
A High-Throughput FPGA Architecture
for Parallel Connected Components Analysis

Based on Label Reuse
Michael J. Klaiber∗, Donald G. Bailey†, Silvia Ahmed∗, Yousef Baroud∗, Sven Simon∗

∗Institute for Parallel and Distributed Systems, University of Stuttgart
Email: michael.klaiber@ipvs.uni-stuttgart.de

†School of Engineering and Advanced Technology, Massey University, Palmerston North
Email: d.g.bailey@massey.ac.nz

Abstract—A memory efficient architecture for single-pass con-
nected components analysis suited for high throughput embedded
image processing systems is proposed which achieves a high
throughput by partitioning the image into several vertical slices
processed in parallel. The low latency of the architecture allows
reuse of labels associated with the image objects. This reduces
the amount of memory by a factor of more than 5 compared
to previous work. This is significant, since memory is a critical
resource in embedded image processing on FPGAs.

I. INTRODUCTION

Connected component analysis (CCA) is a major step in
many image processing systems. It has the task of detecting
pixels forming an image component in a binary image and
extracting its feature vector (FV). The class of single-pass
CCA algorithms has the major advantage of being able to
process the image without the need of storing intermediate
labels [1]. Single pass algorithms extract features such as
the size, area, etc. of image components without storing the
complete image in a memory. Most modern CCA algorithms
apply the union-find algorithm which has been studied and
evaluated extensively [2], [3]; union-find is also a foundation
for the proposed algorithm.

The recent need for systems capable of processing streamed
high resolution images with high frame rates requires process-
ing several pixels in parallel to achieve the desired throughput.
One solution is to use dedicated hardware architectures for
CCA realized on FPGAs.

Several hardware architectures for CCA can process one
pixel per clock cycle [1], [4]. Their throughput is limited by the
maximum clock frequency on the FPGA. Higher throughput
can be achieved through: run-length coding the image stream
[5], [6]; parallel processing of pixels from different image rows
[7]; or processing images in parallel using slice processing [8],
[9]. These techniques increase memory requirements and re-
quire additional processing at the end of each frame, adversely
affecting latency.

In Figure 1 the proposed FPGA architecture for parallel
CCA is depicted. It is based on [9] and gains a high-throughput
by partitioning the image into several vertical image slices
which are processed in parallel. Using the architecture from

Slice
Processing

Unit

Slice
Processing

Unit

Image Distribution Unit

...

Coalescing Unit

Pixel Stream

Feature
Vectors

Feature
Vectors

Feature Vectors

Fig. 1. Overview of a hardware architecture for parallel CCA.

[4] each slice processing unit processes one pixel per clock
cycle with low memory cost and low latency. However, unlike
[9], where components spanning multiple slices are merged at
the end of the image, this paper describes how such segments
can be merged on the fly, significantly reducing memory
requirements and improving the latency.

In the following section, a new algorithm for parallel CCA
is described. The high-throughput hardware architecture is
presented in Section III, followed by an analysis of the algo-
rithm and architecture and the presentation of the experimental
results in Section IV.

II. ALGORITHM FOR PARALLEL CCA
The image is divided into several vertical slices, with

each slice processed in parallel by separate pixel processing
instances. Each image slice is treated as a separate image,
while a coalescing unit collects information on the relationship
between components spanning multiple slices. If an image
segment does not touch one of the slice borders, it is a local
image component, and processing is complete when its end is
detected. Whenever an image segment touches one of the slice
borders, that connected component may span multiple slices.
In this case it is necessary to merge the feature vectors asso-
ciated with the adjacent segments. The relationship between
the local segments and global components are represented in
a global segment graph (GSG). In the GSG each global image
component, each global image segment and each local image
segment is represented by a vertex pointing either to a parent

Slice 1 Slice 2

SM

G2

G2G1

L11

ISM_LL

ISM_GL

ISM_GG

L12

L13

L14 L23

L22

L21

P1

P2

P3

P4

P5

P6

Fig. 2. Graph representation of a partitioned image consisting of several
image segments.

I

II

III

1 3

6 7 8

11 12 13
16 17 18

2I

II

III

Fig. 3. Pixel contact types between neighbour slices.

vertex or to itself, indicating that it is the root. Figure 2 shows
an example of an image partitioned into two image slices and
its GSG. Since all of the image segments in slice 1 and slice 2
are part of a single image component, all of the local segments
are part of a single global image component.

Whenever a border object pixel is in the 8-neighbourhood
of an object pixel in an adjacent slice, the two local image
segments are connected by an inter slice merger (ISM). If
an ISM happens for two segments which do not yet have a
global label, a new global vertex is created to represent the
segment. Both local segments are then linked to the new global
segment. If one local segment already has a global label, the
local segment without a global label is connected to the global
vertex of the neighbouring segment. If both local segments
already have global labels with different roots, it is necessary
to merge these. The three types of ISM operations are called
ISM LL, ISM GL and ISM GG. A fourth type of global
merger occurs when two local segments within a slice with
different global labels are merged. These belong to the same
global segment; therefore a slice merger (SM) unifies their root
vertices in the GSG. Figure 2 illustrates these four different
merger types.

ISMs can occur either horizontally or diagonally. In Figure
3.I all image slices are processed in raster scan order in
parallel, and all reach the rightmost pixels at the same time.
The local segments are therefore part of ISMs which are
detected at the same time and signalled to the neighbour
slices. For this reason the vertices of the local segments are
only children of the global vertices involved in their ISMs.
Global vertices of simultaneous ISMs belonging to the same
global image segment have to be merged afterwards. Diagonal
connections of the type shown in Figure 3.II are processed in
exactly the same manner. For a type III diagonal merger, the
local vertices are associated with global vertices during the
ISM at the start of the row. The global vertices are then later
connected via an SM.

To keep track of when a global segment is finished, a child

Fig. 4. Processing of the global mergers and finished segments Figure 2.

Merger
Table

A B C

D Row Buffer

Link Table

Label Selection Merger Control

Data
Table

Input
Pixel

Stream

Neighbourhood Context

Label
Management

Border Label
Exchange with
adjacent SPUs

Next
Global
Label Stack

Global
Mergers

Communication
with CU

Finished
FVs

Recycled Labels

Fig. 5. Architecture of slice processing unit (SPU).

counter (CC) is assigned to each global vertex to count the
number of direct children vertices. The CC of a global vertex
is updated on every global merger. When a local segment is
finished, the CC of its parent’s vertex is decremented. If it
reaches zero, the FV is transferred to its parent, and the global
vertex is recycled. When the last local segment of a global
component is finished, the CC of the root vertex becomes zero
and the global segment is finished as well. This is illustrated
in Figure 4 on the example image from Figure 2.

III. HIGH-THROUGHPUT ARCHITECTURE FOR PARALLEL
CONNECTED COMPONENTS ANALYSIS

The hardware architecture to realize this algorithm based
on [9] is shown in Figure 1. The slice processing units are
adapted from the architecture of [4] with modifications to label
management to detect and facilitate global mergers. The major
advantage over [9] is that global segments are coalesced on the
fly. When an image segment spanning several slices is finished,
all feature vectors of the individual segments it consists of,
are already merged. Therefore, all the memory required for
storing the information on the image segments can be reused.
This significantly reduces the memory resources required and
reduces processing latency. Therefore, the performance can be
increased significantly for the same FPGA resources compared
to [4] and [9]. Individual entities of Figure 2 are described in
more detail in the following paragraphs.

A. Slice Processing Unit

The architecture of the slice processing unit is depicted
in Figure 5. To represent the global and local vertices and
their properties, the label selection needs local labels repre-
senting local segments and global labels representing global
components. As in [4], the merger table keeps track of mergers
among local segments. A link table is added, which stores the

connection from a local label to any associated global label.
The feature vectors associated with the local image segments
are stored in the data table.

Since the link table requires local labels to remain un-
changed until a local segment is completed, the aggressive
relabeling scheme of [4] cannot be used. Instead, a new label
management unit detects when a segment is completed and
recycles labels that are no longer used. The label selection
policy [1], to select the minimum label on mergers, no longer
works because the labels are not sequential. To overcome this,
the label is augmented with the row number it is generated
in. Selecting the minimum augmented label gives the correct
behaviour [1] when a merger occurs.

The fact that every image pixel has both a global and a
local label is also reflected in the label selection unit. The
selection of the current pixel’s global label depends on the
global labels of the pixel neighbourhood. If no global label is
present, the current pixel’s global label is set to zero. If one
is in the neighbourhood, it is copied to the current pixel. The
presence of two different global labels requires a global merger
(ISM GG or SM). The merger type and involved labels are
pushed to the merger queue for the coalescing unit to process.
The SPU’s link table is updated to the minimum global label.

A valid flag is added to each data table entry to allow entries
to be invalidated e.g. after two segments are merged or after
readout. An active tag is also added to determine whether an
image segment is finished. Whenever new data is written to
the data table, this tag is updated to indicate that the entry was
updated in the current row. By changing the tag at the end of
each row, entries not updated during the current row can be
detected. These finished image segments are read out while
processing the next row by checking the active tag and valid
flag of all data table entries in order. After readout, the data
table entry can be reused by recycling the label to the label
management unit.

Implementing the data table using Block RAMs available
on state-of-the-art FPGAs requires one port for table update
[1]. The second port can be used to read out and invalidate
feature vectors of finished image segments.

B. Coalescing unit

The coalescing unit (CU) has the task of establishing the re-
lationship between local segments identified by the individual
SPUs, and detecting the end of the resulting global segments.

The architecture of the CU is depicted in Figure 6. The
information collected on the global mergers and the FVs
of finished segments are enqueued in FIFOs when entering
the CU. The global merger table (GMT) stores the edges
between global vertices of the GSG. Additionally, the find
operation and path compression [10] are integrated into the
GMT. The FVs of the global image segments, together with
the associated child counters, are stored in the global data
table (GDT). Each global label represents one entry in each
of the GMT and GDT. The global label management unit
(GLM) is responsible for providing global labels to the SPUs
instantaneously. For each connected SPU the GLM has one

Coalescing
Control

Global
Merger
Queues

FV
Queues

Global
Merger
Table

Global
Data
Table

Finished
Global
FVs

......
Global
Label

Management

...

Fig. 6. Architecture of the coalescing unit.

counter for providing global labels and one queue for storing
recycled global labels. The coalescing control unit coordinates
the communication between the different sub-entities, which
includes processing of global mergers and detection of finished
global image segments. Mergers are processed sequentially
due to the limited number of memory ports of the GDT and
GMT, and their data dependencies. At the end of a global
component, which is recognized by a child counter going to
zero, its FV is output, so the global label can be recycled.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To analyse the performance and to determine whether real-
time requirements can be met, it is crucial to determine the
maximum number of mergers which can occur in the worst
case. The CU performs 3 different types of operations: inter
slice mergers (ISMs), slice mergers (SMs) and finished local
image segments (FO). The number of cycles for performing
the maximum possible merger operations, depends on the
image width Wimage and the number of parallel slices p.
Each slice has a width of Wslice =

Wimage

p . ISM LL is the
only merger type which can generate global labels, SM and
ISM GG have the ability to merge global labels and FO has
the ability to invalidate global labels. Since a global merger
operation needs different global labels, at most Wslice

2 global
mergers can be carried out in one row of an image slice.
For this to happen, at least Wslice

2 global labels must exist.
Therefore these labels must have been generated by ISM LL
operations in the rows before and not yet been merged to
other global labels. This scenario can only occur every Wslice

image rows, because at least Wslice

2 ISM LLs are necessary
to generate the required number of global labels.

Real-time processing requires that the maximum number of
merger operations can be processed successfully within the
number of clock cycles available. The large tree structure in
the global merger table, which changes with every merger and
every finished image segment makes an analytical exploration
of the worst case difficult and beyond the scope of this work.
Worst case images, as described above, were generated and
simulated with the CCA hardware architecture to determine
the maximum number of SPUs that the coalescing unit can
keep up with. Table I shows the maximum number of slices
pmax which can be processed by the coalescing unit for images
of different width.

TABLE I
RESOURCE REQUIREMENTS FOR PARALLEL CCA ARCHITECTURE

TARGET DEVICE: XILINX VIRTEX 6 XC6VLX240T SPEEDGRADE -2

Image
width

slices
pmax

REGs LUTs BRAMs fmax

[MHz]
Max T

[GPixels
s

]

1024 10 10k 25k 42 136.4 1.1
2048 16 17k 42k 74 137.9 1.7
3072 19 22k 59k 90 137.3 2.0
4096 21 25k 70k 99 132.6 2.2
8192 32 39k 106k 153 125.8 3.2

3072x2048
4096x3072
8192x6144
Registers
LUTs
BRAMs

0

25

50

75

R
eq
u
ir
ed

F
P
G
A

R
es
o
u
rc
es
[%

]

0 5 10 15 20 25 30

Number of image slices

Fig. 7. Diagram of FPGA resource requirements for different image sizes.

The resources required to extract the bounding box of
each connected component are shown in Table I for different
image sizes. Figure 7 shows that the number of Registers,
LUTs and BRAMs grow almost linearly with the number
of image slices. In addition, the maximum frequency of the
CCA architecture remains almost constant over the whole
range of image sizes and slices. This provides good scalability
with processing throughput. Stack processing within the SPUs
introduces a 20% worst case overhead [1]. The maximum
throughput therefore is T = fmax × p× 0.8.

A comparison of the memory requirements for the archi-
tecture in [9] including CU and with one SPU per slice is
shown in Figure 8. The memory used by the coalescing unit
can be shrunk by a factor of 42. This has a huge impact on
the complete architecture, so that the memory requirements for
complete architecture can be reduced by a factor of more than
5. Table II compares the proposed architecture for connected
component analysis to other hardware architectures. This
shows that processing throughput is significantly higher than
[1], [4], [6], [8]. Compared to [9] the achievable throughput is
similar, while the proposed architecture significantly reduces
required hardware resources.

TABLE II
COMPARISON OF THROUGHPUT WITH OTHER ARCHITECTURES.

Parallelism
[Pixels

cycle
]

fmax

[MHz]
Technology Max T

[GPixels
s

]

Bailey et al. [1] 1 N/A Spartan-II N/A
Ma et al.[4] 1 40.63 Virtex II 0.04

Kumar et al.[8] 6 100 Virtex 5 0.6
Lin et al. [7] 4 100 0.35 um 0.4

Klaiber et al. [9] 32 138.8 Virtex 6 3.5
Zhao et al. [6] 1 95.7 Virtex II 0.1

This work 32 126.8 Virtex 6 3.2

1 2 3

0

100

200

300

400

500

4 8 16

Number of slice

N
um

be
r

of
 B

R
A

M
s

Architecture using [9]
This work

Fig. 8. Comparison to architecture using CU from [9] and one SPU per slice
for image size of 2048x1024.

V. CONCLUSION

The proposed parallel connected components analysis
(CCA) algorithm and architecture allow the extraction of
properties of image objects with a high throughput at low
FPGA resource requirements by introducing an on-the-fly
coalescing principle, reducing memory requirements and pro-
cessing latency significantly. The resources for the proposed
coalescing unit could be reduced by a factor of up to 42
compared to a previous architecture. This reduces the memory
requirements of the complete CCA architecture by a factor
of more than 5 and enables the realized system to perform
parallel connected component analysis at more than 3 GPixels
per second.

ACKNOWLEDGEMENTS

The authors would like to thank the German Research
Foundation (DFG) for the financial support for this work
carried out within Si 586 7/1 belonging to DFG-SPP 1423.

REFERENCES

[1] D. Bailey and C. Johnston, “Single pass connected components analy-
sis,” in Proceedings of Image and Vision Computing New Zealand, Dec.
2007, pp. 282–287.

[2] R. Tarjan and J. van Leeuwen, “Worst-case analysis of set union
algorithms,” J. ACM, vol. Vol. 31 No. 2, pp. 245 – 281, 1984.

[3] J. Hopcroft and J. Ullman, “Set merging algorithms,” SIAM Journal on
Computing, vol. 2, no. 4, pp. 294–303, 1973.

[4] N. Ma, D. Bailey, and C. Johnston, “Optimised single pass con-
nected components analysis,” in International Conference on Field
Programmable Technology. FPT 2008., Dec. 2008, pp. 185 –192.

[5] J. Trein, A. T. Schwarzbacher, B. Hoppe, K. Noffz, and T. Trenschel,
“Development of a FPGA based real-time blob analysis circuit,” in Irish
Signals and Systems Conference, Sept. 2007, pp. 121–126.

[6] F. Zhao, H. zhang Lu, and Z. yong Zhang, “Real-time single-pass
connected components analysis algorithm,” EURASIP J. Image and
Video Processing, vol. 2013, p. 21, 2013.

[7] C.-Y. Lin, S.-Y. Li, and T.-H. Tsai, “A scalable parallel hardware archi-
tecture for connected component labeling,” in 17th IEEE International
Conference on Image Processing, Sept. 2010, pp. 3753 –3756.

[8] V. S. Kumar, K. Irick, A. A. Maashri, and V. Narayanan, “A scalable
bandwidth-aware architecture for connected component labeling,” in
VLSI 2010 Annual Symposium, ser. Lecture Notes in Electrical Engi-
neering, 2011, vol. 105, pp. 133–149.

[9] M. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon, “A
memory-efficient parallel single pass architecture for connected com-
ponent labeling of streamed images,” in 2012 International Conference
on Field-Programmable Technology. FPT, Dec. 2012, pp. 159 –165.

[10] R. Seidel and M. Sharir, “Top-down analysis of path compression,” SIAM
J. Comput., vol. 34, no. 3, pp. 515–525, Mar. 2005.

