lower-level two-qubit error-detection code, where the
error information from the lower-level code is utilized
by the higher-level decoder with an advanced decoder
as the connective element, in the context of modular
hardware.

It remains an interesting question to instead consider
other codes for local modules. For instance, one can con-
sider combining the decoding algorithm described in this
Paper with the four-qubit error detection code, as has
been studied by Criger and Terhal [17], or a three-qubit
phase-error-correction code. For the former case, as the
four-qubit error-detection code detects both phase and bit-
flip errors, the modular architecture could work with any
error model. For the latter case, which is ideal with a
phase-dominated error model, errors can be more accu-
rately located, even with a high chance to be exactly
corrected in the lower-level code. However, as a trade-off,
more noise is introduced into the system due to a larger
number of gates applied. Because our modeling approach
can associate noise with all gate operations, the existence
of a threshold and its position relative to the threshold
for a more simple code (e.g., the basic surface code)
provides us with an understanding of whether the addi-
tional complexity is justified. We show that, for a range
of noise scenarios, it is indeed advantageous. The decoder
described in this Paper can be easily adopted and a higher

threshold is expected if the local gates are associated with
a lower error rate than the long-range gates. It remains an
interesting question whether general concatenated codes
incorporated with our decoder will outperform the standard
surface.
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APPENDIX A: PARAMETERS CONSIDERED IN
THE DECODER

A couple of parameters are considered regarding differ-
ent circumstances.

1. The correction to apply on the physical qubit

When the error detection finds a single error, a phase
gate will be applied to a physical qubit. As discussed in
the main text, the extra phase gate either cancels out the
error or create a logical error to the data qubit. If no other
information is provided, one may apply the phase gate on
one of the two physical qubits with equal probability. How-
ever, a trend can be found based on the specific structure of
the circuit used for surface-code parity checks (see Fig. 1):
since the gate for parity checks is always applied on the
first physical qubit, noise on the second physical qubit can

TABLE II. Different weights and cut-down threshold used in the simulations. » represents the size of the code.
Dd/Pe 1 1/2 1/3 1/5 1/10 1/20
Space weight z 12 12 4.5 4 3 3
Time weight ¢ 3.5 3.5 0.85 0.5 0.4 0.35
Cut-down threshold 3n+1 3n+1 2n+4 n+ 10 n+6 n+5
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only be introduced from the error-detection gates. Intu-
itively, if an error is detected, we could estimate where it is
depending on the relative error strength p,/p,. If the low-
level gates have a much higher fidelity, the error generated
in the last parity-check cycle (on the first qubit) is likely
to be identified correctly, thus under such a circumstance
the phase gate should be applied to the first qubit. On the
other hand, if the low-level gates have a comparable error
rate as the long-range gates, we have the following esti-
mate. With the dephasing error model, the probability for a
phase error occurring in either qubits is %pd, and for mea-

surement error is 13_opd’ indicating reasonable chance of a
wrong error syndrome, with which, it will be safer to apply
the phase gate to the second qubit, as such it will not be
detected by the parity check and can be corrected in the
next cycle. In the simulation, it is found that when p,/p, is
smaller than 0.5, one should apply the phase gate to the first
qubit, while if not, the gate should be placed in the second
qubit.

2. The weights for time and space

As introduced in the main text, the distance between
any two syndrome events is the sum of their distance over
time and space. In the calculation, the three weights w, z, ¢
are based on the extra information obtained from error
detection.

For convenience we make the weight w = 1, and refer
to ¢ and z as time weight and space weight, respectively.
Table II shows the weights used in the simulations. The
first two columns correspond to the case where the phase
gate is applied on the second physical qubit: the distinct
difference of weights compared with the others is elusive,
however, we find that the space weight is not independent
as we introduce the cut-down threshold as another variable
into the decoder. In the calculation of the distance of the
two syndrome events, if the distance found is higher than
this threshold, the program will stop and make the distance
infinity, as to not pair the two syndrome events. By doing
so we shorten the time cost for each simulation run, and we
find it also constrains the space weight—which should be
smaller than the threshold so as to permit the connection of
two data qubits that are not in the list.

TABLE III.

3. The approximate Dijkstra algorithm

We denote all the nodes in the graph as G and the single-
source start point as sg, the vector dist[s] as the distance
between s and sy, prev[s] as the previous node adjacent to
s in the path connecting s and s with distance dist[s]. S and
0 denote the sets containing the nodes visited and unvis-
ited, respectively. ¢ denotes the predetermined cut-down
threshold. The detailed procedure for single-source Dijk-
stra algorithm is shown in Algorithm 1. This procedure can
only give the distances starting from one single node. Thus
in our case we repeat this algorithm a few times starting
from different syndrome change nodes.

1: For any node s € G/{so}, dist[s] = oo, prev[s] = so,
dist[so] =0

2: S= {So}, Q= G{So}

3: while @ # @ do

4:  u= Extract-Min(Q), S.insert(u)

5: if dist[u] < c then

6: for any v € @Q adjacent to u do

7 if dist[v] > dist[u] + weight[u,v] then
8: dist[v] = dist[u] + weight[u, v], prev[v] = u
9: end if

10: end for
11: end if

12: end while

Algorithm 1. Approximate Dijkstra algorithm.

4. The frequency to apply X and Z checks

When mixing the depolarizing model with the dephasing
model, the pattern for applying X and Z-stabilizer checks
requires adjustment. The reason to do so stems from the
fact that the overall success rate is the product of the suc-
cess rates for logical Z and X errors, thus the highest
success rate is achieved when the success rate for the two
types of logical errors is the same. Therefore, with a biased
error model, more X checks are to be performed than Z
checks.

The frequencies of the X and Z-stabilizer checks consid-
ered in our simulation are shown in Table 111, which gen-
erates the lowest overall logical error rate. Here, the fre-
quency F refers to the rounds of X -stabilizer checks before
one round of Z-stabilizer check is applied. Unsurprisingly

Optimal frequencies of X and Z checks for the concatenated and the standard codes as the relative strength of depolariz-

ing and dephasing noise changes. F refers to frequency, e.g., how many rounds of X -stabilizer checks are applied before one round of
Z-stabilizer checks. The Z and X error rate is the relative probability for Z and X errors happening in the standard surface code, when

the frequencies of X and Z checks are as above.

Relative strength 0.2 0.3 0.5 0.7 0.9 1.0

F Standard code 9 6 4 4 3 3
pa=1/3pg 5 3 2 2 2 1
Pd = Pg 4 3 2 1 1 1

Z/X error rate 9.918 6.738 4.352 3.597 2.958 2.786
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FIG. 6. Dependence of the logical success rate with the physical error rate and the size of the codes for (a) the standard surface code
and (b) the concatenated code. The error rate in the error-detection cycle is the same as in the parity-check cycle. The crossing point
of the curves defines the threshold of that code. We see that when only phase error is present, the standard surface code has a threshold
of around 1.20%, smaller than that of the concatenated code, which is around 1.42%.

as the relative strength of depolarizing error reduces, the
frequency increases. With the standard surface code, the
optimal frequency is roughly the same as the rounded
relative probability to find a phase and bit-flip error, as
indicated in the last row of the table. Note the frequency
may not be strictly ideal, since we do not consider the
case when it is a noninteger (e.g., 3/2 means three rounds
of X checks followed with two rounds of Z checks), as
it may change the error pattern significantly. As for the
concatenated code, smaller frequencies are observed as
the ps/p, increases. It can be explained by the fact that
as py becomes larger, more errors are introduced during
the error-detection cycle, which increases the logical error
rate. Given that the total number of stabilizer checks is
fixed, a smaller number of X checks is therefore more
beneficial.

APPENDIX B: THRESHOLD PLOTS FOR THE
CASE WITH PURE PHASE ERRORS

Here we show the threshold plots with the standard sur-
face code and the concatenated code for comparison. Only
phase error is present in the simulation, and we make the
pessimistic assumption that the local gates for error detec-
tion have the same fidelity as the long-range gates for
parity check. As shown in Fig. 6, the threshold of the stan-
dard surface code is about 1.20%, appreciably smaller than
the threshold of the concatenated code (1.42%).
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