
A High-throughput, Area-efficient Hardware
Accelerator for Adaptive Deblocking Filter in

H.264/AVC
Muhammad Nadeem1, Stephan Wong1, Georgi Kuzmanov1, Ahsan Shabbir2

1 Delft University of Technology, Delft, The Netherlands

{M.Nadeem, J.S.S.M.Wong, G.K.Kuzmanov}@tudelft.nl
2 Eindhoven University of Technology, Eindhoven, The Netherlands

A.Shabbir@tue.nl

Abstract—In this paper, we present a high-throughput, area-
efficient, hardware accelerator for the deblocking filter in
H.264/AVC video compression standard. In order to achieve
this goal, we start with algorithmic optimization and propose a
novel decomposition of the filter kernels for the deblocking filter.
The proposed decomposition reduces the number of adders by
51% and thereby greatly reduces the area requirement for its
implementation. Subsequently, at architecture level, while using
two identical filtering units, the transpose units are realized by
efficient reuse of hardware resources to further reduce the area
requirement. The two filtering units process the horizontal and
vertical edges of the macro-block simultaneously and therefore
further enhance the throughput of the hardware accelerator. Sev-
eral other optimization techniques, such as reuse of intermediate
results, pipelining, and merging of processing blocks on critical
path, result in a hardware accelerator for deblocking filter with
high throughput at one hand and less area in terms of equivalent
gates count on the other, when compared with existing state-of-
the-art hardware accelerators in the literature. While working
at clock frequency of 166 MHz, synthesized under 0.18 μm
CMOS standard cell technology, it easily meets the throughput
requirements of all the levels in H.264/AVC video coding standard
and consumes only 12.06 K gates (excluding SRAM).

I. INTRODUCTION

The latest video coding standard H.264/AVC [4], jointly

developed by ITU-T and ISO/IEC MPEG, significantly out-

performs previous video coding standards (like H.263 and

MPEG-2/4) in terms of bit-rate reduction. H.264/AVC offers

perceptually the same video quality with at least 2 times better

compression when compared with MPEG-2 [1], [2], and up

to 30% better compression when compared with H.263+ and

MPEG-4 Advanced Simple Profile (ASP) [3]. The H.264/AVC

video coding standard has already been adopted for wide

range of applications, from low bit-rate mobile video to high-

definition TV.

The block diagram of the H.264/AVC encoder is depicted

in Figure 1. The improved encoding efficiency achieved in

H.264/AVC is not a result of any single feature in the

new standard, rather it is a combination of a number of

advanced coding tools at the expense of increased complexity.

Multi-mode intra-prediction, integer discrete cosine transform

(DCT), multi-frame variable-block-size inter-prediction with

up to quarter pixel accuracy, context adaptive binary arithmetic

� � � � �
� � � 	

� � � � �

�
 � 	 �
�
 � � �
 �

� � � � �
 � � �
� � � 	 � � � � �

� � � � � � � � � �
� � � � �
 � �

� 	 � � �
 � � � � �
� � � � 	 �� � � � � � � � 	

� � 	 � � � � �
 �

 � �
 �
�
 � � 	 � � � �
 �

 � �
 �
! � � � � � �
 �

! � � �
 � "
�
 � � � �

�
 � � �
 �
� �

� � � �
� � � � �
 	 � � �

� � � � �
� � � 	

� � � � �

 � �
 �
� �

� � � � � � � � 	 �

� 	 �
 � 	 �

$

Fig. 1. Block diagram of H.264/AVC Encoder/Decoder

coding (CABAC) and deblocking filter are some of these tools

in H.264/AVC.

Like other block-based video coding standards, the H.264

also suffers from the blocking artifacts in the reconstructed

video. The block-based discrete cosine transform (DCT) and

block-based motion compensation (MC) are two major sources

of these blocking artifacts [5], [6]. The H.264/AVC uses an

adaptive in-loop deblocking filter to remove such artifacts in

the reconstructed video frame.

Since the deblocking filter is in the encoding loop of the

H.264 video encoder, it does not only provide the perceptually

improved video quality by removing the blocking artifacts, but

also helps to reduce the bit-rate typically between 5-10% [7].

However, this improvement in video quality and reduction

in the video bit-rate is achieved at the cost of increased

complexity of the deblocking filter algorithm. According to

the analysis of run-time profile of the H.264 decoder sub-

functions, the deblocking filter consumes about one-third of

the computational resources [8]. These demanding characteris-

tics suggest a hardware implementation for such a deblocking

filter for high definition video applications, where even larger

frame sizes at higher frame rates are to be processed in real-

978-1-4244-5170-8/09/$26.00 © 2009 IEEE ESTIMedia 200918

time.

Several different hardware accelerators have been presented

in the literature during the last few years for efficient hard-

ware realization of the deblocking filter in H.264/AVC video

standard. Most of these hardware accelerators use single filter

unit to carry out the filtering operations in both directions

(horizontal and vertical). This approach though requires less

area but mostly fails to meet the throughput requirement for

the real-time processing of high definition video (4096×2304,

16:9). Whereas the solutions based on multiple filtering units,

provide better throughput at the cost of additional area. Yet,

most of them do not meet the real-time processing requirement

of all levels (level 1-5.1) offered by the video coding standard

H.264/AVC. With this work, we address the above problems

and provide the following specific contributions:

• The deblocking algorithm is further optimized through

decomposition of filter kernels and the number of addi-

tions are reduced by 51%, when compared with that of

original filter equations.

• Identification of common inter filter mode operations and

a proposal for common data paths for both the filtering

modes (strong filter mode and weak filter mode).

• Area-efficient design of transpose units achieved by ag-

gressive reuse of on-chip hardware resources (memory

modules).

• Efficient pipeline stage design to reduce the number

of storage registers for intermediate results between the

pipeline stages.

• Optimizations to reduce the critical path by merging

certain processing blocks. This enables us to achieve

significantly higher throughput and meet the real-time

processing requirement of all levels (level 1-5.1) in video

coding standard H.264/AVC.

It is worth mentioning that the increase in throughput is not at

the cost of additional on-chip area. In most cases, it requires

less area in terms of equivalent gate count when compared

with the existing state-of-art hardware accelerators for the

deblocking filter.

The organization of the paper is as follows. Related work

is presented in Section II. A brief overview of the deblocking

filter algorithm followed by the algorithm level optimizations

is provided in Section III. Section IV describes the top level

design, the data flow and the optimizations carried out at this

level. Internal architecture details and related optimizations

for throughput improvement and area reduction are provided

in Section V. Results are discussed in Section VII and Sec-

tion VIII concludes this paper.

II. RELATED WORK

A large number of deblocking filter accelerators utilize a

single filter unit. For instance, in [9], Shih et. al., propose

a 5-stage pipelined hardware architecture for the deblocking

filter. They employ a novel filtering order and data reuse

strategy to reduce the number of cycles, memory traffic and

required area for their implementation. In [13], the authors

rearrange the data flow to significantly reduce the memory

size requirement and propose an in-place architecture which

re-uses the intermediate data as soon as it is available and

therefore are able to reduce the intermediate data storage to

four 4×4 blocks instead of a complete 16×16 macro-block

(MB). Similarly, Chang [11] also reorders the computing flow

to efficiently utilize the intermediate data between adjacent

edges.

The hardware architecture in [15] implements a parallel-in

parallel-out reconfigurable FIR filter to carry out the filtering

operations and employs a dual-ported SRAM for intermediate

data storage. Li, et. al., [10] adopt a 2-dimensional parallel

memory scheme for parallel access in both the horizontal

and vertical directions to speed up the filtering process and

to eliminate the need of a transpose circuitry by using this

memory scheme efficiently.

A hybrid filter scheduling (described in [12]) reduces the

required number of clock cycles for filtering and therefore

improves the system throughput while using the column-of-

pixel data arrangement to facilitate the memory accesses and

reusing the pixel value. A 5-stage pipelined architecture pro-

posed in [16] for simultaneous processing of strong and weak

filtering modes uses a novel transpose design to reduce the

hardware cost and an alternate processing order of vertical and

horizontal edges to reduce the on-chip memory requirement.

The area requirement for some of these hardware accelera-

tors [10], [11], [20] is low due to their reduced functionality as

these architectures do not implement boundary strength (BS)

computation module.

Some of the hardware solutions based on multiple filter units

have been introduced in the literature quite recently. These

solutions provide higher throughput at the cost of additional

on-chip area requirement, but still most of these solutions

do not meet the throughput requirements of all the levels

(level 1-5.1) offered by the Video Codec H.264/AVC. For

instance, F. Tobajas [19] proposed a hardware architecture

based on a double-filter strategy, and use a raster scan filtering

order. Cheng [14], [17] proposes a configurable window-based

architecture to simultaneously filter in both the directions.

The main idea is to reduce the number of memory references

through simultaneous processing architecture (SPA) using the

vertical processing order instead of the raster scan order. A

similar architecture is proposed in [18] by Venkatraman, et.

al..

Some efforts have been made to optimize the filter kernels

by removing redundant operations, however the strong filter

mode is the focal point in most of these attempts. For instance,

in [22], the author suggests 3 different decompositions of the

filter kernels in the strong filter mode to reduce the number

of addition operations. The author however, does not consider

similar decompositions for weak filter mode.

In short, single filter unit based solutions require less area

in terms of equivalent gate count fort their implementation

but fail to meet the processing requirements of high definition

video in real-time. In some cases, area reduction is achieved

through reduced functionality offered by these hardware ac-

celerators. The solutions based on multiple filtering units, on

the other hand, though provide better throughput at the cost of

additional area but still do not meet the real time processing

requirement of all the levels offered by the video coding

19

� � � � � �

� �

� �

� �

� 	

 �
 �
 �
 	

� � � � � � � 	

� � � � � � �

� � � � � � � � � � �

� � � � � 	 � � � � �

� � � � � � � 	

� �

� �

� �

� 	

� � �

� �

�

 �

� � � � � �

� � � � � �

� � �

� �

�

� � � �

� �

� �

 �
 �

� � 	

� � � � � �

� � �

� �

� �

Fig. 2. Vertical and Horizontal 4x4 block edges in a MB (a) Y component
of MB (b) U component of MB (c) V component of MB

� � � � � � � � � � � � � � � �

� � � 	
 � � � � � �

Fig. 3. Convention for describing the pixels across Vertical/Horizontal edge

standard H.264/AVC. We present a high-throughput hardware

accelerator for deblocking filter to meet the processing require-

ment of all the levels in H.264/AVC while keeping the area

requirement as low as possible. With our design we address

the above discussed problems of related works and provide

several optimal design solutions for them.

III. THE H.264/AVC DEBLOCKING FILTER ALGORITHM

This section provides a brief overview of the adaptive

deblocking filter algorithm in H.264/AVC. The detailed de-

scription of the algorithm can be found in [4].

The filtering operation is performed on macro-block (MB)

basis after reconstruction of the picture, with all MBs in a

picture processed in order of increasing MB address. The

filtering is applied to all the 4×4 block edges except the edges

at the boundary of the picture or for which the filtering is

disabled explicitly. The filtering process is invoked for luma

and chroma components of the MB separately. For each MB

and for each component, vertical edges are filtered first starting

with the left most edge and proceeding through the edges

in their geometrical order. The horizontal edges are filtered

afterwards in a similar fashion, starting with the top most

edge and proceeding through the edges in their geometrical

order [4] as depicted in Figure 2. The filtering process also

requires pixels from left and top neighbor macro-blocks in

order to filter the left most edges (V1, V5 and V7) and the

top most edges (H1, H5 and H7), respectively. A macro-

block at 4×4 block level is depicted in Figure 2. Blocks B1

through B16 belong to Y (luma) component of the current

MB whereas B17-B20 and B21-B24 are from U, V (chroma)

components of the same MB respectively. The blocks (T1-T8)

are the top neighbor 4×4 blocks and (L1-L8) represent the left

neighbor 4×4 blocks of a MB in Figure 2. The convention

to describe the pixels across the horizontal and vertical edge

is depicted in Figure 3. The bold line between pixels p0 and

q0 is either a vertical or horizontal edge between two adjacent

4×4 blocks. Pixels q0-q3 represent the pixels in the current

4×4 block where as pixels p0-p3 are from corresponding left

� � � � � � � � 	 �
 � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � ! " � � # $ � � � � � � % ! � � # & � � � � � � " % ! " � � # & � � % �
� � � ' (� �) * + , - � . - � � � � � � / ! � � # & � � � � � � � ! " � � # � � $ 0 1 � 2 / � � � / �
� � � ' 3 � �) * + , - � . - � � � � � � " / ! " � � # & � � � � � � � ! " � � # � � $ 0 1 � 2 / � � � 4 �

5 � � ' (� �) * + , - � . - � � � � � � / ! � � # & � � 1 �
5 � � ' (� �) * + , - � . - � � � � � � " / ! " � � # & � � 6 �

� 7 � 8 � � � � � � � � � � 9 8 : ; �
 � < � � / 2 / = % 2 / = � 2 / = " � 2 " % 2 1 � > > 4 � ? �
 % < � � / 2 % 2 � 2 " � 2 / � > > / � @ �
 / < � � / = 4 2 4 = / 2 % 2 � 2 " � 2 1 � > > 4 � A �
 � < < � � / = % 2 � 2 " % 2 / � > > / � B �

" � < � � % 2 / = � 2 / = " � 2 / = " % 2 " / 2 1 � > > 4 � % � �
" % < � � " / 2 " % 2 " � 2 � 2 / � > > / � % % �
" / < � � / = " 4 2 4 = " / 2 " % 2 " � 2 � 2 1 � > > 4 � % / �
" � < C � � / " % 2 " � 2 % 2 / � > > / � % 4 �

� D � E � � F � � � � � � 9 8 : G �
� - H I , � J H K � ! J % L J % L � � � � " � ! � � # # / � 2 � % ! " % � 2 1 � > > 4 � � � % 1 �
 � < � J H K � � L / 6 6 L � 2 � - H I , � � % 6 �
" � < � J H K � � L / 6 6 L " � ! � - H I , � � % ? �

 % < � % 2 J H K � ! J � L J � L � / 2 � � � 2 " � 2 % � > > % � ! � / = % � � > > % � � % @ �
" % < � " % 2 J H K � ! J � L J � L � " / 2 � � � 2 " � 2 % � > > % � ! � / = " % � � > > % � � % A �

Fig. 4. (a) Pixel level filter controls flags Eqs. (b) Strong Filter mode Eqs.(c)
Weak Filter mode Eqs.

or top neighbor 4×4 block across the vertical or horizontal

edge respectively.

The H.264/AVC deblocking filter is a highly adaptive filter.

It adapts at slice level, 4×4 block edge level and set of pixels

level within a 4×4 block. At the slice level, a set of threshold

parameters control the filtering operation, whereas at the block

edge level, the filtering strength is computed on the basis of

parameters, e.g., encoding mode, motion vector difference and

coded residual of 4×4 block. The boundary strength (BS)

parameter controls the filtering strength at 4×4 block level

and varies from 4 (strong filtering) to 0 (no filtering). For BS

values 1, 2 and 3, a weak filtering process is invoked on the

pixels across the block edge. The decision process to compute

the BS value is given in [4].

The selected filtering mode is turned ON or OFF depending

upon the value of Filter Sample Flag (FSF). The FSF is derived

using Eq. (1) in Figure 4(a). The value of FSF is based on the

local edge information and a set of quantization parameters

dependent on thresholds α(QP) and β(QP).

In strong filter mode (BS=4), at most 3 pixels are modified

on either side of the edge. The new pixel values for the pixels

on left or top side of the edge (p-pixels) are computed using

Eqs. (6-8) Figure 4(b), provided the strong filter flag for p-

pixels (SFF P) is set. If the SFF P flag is not set, only one

pixel (p0) is filtered and the new value for this pixel is derived

by Eq.(9). Similarly, the pixels in the current block (q-pixels)

are computed using Eqs. (10-12) Figure 4(b), provided the

corresponding strong filter flag (SFF Q) is set. In case SFF Q

flag is not set, only one pixel (q0) is filtered using Eq. (13) and

rest of the pixels remain unchanged. The values for SFF P and

SFF Q flags are derived from Eq.(2) and Eq.(3), respectively.

In the weak filter mode (BS=1,2 or 3), at most 2 pixels on

either side of the edge are filtered. The new filtered values

for the pixels p0 and q0 across the edge are derived from Eq.

(15) and Eq. (16) respectively, whereas Eq. (17) and Eq. (18)

are used to provide the filtered values for pixels p1 and q1, if

the corresponding weak filter flag (WFF P, WFF Q) is set. In

20

Strong Filter (BS= 4)
p0' = (u1 + u5) >> 3 (19)
p1' = (u1) >> 2 (20)
p2' = (u1 + 2*t1) >> 3 (21)
p0'' = (u3 + t3) >> 2 (22)

q0' = (u2 + u5) >> 3 (23)
q1' = (u2) >> 2 (24)
q2' = (u2 + 2*t2) >> 3 (25)
q0'’ = (u3 + t4) >> 2 (26)

Weak Filter (BS= 3)
delta = Clip(-c1, c1, ((4*u0 + 3) + u3 + 1)) >> 3) (27)
p0' = Clip(0,255,p0 + delta) (28)
q0' = Clip(0,255,q0 - delta) (29)

p1' = p1+clip(-c0,c0,(u1)>>2) (30)
q1' = q1+clip(-c0,c0,(u2)>>2) (31)

Where
u1 = (2*p2 + p0 + 1) + (q0 – 4*p1) When Bs ? 4 and (32)
u1 = (p2 + p0 + 1) + (q0 + p1 + 1) When Bs = 4 (33)

u2 = (2*q2 + q0 + 1) + (p0 – 4*q1) When Bs ? 4 and (34)
u2 = (q2 + q0 + 1) + (p0 + q1 + 1) When Bs = 4 (35)

u3 = p1 – q1 When Bs ? 4 and (36)
u3 = (p1 + q1 + 1) When Bs = 4 (37)

u4 = p0 + q0 + 1 (38)
u5 = u3 + u4 (39)

t1 = (p3 + p2 + 1) (40)
t2 = (q3 + q2 + 1) (41)
t3 = p1 + p0 + 1 (42)
t4 = q1 + q0 + 1 (43)

Fig. 5. Decomposed filtering equations for Strong and Weak filter modes

case the weak filter flag is not set, the filtering operation for

these pixels is turned OFF. The values of WFF P and WFF Q

are derived from Eq. (4) and Eq. (5), as shown in Figure 4(a).

No filtering is applied for BS = 0.

Algorithm Level Optimizations for Deblocking Filter: In

strong filter mode, the filtered pixel values are derived from

Eqs. (6)-(13) as shown in Figure 4(a). Similarly the filtered

pixel values for weak filter mode are derived from Eqs. (14)-

(18). It is clear from these equations that the strong filter

mode requires 36 additions; whereas 13 additions and 5 clip

operations are required for the weak filter mode. This results

in 49 additions and 5 clip operations in all while excluding

the operations needed to compute the pixel level filter flags.

As mentioned in the related work, the author of [22]

suggested 3 different decompositions of the filtering equations

in the strong filter mode to reduce the number of operations.

The author, however, did not consider the reduction in number

of operations for the weak filter mode. The suggested decom-

position with least number of operations in [22] requires 22

addition in case of strong filter mode. Another 13 additions

along with 5 clip operations are, therefore, required for weak

filter mode case. This results in 35 additions and 5 clips
operations to perform the filtering. Similarly the deblock filter

design for the strong filter mode proposed in [24] requires 23

additions. Therefore, 36 additions and 5 clip operations are

required to implement this design for both fitering modes in

H.264/AVC.

Decomposition of filter kernels: An important contribution

of this paper is the removal of redundant operations in both the

filtering modes through novel decomposition of filtering Eqs.

(6)-(18) in Figure 4 into a set of modified filtering Eqs. (19)-

(43) given in Figure 5. Note that the rounding constants in

original filter Eqs. (6)-(14) are efficiently distributed among

� � �

� � �

� �

� �

� � �

� �

� �

� � �

	

	

�
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

 �

� � 	

� � � �

� � �

� �

� �

� �

� �

	

	

�

� � 	

� � � �

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

 �

� �

� �

� � �

� � 	

� � � �

 � � � � � � � � � � � � � � � � � � �

 �

� � �

� �

� ! �

Fig. 6. Overlapped data paths for u1, u2 and u3 in Strong and Weak Filter
modes

several intermediate results in the form of x + y + 1. This

operation, however, requires only one adder for its hardware

implementation. The term 4u0+3 in Eq. (27) can be realized

by appending bits ’11’ as least significant bits in u0 and

therefore do not require any additional adder. Similarly, re-

use of intermediate results significantly reduces the number

of additions. The proposed decomposition requires only 31

additions.

Inter filter mode optimization: Since both the filtering

modes are mutually exclusive, only one of them is used for

filtering of pixels data across the 4x4 block edge at any time.

Therefore, inter-filter-mode redundancy can be removed by

designing the data paths for Eqs. (32)-(37) in such a way that

they overlap as much as possible in terms of arguments for

processing units(adders in this case). The proposed realization

of Eq. (32)-(37) using overlapped data paths is illustrated in

Figure 6(a)(b)(c). The inter filter mode optimization reduces

another 7 adders at the cost of only 4 multiplexer modules.

The suggested decomposition in this paper along with inter

filter mode optimization, therefore, requires only 24 additions

and 5 clip operations. Hence the number of additions are

reduced by 51% when compared with that of original filtering

equations in [4], by 31%, when compared with decomposition

suggested in [22], and by 33%, when compared with [24].

A comparison of number of operations required to carry out

the filtering process by [4], [22], [24] and the proposed in

this paper, is given in Figure 8. In Section VI, we further

elaborate on how these overlapped data paths help to reduce

the number of intermediate storage registers required between

the two pipeline stages.

IV. THE HARDWARE ACCELERATOR ORGANIZATION

In this section, different building blocks that constitute the

top level design of the hardware accelerator are first introduced

with a brief rationale for each of them. Subsequently, the pixel

21

� � �

� � � � �

� �� �

�

� �

� � �

� 	
 � �

� 	
 � �
�

� � � �
� � �

� � � �
� � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �
� ! " #

� ! " #

$ � % & � %
' � (

) * �
� +

, - & � %
' � (

) . �
/ 0 �

) . �
� 0 1

Fig. 7. High level organization of the proposed deblock filter accelerator.

49

36 35

24

0

5

10

15

20

25

30

35

40

45

50

Total Number
of Additions

[4] [24] [22] Proposed
Ref

Fig. 8. Comparison: Addition operations in Strong and Weak filter modes

data flow, at 4×4 block level, is explained to provide an insight

in the functioning of the hardware accelerator.

The block diagram of the deblocking filter hardware ac-

celerator is depicted in Figure 7. All solid line data paths are

32-bit wide (4 pixels) and the dotted lines represent the control

signals. This accelerator is based on two identical filter units

Vertical Edge Filter (VEF), Horizontal Edge Filter (HEF), two

transpose units (Trans1, Trans 2), Boundary Strength compu-

tation unit (BS) and Left/Top neighbor RAM units (LFNB

RAM, TPNB RAM). The VEF unit processes the pixel-rows

across the vertical block edge in horizontal direction, whereas

the HEF unit processes the pixel-columns across the horizontal

block edge in vertical direction to remove the blocking artifacts

in the MB. The LFNB RAM stores the pixel-rows of the left

neighbor 4×4 blocks (L1)-(L8) for the vertical edge filtering

process in VEF. Similarly The TPNB RAM stores the pixel-

columns of the top neighbor 4×4 blocks (T1)-(T8) for the

horizontal edge filtering process in HEF.

During the filtering process of the internal block edges,

partially filtered pixels of the current 4×4 block are used as

Left/Top neighbor pixels for the next 4×4 block along horizon-

tal/vertical direction respectively. Therefore the LFNB/TPNB

RAM units also serve as a temporary storage to hold the

partially filtered intermediate pixels results.

The BS unit computes the boundary strength for all the

4×4 block edges in a MB in both directions. The required

configuration data, e.g., encoding type, motion vectors and

quantization parameters of 4×4 blocks for the computation

of BS value is stored in the RAM units as depicted in

Figure 7. The RAM unit is composed of two 8 × (4×8-bit)

dual-ported SRAMs and each one of these is used to store

either top or left neighbor block configuration data during

boundary strength computation process. The BS unit provides

the computed boundary strength values along with the filter

control thresholds (α, β, Tc0), stored in the ROM table, to the

VEF and HEF filtering units.

The “Trans1” unit, at the input of HEF, transposes the

incoming pixel-rows of the 4×4 block into pixel-columns.

The other transpose unit “Trans2”, at the output of the HEF,

converts the filtered pixel-columns back to pixel-rows before

sending these filtered pixels back to the external picture buffer

through the output bus.

Data Flow: Before starting the filtering process for any MB,

the configuration data and the top neighbor 4×4 blocks(T1)-

(T8) are first transferred from the external memory to the

hardware accelerator. During this phase, the BS unit computes

the boundary strength for all the block edges in the current

MB. The pixel data of luma component for the current MB

follows the configuration data and is transferred in raster scan

order on 4×4 block level (B1, B2, .., B16). The filtering phase

starts as soon as the first pixel-row of block B1 arrived at the

input of VEF filter unit. The input pixel data is first filtered for

vertical block edges in the VEF unit and later by HEF unit for

the block edges in the horizontal direction. The chroma 4×4

blocks (B17 B18, ..., B24) follow the luminance blocks and

are filtered in the same fashion.

Once the filtering operation is completed in both directions

by VEF and HEF units for the luma/chroma blocks, these

blocks are transferred to the external picture buffer via the

output bus. The data flow at block level is depicted in Figure 9.

The VEF(Q-input) is always provided with the input blocks

(B1, B2, B3, ... , B24) from the external unfiltered picture

buffer. The corresponding left neighbors (L1, B1, B2, B3, L2,

...) are fed from the LFNB RAM unit into the VEF (P-input)

22

� �

� � � � �

� � 	�
 � � � � � � � � � �
 � � � � � � � � � � � � 	 � � � � � � �
 � � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � � �

� � � � �
� � � � �

� � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � �
 � � � � � � � � � � � ! � � � � " � � � � # � �

� � �� � � � �
 � � � � � � � � � � � � � 	 � � � � � � � �
 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � �
 � � � � � � � � � � � ! � � � � " � � � � # � �

� � �� � � � �
 � � � � � � � � � � � � � 	 � � � � � � � �
 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � �

$ � $ � $ � $ � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � $ % � � � � � � $ " $ # � � � � � �

� � � � �
 � � � � � � � � � � � � � 	 � � � � � � � �
 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � �
 � � �

$ � $ � $ � $ � � � � � �
 � � � � � � � � � � � � � 	 � � � � � � $ % � � � � � � $ " $ # � � � � � �

� � � � �
 � � � � � � � � � � � � � 	 � � � � � � � �
 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � �
 � � �

&

&

'

'

(

(

Fig. 9. 4×4 block level data flow through the VEF, HEF units in the proposed hardware architecture.

filter unit.

The partially filtered blocks (B1, B2, B3, B4,..., B24) from

VEF (Q-output) are always stored in the LFNB RAM and are

used as left neighbor block in the next filter block cycle. The

filtered blocks (B1, B2, B3, B5..., B23), after completion of the

vertical edge filtering operation from VEF unit, are sent to the

next filtering unit HEF for horizontal edge filtering operation.

The last 4×4 block in each block row of the current MB (B4),

(B8), (B12) temporarily stored in the LFNB RAM, are also

sent to the HEF unit via the same data path before start of next

block row. Hence the HEF unit also receives the 4×4 blocks

of current MB, after being filtered in the horizontal direction

by the VEF unit, in the same sequence as that of VEF-unit

(Q-input), as shown in Figure 9.

The last column of 4×4 blocks (B4), (B8), (B12), (B16),

(B18), (B20), (B22) and (B24) in the current MB is stored

in the LFNB RAM as (L1)-(L8) for next macro-block after

completion of the filter operation in both directions. The

blocks in the last luma/chroma block rows (B13), (B14),

(B15), (B17), (B19), (B21), (B23), temporarily stored in the

TPNB RAM module are sent to the external picture buffer.

These blocks are transposed from pixel-columns to pixel-rows

orientation during the transfer process by the “Trans2” unit.

The left neighbor blocks of the previous MB are directly sent

from LFNB RAM.

When the vertical filtering process is completed for the

current MB, the transfer of the configuration data and the

top neighbor blocks (T1)-(T8) in the next MB is initiated,

in parallel with the processing of HEF unit for current MB,

to maximize the throughput of the deblock filter.

V. ARCHITECTURE LEVEL OPTIMIZATION

Our deblock filter hardware accelerator utilizes two identical

filter units to enhance its throughput. However, because of

identical filter units, two transpose units are required to be

introduced. One transpose unit each before and after the HEF

filter unit as depicted in Figure 7. These transpose units are an

overhead of such an arrangement and cost significant amount

of area for their implementation. Different techniques have

been used in the literature to reduce the area requirement of the

transpose units. All of these techniques, in one way or another,

require a separate temporal register file for its realization.

We, however, follow a different approach in our design

to minimize this overhead. We identified that the transpose

� � � � � � �
� � � � � � �

� 	 �
 �
� � � � � � � �

�

 � �
�

 � �
�

 � �
�

� � � � � � � �

� � � � � � � �

� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �

� � � � � � � �
 � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

 ! " # $ % &
! " # $ % ' ()

� � � � � � �

� � � � � � �

� � � � � �

� 	 �
 �

* �

* �

* �

* +

* ,

* -

* .

* /

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

Fig. 10. Functional block diagram of Transpose unit

process and the boundary strength computation are two mu-

tually exclusive set of operations. The storage used for BS

parameters is a free resource during the transpose phase.

Therefore, in our design we re-use the RAM locations of the

BS parameters as a storage during the transpose phase. This

saves us precious area when compared to the use of dedicated

register files, during the transpose phase.

The transpose unit in our design, does not require any

separate temporal buffer for its implementation. It rather uses

the same RAM units used by the BS unit for temporary storage

of pixel-rows of the 4×4 block during the transpose process.

This architecture level optimization requires some pre- and

post-storage pixel data re-arrangements for implementation of

the transpose unit. The design and implementation details of

transpose units using configuration RAM units is explained in

the remainder of this section.

Transpose unit implementation: The transpose unit con-

sists of 2 sets of 4 multiplexers connected to the RAM

units as shown in Figure 10. RAM units are shared between

the transpose and BS units to serve as temporary storage

location. The cost of a register file consisting of 14 32-bit

registers [19] is about 3.3k gates whereas the multiplexers

depicted in Figure 10 cost only 500 gates (implemented on

0.18 μm CMOS standard cell technology). This optimization

delivers area saving. The transpose mechanism is explained in

the following.

The transpose unit takes 8 cycles to complete the transpose

process of a 4×4 block. In the first 4 cycles, block “n” is stored

at “set 1” address locations (0, 1, 2 and 3). Before storage,

23

the pixel-rows of the block “n” are arranged in a manner

that no two pixels of any pixel-column of the transposed

4×4 block shall be in the same storage RAM unit. This is

achieved through multiplexers (Mux1)-(Mux4) at the input of

these storage RAMs as shown in Figure 10. The control signals

for these multiplexers and the data stored in the RAM units are

depicted in Figure 11(a). In the next 4 cycles, block “n+1” is

stored after the same pixel re-arrange process at “set 2” address

locations (4, 5, 6 and 7), whereas the pixels of the previously

stored block “n” at “set 1” address locations are read from

the storage RAMs using appropriate addresses, as depicted in

Figure 11(b).

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

	 	 	 � � 	 � �

� � 	 	 	 � � 	

� 	 � � 	 	 	 �

	 � � 	 � � 	 	

	 	 	

	 	 �

	 � 	

	 � �

� 	 	

� 	 �

� � 	

� � �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�

�

�

�

 � � � �

� � � � � � � � � � �
� � � � � � � �

� � � � �

� � � � � � �

 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � ! " � �

" � � � ! " � 	 ! " � � ! " � � ! " � �

� $

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

	 	 	 � � 	 � �

	 � � 	 � � 	 	

� 	 � � 	 	 	 �

� � 	 	 	 � � 	

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

%

&

'

(

 � � � �
! " �

)))

� � � � % � (

 � � � � � � � � � � � �

* � � � � � � � � �
� � � +

! " � 	 � ! " � �

� � � � � � � � � + � �
� � , � � � � � � � �

� � � � � � � �

! � � � � � � � �
! " � 	 - ! " � �

	 	 	

	 	 �

	 � 	 	 � �	 	 �

	 	 	

	 	 	

	 	 	

	 	 �

	 	 � 	 � 	

	 � 	

	 � 	

	 � �

	 � �

	 � �

! " �
�

! " �
)))

! " �
�

� $

Fig. 11. Transpose mechanism for 4x4 block

These pixels are subsequently re-positioned to form the

pixel-columns of the 4×4-transposed block using the mul-

tiplexers (Mux5)-(Mux8) at the output of the storage RAM

units. Similarly, in the next 4 cycles, block “n+2” is stored at

“set 1” address locations where as the block “n+1” is read from

“set 2” and so on. Figure 11(a) depicts the the control signal

of Mux1 to Mux4 during cycles c1 to c4 and the re-arranged

data stored in the RAM units. The read address for the RAM

units along with the corresponding data read is depicted in

Figure 11(b). The control signals for multiplexers (Mux5)-

(Mux8) and output of the transpose unit are also depicted

in Figure 11(b). During BS computation phase, multiplexers

(Mux1)-(Mux8) controls are set such that no re-positioning of

the pixel data is done at both ends of the RAM units.

VI. VERTICAL/HORIZONTAL FILTER UNIT DESIGN

This section describes the internal architecture of the

VEF/HEF unit and the corresponding optimizations employed

at this level. Since all filtering operations are carried out in

these units, therefore, it occupies more than two third of the

area of the hardware accelerator. The architecture of this unit

and choices made for its implementation play an important role

in determining the throughput and over all area requirements

for the deblock filter hardware accelerator.

� � � �
� � � � �
� 	 �
 � �
�
 � �

�

�

� �

� �

� � � � �
� � � � �
� � � � � �
� � � � �

� � � � � �
� � � � � � �

� � � � �

� � � � � �
� � � � � � �

� � � � � !

" # $ % & ' % (% &) # & * % +
, - . * + - & /) & 0 1 /

Fig. 12. Block diagram of Vertical, Horizontal Filter units

The block diagram of this unit is depicted in Figure 12.

The architecture of this unit is based on pipeline processing;

Pixel Level Filter Controls block and Filter Process Block 1

constitute the first pipeline stage whereas Filter Process Block

2 is the second pipeline stage of this unit.

Efficient Pipeline Design: The intermediate results storage

registers between pipeline stages cost a significant amount of

area. To minimize this overhead, we divided the optimized

filter Eqs. (19)-(43) into two sets of equations. The first set,

Eqs. (32)-(37), consists of common operations between both

the filter modes and is implemented in Filter Process Block 1,

The remaining filter operations are part of the second set of

equations and are implemented in Filter Process Block 2. This

results in only 6 intermediate results (u1, u2 and u3 in Eqs.

(32)-(37)) for both the filter modes. This number is further

reduced to 3 intermediate results due to the fact that both

the filter modes (strong and weak filter modes) are mutually

exclusive as depicted in Figure 6(a)(b)(c).

Similarly, the Pixel Level Filter Controls block computes the

flags (FSF, SFF P, SFF Q, WFF P and WFF Q in Fig 4(a)),

based on the current pixel values and the edge level filter

thresholds (α, β) provided by the BS unit. We design the

pipeline stages such that all the processing for determining

the pixel level filter controls(Eqs. (1)-(5) in Figure 4(a))

is in first pipeline stage. This design choice requires only

5 one-bit flags, instead of 5, 10-bits intermediate storage

registers (Fig 4a) between the two pipeline stages. Please

note that this design choice results in a longer processing

chain for computation of filter control flags and is on the

critical path in our design. Therefore, the maximum operating

frequency for our hardware accelerator is determined by the

choice of implementation of pixel level filter control block.

Implementation level optimization for critical path, explained

below, enabled us to achieve 166 MHz operating frequency.

Moreover, we also employed the intermediate results re-

use strategy in parallel computational blocks (in same pipeline

stage). For instance, (u0 = q0−p0) is computed in Pixel Level

Filter Control block to determine the FSF (Eq. (1)) and is also

in the Filter Process Block1 to compute “delta” (Eq. (27)) for

filtering process in weak filter mode.

Hence the efficient pipeline design, along with our proposed

decomposition, not only reduces the area required for combi-

national logic because of less number of operations. It also

reduces the sequential logic area, at the same time, as only 3

24

� � � � � � �
�

	

 � � � � � � �

� � � � �

� � �

� � �

� � �

� � �
� � � �

� � � � � � � � �
�

� � � � �

 � � � � � � �

	

� � �

�

	

 � � � � � � � � �

� � � � � � � � � � � �

� � � �
� � � � � � � �� � � �

� � �

Fig. 13. Implementation of basic building block in Pixel Level Filter Control
block

registers and 5 one-bit flags are required to be stored between

the two pipelines stages.

Critical Path Optimization: The computation of filter

control flags is on the critical path for our deblock filter

hardware design. As part of optimizations for speed, we

merged the processing blocks on the critical path to reduce

the number of sequential operations and therefore were able a

achieve a significantly higher throughput that meet processing

requirement of all the levels in H.264/AVC. Optimization

employed to reduce the critical is explained in the following

paragraphs.

The equations to derive the values for filter control flags

are provided in Figure 4a. The common operations in the

computation these flags can be written as follows

Flag A = Abs(x − y) < Threshold ? 1 : 0.

where x and y represent the pixel values.
The straightforward implementation is depicted in Fig-

ure 13(a) and consists of following operations;

1) compute difference.

2) change sign of difference result, if negative.

3) and finally determine the flag A by comparing the

absolute difference with threshold.

This choice of implementation is composed of three sequential

operations. One of the possible modification shall be to

compute the two difference results (x-y) and (y-x) in parallel,

as depicted in (Figure 13(b)), and then select the positive

difference as an absolute difference result using a multiplexer,

for the subsequent comparison operation. This implementation

shall help to achieve a higher clock frequency in comparison

to the previous case, as the multiplex operation is more cost

effective than sign change operation in terms of speed, but off

course on the cost of additional “Sub” component.

0

200

400

600

800

1000

1200

1400

1600

Throughput
 [KMB/s]

[9] [15] [12] [14] [16] [19] [21] [23] Proposed

REF

Fig. 14. Throughput comparison to related work

0

5

10

15

20

25

Equivalent
Gate count

(K)

[9] [15] [12] [14] [19] [21] [23] Proposed

REF

Fig. 15. Area comparisons to related work

In our implementation, we removed the absolute difference

computation stage and merged it into the comparison stage

by using the “Add/Sub” component (Figure 13(c)). The sign

bit of the difference result determines the Add/Sub control.

Subsequently, the sign bit of the result of “Add/Sub” compo-

nent determines the status of the flag. This results in a further

reduction in the sequential operations without any additional

operation in parallel with the first stage and, therefore, helps

to achieve rather even higher clock frequency (166 MHz).

One requirement for such an implementation is that now we

need to provide threshold value that is one less than the actual

value. Since these threshold values are loaded from the ROM

table and are only used for the computation filter control

flags, therefore, we can either store these modified threshold

values in the ROM table or this operation of modification can

be implemented in the BS unit. In either case, the threshold

modification shall not be on the critical path anymore, resulting

in less sequential operations and therefore a higher clock

frequency.

VII. EXPERIMENTAL RESULTS

The deblock filter hardware accelerator presented in this

paper was implemented in VHDL and synthesized by Synop-

sys Design Compiler (version v2002, rev 05), for a maximum

clock frequency of 166 MHz with 0.18 μm CMOS standard

cell technology (v1.5).

25

TABLE I
COMPARISON TO RELATED WORK

Ref. Process Filtering Freq. SRAM requirements Thr. Equivalent Throughput Gate count
[μm] cycle/MB [MHz] (bits) MB/s gate count Improvement [%] reduction [%]

[11] 0.18 336 100 80 x 32 298K 9.16K* 397 -
[20] 0.18 342 100 96 x 32 292K 11.8K* 407 -
[10] 0.18 192 230 160 x 32 1198K 9.57K* 24 -
[9] 0.18 192 100 (128 + 1.5 x FW) x 32 521K 20.9K 184 42
[15] 0.18 236 100 (160 + 2 x FW) x 32 424K 14.5K 250 17
[12] 0.18 250 100 (96 + 2 x FW) x 32 400K 19.64K 271 39
[14] 0.18 128 200 28 x 32 1562K 18.4K -5 34
[16] 0.18 222 200 64 x 32 901K 18.7K 64 35
[19] 0.18 110 100 64 x 32 909K 12.60K 63 4
[21] 0.18 204 200 2 x 96 x 32, 2 x FW x 32 980K 21.49K 51 44
[23] 0.18 243 100 2 x 96 x 32, 2(FW + 12) x 32 412K 21.1K 260 43
Prop. 0.18 112 166 64 x 32 1482K 12.06K - -

* Gate count w/o Boundary strength computation. FW : represents the frame width in pixels.

The maximum throughput compared to recent related work

is provided in Figure 14. The area requirement compared

in terms of equivalent gate count with that of other state-

of-the-art proposals, for the same technology, is provided

in Figure 15. The comparison with respect to some of the

other important features like SRAM requirements, filtering

cycles per MB and maximum clock frequency is provided in

Table I. The last two columns in Table I provide the throughput

improvement (in %) and area reduction (in %) in terms of gate

count of our proposal compared to each hardware accelerators

for deblocking filter.

Figures 14 and 15, and Table I demonstrate that our ac-

celerator provides much higher throughput on one hand and

requires significantly less area on the other.

The comparisons with [19] and [14] need some clarification.

The design by [19] requires almost the same area as ours, how-

ever, we provide 63% higher throughput. While on the other

hand, reference [14] provides almost the same throughput as

we do, we require 35% less area in terms of equivalent gates.

The higher throughput of our design is achieved by merging

the processing elements on the critical path and making it

shorter. The area requirement reduction, on the other hand, is

mainly achieved because of:

• Algorithm level optimization - through decomposition

of the filter kernel, inter-filter-mode optimization and

overlapped data paths, we reduce the number of additions

by 51% and therefore reduce the combinational logic for

the implementation;

• Architecture level optimization - through efficient

pipeline stage design we reduce the number of registers

required for intermediate results for the next pipeline

stage, reuse the same hardware resource for the real-

ization of transpose units by identification of mutual

exclusive operations in processing chain.

From the comparison with other architectures presented in the

Table I, we suggest that the proposed hardware accelerator

requires 17-44% less area in terms of equivalent gate count

on one hand and provides upto 271% higher throughput on

the other. The designs by [10], [11], [20], though require

less area in terms of equivalent gate count. However, this is

not a fair comparison as these three designs do not include

the logic for the boundary strength computation, whereas our

design includes the boundary strength computation unit. As

far as the throughput is concerned, the proposed hardware

accelerator is 24% better when compared with [10] having

highest throughput among [10], [11], [20].

VIII. CONCLUSIONS

This paper presents a high-throughput, area-efficient, hard-

ware accelerator for the deblocking filter in H.264/AVC and

proposes a decomposition of the filter kernels, which reduces

the number of operations by more than 51%. The optimization

techniques employed enable the proposed architecture to pro-

vide a significantly higher throughput (more than 63% when

compared to the closest one in area requirement) and a reduced

area requirement (around 35% when compared with the one

having similar throughput). It can easily provide real-time

filtering operation for the HDTV video format (4096×2304,

16:9) at 30 fps and meet the throughput requirements of all

levels (level 1-5.1) in H.264/AVC video coding standard.

REFERENCES

[1] ISO/IEC JTC1/SC29/WG11, “Report of the Formal Verification Tests
on AVC/H.264”, doc. N6231, Waikoloa, USA, 2003.

[2] G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC Advanced
Video Coding Standard: Overview and Introduction to the Fidelity Range
Extensions”, SPIE Conf. On Apps. Of digital Image Processing, vol.
5558, pp. 454-474, 2004.

[3] J. Ostermann, J. Bormans, P. List, D. Maroe, M. Narroschke, F. Pereira,
T. Stockhammer and T. Wedi, “Video Coding with H.264/AVC: Tools,
Performance and Complexity”, IEEE Circuit and Systems Magazine, vol
4, no. 1, pp. 7-28, 2004.

[4] Joint Video Team of IT-T VEG and ISO/IEC MPEG, “Draft ITU-T
Recommendation and Final Draft International Standard of Joint Video
Specification”, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, 2003.

[5] Y. L. Lee and H. W. Park, “Loop Filtering and Post-filtering for Low-
bitrates Moving Picture Coding”, Signal Processing: Image Communi-
cation, vol 16, pp. 871-890, 2001.

[6] P. List, A. Joch, J. Lainema, G. Bjontegaard and M. Karczewicz, “Adap-
tive Deblocking Filter”, IEEE Transactions on Circuits and Systems for
Video Technology, vol 13, no. 7, pp. 614-619, 2003.

[7] T. Wiegand, G. Sullivan, G. Bjontegaard and A. Luthra, “Overview of
the H.264/AVC Video Coding standard”, IEEE Transcations on Circuits
and Systems for Video technology. Vol. 13, no. 7, pp. 560-576, 2003.

26

[8] M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC
Baseline Profile Decoder Complexity Analysis”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 704-716,
2003.

[9] S. Y. Shih, C. R. Chang and Y. L. Lin, “A Near Optimal Deblocking filter
for H.264 Advanced video Coding”, Asia and South Pacific Conference
on Design Automation, pp 170-175, 2006.

[10] L. Li, S.Goto and T. Ikenaga, “A Highly Parallel Architecture for
Deblocking Filter in H.264/AVC”, IEICE Transactions on Information
and Systems, vol. E88-D, no. 7, pp. 1623-1629, 2005.

[11] C. C. Cheng and T. S. Chang, “An Hardware Efficient Deblocking
Filter for H.264/AVC”, IEEE International Conference on Consumer
Electronics, pp.235-236, 2005.

[12] T. M. Liu, W. P. Lee, T. A Lin and C. Y Lee, “A Memory-efficient
Deblocking Filter for H.264/AVC Video Coding”, IEEE ISCS, vol. 3,
pp. 2140-2143, 2005.

[13] C. C. Cheng, T. S. Chang and K. B. Lee, “An In-place Architecture for
the Deblocking Filter in H.264/AVC”, IEEE Transcations on Circuits
and Systems II, vol. 53, no. 7, pp.530-534, 2006.

[14] C. M. Cheng and C. H. Chen, “A Memory Efficient Architecture for
Deblocking Filter in H.264 Using Vertical Processing Order”, in Proc.
IEEE Int. Conf. Intell. Sensors, Sensor Networks. Inf. Process., Dec.
2005, pp. 361-366.

[15] G. Zheng and L. Yu, “An Efficient Architecture Design for Deblocking
Loop Filter”, Picture Coding Symposium, 2004.

[16] Q. Chen, W. Zheng, J. Fang, K. Luo, B. Shi, M. Zhang, X. Zhang, “A
Pipelined Hardware Architecture of Deblocking Filter in H.264/AVC”,
International Conference on Communications and Networking in China,

pp.815-819, 2008.

[17] C. M. Cheng, C. Ho Chen, “Configurable VLSI Architecture for
Deblocking Filter in H.264/AVC”, IEEE Transactions on VLSI Systems,
vol. 16, issue 8, pp. 1072-1082, 2008.

[18] V. Venkatraman, S. Krishnan and N. Ling, “Architecture for De-blocking
Filter in H.264”, Picture Coding Symposium, 2004

[19] F. Tobajas, G. M. Callico, P. A. Perez, V. d. Armas and R. Sarmiento,“An
Efficient Double-filter Hardware Architecture for H.264/AVC Deblock-
ing Filtering”, IEEE Transcations on Consumer Electronics, vol. 54, no.
1, pp. 131-139, 2008.

[20] S. C. Chang, W. H. Peng, S. H. Wang and T. Chiang, “A Platform Based
Bus-interleaved Architecture for Deblocking Filter in H.264/MPEG-4
AVC”, IEEE Transcations on Consumer Electronics, vol. 51, no. 1, pp.
249-255, 2005.

[21] K. Xu and C. S. Choy, “A Five-stage Pipeline, 204 cycles/mb, Single-
port SRAM Based Deblocking Filter for H.264/AVC”, IEEE Transca-
tions on Circuitsand Systems for Video Technology, vol. 18, no. 3, pp.
363-371, 2008.

[22] J. Webb, Texas Instruments Incorporated, Dallas TX,USA.“Video De-
blocking Filter”, 0184549, Feb 07, 2003.

[23] T. M. Liu, W. P. Lee, and C. Y Lee, “An In/Post-loop deblocking Filter
with Hybrid Filtering Schedule”, IEEE Transcations on Circuits and
Systems for Video Technology, vol. 17, no. 7, pp. 937-943, 2007.

[24] M. Shafique, L. Bauer, and J. Henkel, “An Optimized Application
Architecture of the H.264 Video Encoder for Application Specific
Platforms”, In Proc. of Workshop on Embedded System Real-time
Multimedia, pp. 119-124, 2007.

27

