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Recent developments in the capacity of modern Field Programmable Gate Arrays
(FPGASs) have significantly expanded their applications. One such field is the ac-
celeration of scientific computation and one type of calculation that is common-
place in scientific computation is the solution of systems of linear equations. A
method that has proven in software to be very efficient and robust for finding such
solutions is the Conjugate Gradient (CG) algorithm. In this paper we present
a widely-parallel and deeply-pipelined hardware CG implementation, targeted
at modern FPGA architectures. This implementation is particularly suited for
accelerating multiple small-to-medium sized dense systems of linear equations
and can be used as a stand alone solver or as building block to solve higher order
systems. In this paper it is shown that through parallelization it is possible to
convert the computation time per iteration for an order n matrix from ©(n?)
clock cycles on a micro-processor to ©(n) on a FPGA. Through deep-pipelining
it is also possible to solve several problems in parallel and maximize both perfor-
mance and efficiency. I/O requirements are shown to be scalable and convergent
to a constant value with the increase of matrix order. Post place-and-route re-
sults on a readily available VirtexII-6000 demonstrate sustained performance of
5 GFLOPS, and results on a Virtex5-330 indicate sustained performance of 35
GFLOPS. A comparison with an optimized software implementation running
on a high-end CPU, demonstrate that this FPGA implementation represents a
significant speed-up of at least an order of magnitude.

1 Introduction

With the increase in density and embedding of optimized multiplier blocks, mod-
ern Field Programmable Gate Arrays (FPGAs) have become increasingly suited
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for accelerating scientific computations. Some important applications of these
computations include genetics [1], robotics [2], medical imaging [3] and opti-
mization problems [4].

This paper introduces some typical algorithms for solving systems of linear
equations, a basic and recurring sub-task in scientific computation, and goes
on to detail the Conjugate Gradient (CG) method [5]. A parameterizable hard-
ware implementation of this algorithm is outlined, a comparison with software
is made, and results are reported. Due to deep-pipelining, our implementation
is particularly suited for accelerating computations of multiple small-to-medium
sized dense systems in parallel. An example of such a requirement arises when
solving large banded linear systems using the parallel algorithm described in [6]
or in Multiple-Input-Multiple-Output adaptive equalization [7]. This implemen-
tation is also suited for generating approximate solutions to multiple systems of
linear equations within a certain acceptable error or time constraint. A widely
used example of such an application is given by the inner loop of the Trun-
cated Newton Method [8]. These computations are widespread and include the
numerical solution of partial differential equations used in optimal control prob-
lems [9], structural analysis, circuit analysis, and many other scientific problems.

The main contributions of this paper are thus:

— an FPGA-based parameterizable design for solving systems of linear equa-
tions efficiently by exploring wide-parallelism and deep-pipelining,

— a detailed analysis of the Conjugate Gradient algorithm and its affinity for
FPGA based implementation,

— a quantification of performance, resource utilization, depth of the pipeline
in terms of problems, I/O requirements,

— a design capable of 5 GFLOPS on a VirtexII-6000, and results demonstrat-
ing that a sustained performance of 35 GFLOPS is possible for a Virtex5-
330 [10],

— a comparison with an Automatically Tuned Linear Algebra Software
(ATLAS) program running on a high-end CPU.

In this paper, after discussing the relevant background in Section 2, we present
an overview of the CG method in Section 3. Section 4 presents the hardware
design. Section 5 details resulting resource utilization, achievable throughput,
and I/0 requirements, and a comparison to a high performance CPU is made.
Section 6 concludes the paper.

2 Background

Most scientific computations involve the solution of systems of linear equations.
To address this problem there are some well studied and proven methods. These
are divided into two main categories: direct, where the solution is given by evalu-
ating a derived formula, and iterative, where the solution is approximated based



on previous results until a certain acceptable value is reached. Notable examples
of direct methods include the Gaussian Elimination, which can be applied to any
type of matrix, and the Cholesky decomposition, which can only be applied to a
symmetric and positive-definite matrix. The analogous iterative methods are the
Generalized Minimal Residual methods (GMRES), for any type of matrix, and
the Conjugate Gradient method, for symmetric and positive-definite matrices.

2.1 Architectures for Scientific Computation

Most methods of solving systems of linear equations involve matrix and vector
operations which can be computationally intensive and may require significant
processing time. Nonetheless these operations can be accelerated by performing,
whenever possible, parallel operations. To explore this acceleration, a number
of different hardware architectures have been investigated. These architectures
include, Connection Machines [11], Cell Processors [12], Graphical Processing
Units (GPUs) [13] and FPGAs [14]. A widely implemented comparative bench-
mark for floating-point computations is the General Matrix Multiply (GEMM)
subroutine, part of the Basic Linear Algebra Subprograms (BLAS) library [15].
Table 1 compares the performance of this matrix-by-matrix multiplication op-
eration on different hardware architectures.

Table 1. Floating-point matrix-by-matrix multiplication benchmark on different hard-
ware architectures.

’Year‘Architectue‘Reference‘ Device ‘Precision‘GFLOPS‘
2004 GPU [16] Radeon X800XT | single 64
2005 FPGA 17] XC2VP125 double | 16
2006 Cell [18] CBEA double 15
2006| Clearspeed |  [19] CSX600 double 25
2008 CPU [20] |Pentium4 (3.6GHz)| double 7
2008 GPU [21] Quadro FX 5600 | single 120
2008 FPGA [22] 3SE260 double 102

With the recent advancements in FPGAs density and architectures, massively-
parallel and deeply-pipelined floating point computations have become feasi-
ble within an FPGA. Although there has been an increasing interest into the
use of Field Programmable Gate Arrays to accelerate scientific computations,
with the latest supercomputers incorporating these devices [23,24], only very
recently there has been research focused on developing FPGA optimized linear
algebra [25]. This has led to the study and comparison of the performance and
precision against conventional high-end CPUs and other architectures (Table 1).



A forecast from 2004 projected a very promising future, predicting that in the
year 2009 these devices will be an order of magnitude faster in peak performance
compared to traditional high-end CPUs [26]. Current work reports significant
FPGA performance in line with Underwood’s prediction [27][10].

2.2 Previous FPGA Implementations

Some typical methods for solving systems of linear equations have already been
implemented on FPGAs.

A Cholesky implementation demonstrated a performance increase by 1.99 times
over software, for matrices of order 48, on a APEX EP20K1500E FPGA [28]. This
implementation was based around a system that uses an asymmetric, shared-
memory MIMD architecture and was built using two embedded Nios processors.

A Jacobi solver was implemented on a Xilinx VirtexII Pro XC2VP50 where
performance estimates, which include both data transfer and execution time,
show that this circuit provides a 1.3 times speedup with a large dense matrix,
for a single iteration, when compared to a uniprocessor implementation. For a
single iteration, a large sparse matrix Jacobi circuit could achieve an estimated
speedup of 1.1 to 19.5, when compared to highly optimized uniprocessor imple-
mentations. Multiple iteration speedups ranged from 2.8 to 36.8. Sparse matrices
having an irregular structure had the biggest speedups [29].

There are also two papers that discuss an implementation of the Conjugate
Gradient method. One uses a Logarithmic Number System (LNS) and achieves
up to 1.1 GFLOPS on a VirtexII-6000 [30]. The other uses a rational number
representation and achieves 0.27 GFLOPS using a VirtexII Pro XC2VP4 [31]
and projects that it will be able to sustain 15 GFLOPS on a Virtex4-55. In con-
trast, we present a widely-parallelised and deeply-pipelined Conjugate Gradient
method using the IEEE 754 [32] single precision floating point number represen-
tation.

Due to the domination of the algorithm by inner-products, known to map well
to FPGAs [14][25], CG is well suited, even for small dense systems. The FPGA
allows the construction of a data-path specialised not only to the CG algorithm,
but to the order of the matrix. Thus, for embedded applications, where the ma-
trix order does not typically change on the fly [33], a very efficient data-path can
be formed, minimizing control overheads. With this implementation we are able
to achieve approximately 5 GFLOPS on a readily available VirtexII-6000 and 35
GFLOPS on a high-spec Virtex5-330, for matrices of order 16 and 58 respectively.

Table 2 summarizes FPGA implementations of Conjugate Gradient method in
terms of year of publication, number system, device and GFLOPS achieved.



Table 2. FPGA-based Conjugate Gradient implementations.

’Year‘ Reference ‘Number System|  Device ‘GFLOPS‘
2005 [31] LNS VirtexI1-6000] 1.1
2006/  [30] Rational Virtex4-25 1.5
2008|this paper| FP single |VirtexII-6000 5
2008 |this paper FP single Virtex5-330 35

3 Conjugate Gradient Method

The Conjugate Gradient Method is an iterative method for solving systems of
linear equations of the form given in (1), where the n by n matrix A is symmetric
(i.e., AT = A) and positive definite (i.e., 7 Az > 0 for all non-zero vectors x
in R™) [5]. When matrix A is positive definite, the associated quadratic form
given by J(z), defined in (2), is convex. J'(z), the differential of J(x), is given
in (3). Notice that setting J'(z) = 0 is identical to (1), hence the the solution
to the linear system is equivalent to minimizing the quadratic function given in
(2). This is the basic intuition of CG and other iterative algorithms.

Ax =0
a1l a2 a1n 1 by
a21 G2 az2n ) ba (1)
Apl Gp2 " Anpn Tn bn
J(x)= 2T Az —bTx (2)
agl J(x)
J(x
J(z) = | O = Az —b (3)
ain J(@

3.1 Algorithm description

The Conjugate Gradient algorithm is a Krylov subspace method that [34] solves
Ax = b by repeatedly performing matrix-vector multiplications involving A.
Starting with an initial guess, xg, this algorithm consecutively produces an ap-
proximated solution zjp by minimizing the A-norm of the residual, given by



||Az), — b|| 4 where k is the iteration number, and ||u||4 £ u” Au.

The algorithm, described in Fig. 1, consists of two parts. The first is an initializa-
tion that produces a ‘residual’ or search direction. The second part iterates until
the residual error is sufficiently small. The algorithm is intuitive and comprises
of the following steps:

1.
2.

Determine a search direction, d, of descent in J(x). (cgl) and (cgl2).
Perform a line search to determine the best step length, «, in the descent
direction. (cgb) and (cg6).

Generate the new solution by adding the vector d times the determined step
length « to the current solution x and update the residual r. (cg7) and (cg8).
Tterate until the residual error is negligible. (cg13).

Input: Matrix A, Vector b,
Error tolerance e

Output : x Such that ||Az — b||2 < ¢||b]|2
d«— b (cgl)
r— b (cg2)
8o — rTr (cg3)
Onew — 0o (cg4)
do

q «— Ad (095)

a o Cnpu (cg6)

T — T+ ad (cg?)

T r—aQgq (cg8)

Oold — Onew (cg9)

Snew < 177 (cg10)

B — % (cgll)

d— r+pd (cg12)
while dpew > €250 (cgl3)

Fig. 1. Conjugate Gradient Algorithm [35].

3.2 Algorithm Example and Context

To exemplify this method, a system defined in (4) is solved below. For this ex-
ample the solution is # = [2 1]7. The corresponding quadratic function, given by
(2), is shaped like paraboloid bowl and the solution is given at its lowest point.

5] =[] 2



In Fig. 2 the starting point, which in this implementation is set as the origin
by default, and subsequent iterations are illustrated. Each iteration arrow rep-
resents both the line search direction given by the descent direction, d, and the
step length, a. Intermediate and final values of relevant variables are shown in
Table 3 using single precision arithmetic [32]. In this example, the initial residual
norm is ||Azg — b||s = (52 + 72)2 ~ 8.6. After one iteration this has decreased
to ||Azy — bl|2 &~ (1.553% + 1.110%)2 ~ 1.9, and after two iterations the residual
has been reduced to a negligible level.

Table 3. Example iteration values.

Iteration[ 0 [ 1 [ 2

, 5 1.553 1.192 x 1077
7 —1.110 8.345 x 1077

4 5 1.800 1.192 x 107
7 —0.765 8.345 x 1077

Snew 74 3.644 7.105 x 10~ 13
a - 0.202 0.548
] - 0.049 1.950 x 10713

- 0 1.014 2.000
0 1.419 1.000

Example applications of Conjugate Gradient method include solution finding for
problems that arise in optimal control systems. One such example that requires
the repeated solution of multiple matrices of order 50 is given by the Citation
Aircraft Model [33]. In the context of MIMO systems, the order of these matrices
depends linearly on the number of antennas and the number of spatially and
temporally independent sources, and is usually below 20 [7].

4 Implementation

4.1 Overview

The dataflow of the algorithm is depicted in Fig. 3. The most computationally
intensive operation is the matrix-by-vector multiplication in (cg5). To obtain
scalable performance, the design implements this computation by sequentially
operating on each matrix row in turn; each constituent vector-by-vector multi-
plication, however, is fully unrolled and parallelised (see Fig. 4). We also use the
same vector-by-vector unit for operations (cg3), (cg6) and (cg10). These opera-
tions are represented in the double lined boxes in Fig. 3. This vector-by-vector
unit is fully pipelined, with a new vector being introduced each clock cycle. As
a result, this implementation is able to complete a conjugate gradient iteration



Fig. 2. Contours of constant value of J(z), start and end points of x and iteration
steps.

every n + 3 cycles. This throughput is given by the vector-by-vector computa-
tional unit, which has to compute for n cycles to perform the matrix-by-vector
operation and another 3 cycles to compute the remaining vector-by-vector op-
erations (cg2), (cg6) and (cgl0).

The latency of one CG iteration is given by (5) where the linear growth comes
from the row-by-row processing, the logarithmic growth comes from the addi-
tion tree in the inner-product computation, and the constants are due to the
pipeline depths of the components. The discrepancy between a throughput of
one iteration every n + 3 cycles and the latency given in (5) is used to our ad-
vantage, by using the slack to operate on multiple different matrix/vector pairs
in a round-robin pipelined fashion. The total number of linear systems that can
be processed simultaneously by the pipeline is therefore given by (6), a ©(1)
function that converges to 8 for large n as shown in Fig. 5. Note that in order
to continuously process problems every n + 3 cycles, a constant k is introduced
into (5) so that the number of clocks per iteration is a multiple of n + 3. This
is implemented through the addition of a FIFO at the output of the final oper-
ation (cg12). This guarantees the new value of d is output at the start of a new
iteration in (cg5) ensuring that an integer number of problems can be stored in
the pipeline.

One of the major advantages of the employed row-based scheme is its scalable
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Fig. 3. Circuit data flow diagram. Single boxed operations are implemented using a
single floating point unit each. Double boxed operations are implemented on the single
matrix/vector-by-vector module that requires 2n — 1 FP computational units.

FPGA 1/0 requirements, eliminating I/O bottlenecks. The conjugate gradient
algorithm completes in n iterations under infinite precision, and 2(n) iterations
under finite precision [5] [36]. Since one iteration is completed by our design ev-
ery ©(n) cycles and to find the solution for this system under its finite precision
we require at least n iterations, the data transfer bandwidth required is a ©(1)
function, i.e. approaches a constant for large n. Section 5 quantifies this I/0O
requirement for synthesized designs, and shows it to be well within PCl-express
bandwidth limitations.

Clocks per Iteration(n) = 7n + 36[log, n] + 127 + & (5)

_ Tn+36[logyn] + 127 + &

Pipeline Depth(n) 3
n

(6)

4.2 Performance

With Xilinx Core Generator Floating Point v3 units it is possible to tradeoff
latency with maximum clock frequency [37]. For the Virtex5-330 [38], individ-
ual floating point cores were synthesized as described in Table 4, using Xilinx
ISE version 9.1i. In order to optimize for throughput, modules with the high-
est latency were selected. From Table 4, the maximum frequency achievable
is 364MHz limited by the SUM/SUB module. In practice, when included with
the other logic, this falls to 287MHz on the Virtex5-330 (and 126MHz on the
VirtexIT-6000).

Since this implementation does not have every floating point computational mod-
ule in operation for the entire iteration of the CG method, two performance
formulas were deduced. One describes the peak performance (7) when all the
modules are in operation simultaneously (e.g. at the start of a n + 3 period
when the pipeline is full) and the other counts the number of operations per
iteration divided by clocks per iteration (8). This second formula corresponds
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Fig.5. The Pipeline Depth curve represents the number of problems that can be
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number of clock cycles required by each problem to complete an iteration. Both these
lines are a function of matrix order.

to sustained performance, and accounts for the idle time of floating point units
involving vector operations that only function for n cycles out of every n + 3
cycles.

FLOPS Peak(n) = (2n + 7) x MaxFreq (7)

_ 2n(n+5)

FLOPS Sustained(n) = T3 x MaxFreq (8)
n

Fig. 6 plots the peak and sustained GFLOPS performances as a function of ma-
trix order n and pipeline depth. The dark bold line represents the peak GFLOPS
and it takes into account only the short period when all the Floating Point units
are in simultaneous operation. The light lines represent the sustained perfor-
mance which is given by the number of operations performed per iteration di-
vided by time required by each iteration. For the Sustained/“ line, the number
of problems in the pipeline is given by (6).



Table 4. Latency, resource and max frequency for Xilinx Core Generator Floating
Point v3.0 units using Xilinx ISE 9.1i on the Virtex5-330.

l [Latency[LUT Slices[REG Slices[MaX Freq (MHZ)I

SUM/SUB 0 416 0 53
2 416 63 152

5 432 240 242

8 407 418 285

12 447 573 364

DIV 0 755 0 16
2 731 100 18

5 763 224 66

8 766 368 113

28 766 1383 390

MULT 0 689 1 13
2 818 143 157

5 627 519 224

8 689 627 366

5 Results

5.1 Resource utilization

Reported resources utilization was generated using Xilinx ISE 9.1i tool-chain.
These resources are consumed by the instantiation of floating point computa-
tional units, FIFO storage structures and control logic. This CG implementation
employs a total number of floating point computational units as detailed in Ta-
ble 5.

Table 5. Floating Point units used in this implementation.

’Operation ‘FP units‘
Matrix/Vector by Vector Multiplier| 2n — 1
Constant by Vector Multiplier 3
Vector by Vector Summation 2
Vector by Vector Subtraction 1
Floating Point Divider 2
| Total (FPunits) | 2n+7]

Theoretical floating point resource utilization grows as ©(n). However for this
method to be efficient, the coefficients of each problem to be solved need to be
stored or generated within the FPGA. This requires a storage that grows with
O(n?) (©(n?) for one problem, with ©(1) problems in the pipeline). To store
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Fig. 6. Peak and sustained performance as a function of matrix order n and the number
of pipelined problems.

these values a mixture of embedded BlockRAMs and SRLC32 primitives are
used [38]. This mixture depends on the length of the FIFO. When this length
is below 64, they are implemented solely using SRLC32 primitives. When above
64, they are implemented by combining BlockRAMs and SRLC32 primitives for
efficiency. This is due to the fact that Xilinx Coregen BlockRAM FIFOs are
only available in sizes of 2" with n > 3; thus SRLC32 primitives are used to
take up any slack. Fig. 7 depicts post place-and-route resource utilization as a
function of the matrix order, using Xilinx ISE version 9.1i. Growth of each re-
source is approximated linearly as predicted, with the exception of BlockRAMs
that are also used for matrix storage. The usage of these BlockRAMs is asymp-
totically quadratic, however for the lengths in the range of our implementation,
this growth is at most nlogn. This is due to the need of assembling n FIFOs for
the storage of the A matrix in a row-by-row configuration. Each of these FIFOs
stores matrix elements of the same column. Each FIFO require logn Block-
RAMs, since multiple BlockRAMs may be needed to fulfil a desired length, due
to discrete lengths available as powers of 2.

For the Virtex5-330, resources are saturated for matrices orders above 58 having
depleted all BlockRAMs. Best fit resource usage function for DSP48FEs, LUTs,
REGisters, and BlockRAMs usage as a function of matrix order are described in
(9), (10), (11) and (12) respectively. BlockRAMs usage varies significantly from
the best fit, because they are used in conjunction with SRLC32s, as explained
previously.

DSP48Es(n) = 2n + 2 (9)



LUT Slices(n) = 2361n + 3426 (10)

REG Slices(n) = 3007n + 6446 (11)
BlockRAMs(n) = 12.2nlogy, n — 21 (12)
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Fig. 7. BlockRAMs, REGisters and LUTSs resource utilization with matrix order for the
Virtex5-330. Light lines represent the best fit based on the post placement-and-route
reports of Look-Up-Tables, REGisters, BlockRAMs and DSP48Es usage.

5.2 Software comparison and discussion

To effectively compare this work with software on a high-end CPU, we have coded
two equivalent Conjugate Gradient algorithms in ANSI-C. The first program,
CPUyireet, is a direct implementation, while the second, CPU 45, was optimized
using Basic Linear Algebra Subprograms (BLAS) functions from the leading edge
Automatically Tuned Linear Algebra Software (ATLAS) library [39]. Both these
programs were compiled with GNU gcc compiler version 4.2.3. The machine and
architecture targeted for these software implementations is a Sun Ultra 20 M2,
which comprises of a AMD Opteron 1220 CPU at 2.8 GHz with 4GB (2x2GB)



of RAM, running Gentoo amd64 Linux, which was considered the world’s fastest
single socket x86 system on the floating point suite [40].

We benchmark the time required per iteration using the POSIX standard func-
tion, clock_gettime. This function is called just before the start of the iterative
code and immediately after it has run for n iterations, and takes into consider-
ation the sampling delay.

Fig. 8 illustrates the performance of the CPU using both the direct and the
ATLAS CG implementation. In this figure it is possible to observe that perfor-
mance increases with matrix order n for both implementations. For the CPU g; et
program, its performance reaches a plateau around 0.2 GFLOPS for matrix or-
ders above 50. The ATLAS optimized program, CPU,;;4s, peaks at 2.4 GFLOPS
for matrix orders around 450, and decreases its performance to stabilize just un-
der 2 GFLOPS, for matrix orders above 600. The direct implementation is faster
than the ATLAS optimized code for low matrix orders due to the elimination
of function-call and ATLAS data structure overheads. As the matrix order in-
creases, these overheads reduce as a proportion of execution time, and at the
same time the degree of instruction-level parallelism available for extraction by
the superscalar processor increases, resulting in an improvement in floating-point
performance. The direct implementation levels off at only 0.2 GFLOPS mainly
because the memory access pattern has not been optimized for the cache, un-
like in the ATLAS implementation. The dip in performance of ATLAS for large
matrix orders corresponds to an increase in L1 cache misses for these data struc-
tures.

Table 6 compares the performance of the direct and optimized software imple-
mentations with the FPGA using a Virtex5-330. The results demonstrate that
performance is dependent on matrix order n but that speedups of at least an
order of magnitude have been achieved.

Acceleration relative to software is provided by pipelining and parallelization of
matrix/vector-by-vector operations. In this implementation considerable speedup
is due to the block module that performs a fully parallelized vector-by-vector
multiplication. Each of these operations requires 2n — 1 sequential operations
in software while in hardware they can be reduced to Lm + Ls[log,n] cycles
for a single problem, where Lm is the latency of the multiplication core, Ls the
latency of the addition core and n is the matrix order. In the case where several
vectors need to be multiplied, they can be pipelined and a result provided every
clock cycle at the initial cost of filling the pipeline.

The overall speedup given by the combination of parallelization and pipelin-
ing is illustrated in Fig. 9, which compares the processing time, for each CG
iteration, on the FPGA and the CPU. Three lines are shown for the FPGA
implementation: one representing the pipeline containing only a single problem,
another intermediate line showing the pipeline with 8 problems, and a third line
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Fig. 8. Measured performance as a function of matrix order, for a direct ANSI-C imple-
mentation and an ATLAS optimized Conjugate Gradient method. Both measurements
were made on a AMD Opteron 1220 CPU.

Table 6. Performance comparison for both the DIRECT and ATLAS optimized pro-
grams, running on a AMD Opteron 1220 CPU, with this FPGA hardware implemen-
tation using a Virtex5-330. FPGA vs CPU speed-up values are given for two extreme
cases: when the FPGA has a single problem loaded on its pipeline and when this

pipeline is full.

DIRECT| ATLAS FPGA®m9le FPGAT“!
n|MFLOPS|MFLOPS|MFLOPS[SPEEDUP|MFLOPS|SPEEDUP
2 56 8 36 0.6 1548 27 x
5 110 46 90 0.8x 3060 28 %
8 123 86 181 1.3x 5430 44%

10 138 135 227 1.7x 6129 44%
20 170 406 604 1.5% 12080 30
30 185 667 1116 1.7x 17856 27 x
40 195 696 1603 2.3x 24045 35x
50 206 1135 2216 2.0% 31024 27x%
58 209 1285 2734 2.1x 35542 28 x
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Fig. 9. Iteration time required for solving a number of CG problems as a function of
matrix order on a CPU and FPGA. The bold lines represent a high-end CPU. The
CPUipeo line depicts and ideal CPU running at 2.8 GHz. The CPUgjrect line plots
direct ANSI-C implementation while the CPUg,4,s line represents the time required
by the ATLAS optimized Conjugate Gradient software. Both these measurements are
based on an AMD Opteron 1220 CPU. The remaining lines show the FPGA Virtex5-
330 implementation with a single problem in the pipeline, with 8 problems, and a
fully-loaded pipeline. This last line also depicts the number of problems in the pipeline
for that matrix order in accordance with (6).



representing a full pipeline. Below this last line, the number of problems being
concurrently solved, in the pipeline, is given by (6). Two dark lines represent the
measured CPU performance for a direct ANSI-C as well an ATLAS optimized
software implementation. A third darker line represents the ideal case where a
software implementation is performing at the CPUs peak theoretical capacity of
5.6 GFLOPS (2x clock frequency). Comparing the FPGA with a full pipeline
and theoretical CPU, it is possible to observe that the FPGA is faster than
the CPU for orders greater than 5. For a single problem in the FPGA pipeline,
the theoretical CPU becomes slower than the FPGA for matrix orders above
60. With the intermediate FPGA line showing the time required to process 8
pipelined problems it is possible to observe its convergence to the FPGA ¢,y line
as demonstrated in (6). Thus with only eight parallel problems, FPGA superi-
ority is clearly established, even for low matrix orders. Comparison with both
measured CPU implementations, the FPGA has demonstrated superiority even
if only one problem is being processed, for matrix orders above 6.

5.3 Input/Ouput Considerations

As input, this method requires a matrix A and a vector b to be introduced. As
output, it requires the solution vector x, which, under finite precision, is gener-
ated after at least n iterations [36]. This translates to the need of transferring
32(n? + 2n) bits per problem for a total number of problems given by (6). This
transfer can occur over a period given by at least n times the clocks per itera-
tion (5) because this is the time it takes to generate a solution and start a new
problem. Combining these values we can deduce the minimum bit rate as given
in (13). With the Virtex5-330 design solving problems of order 58 and running
at 287MHz, this requirement translates to a data rate requirement of 1.1GB/s.
This value is well within the operation range of PCI-Express [41].

32

I/0 Bit Clock Cycle = 32 —
/O Bits per Clock Cycle 13

(13)

6 Conclusions

This paper describes a Conjugate Gradient implementation. It analyzes its re-
source utilization growth with matrix order and peak performance achievable,
pipeline-depth in terms of problems, compares this performance with a high end
processor and demonstrates that this method exhibits superior performance with
scalable I/O requirements.

The implementation targets multiple medium-to-small dense systems, and may
also be used when the exact solution (to within machine precision) may not be
required, through early termination. An example of such a case arises in the
inner loop of a truncated Newton method. While the FLOP count of direct and
iterative solvers may indicate a preference for direct methods if an exact solu-
tion is required on small matrices, iterative and direct methods have different



opportunities to extract fine grain parallelism and pipelining.

It is demonstrated that multiple dense problems of matrix order 16 can be
solved in parallel with a sustained floating point performance of 5 GFLOPS,
for the VirtexII-6000 and multiple dense matrices of order 58, with a sustained
floating point performance of 35 GFLOPS, for the Virtex5-330. Multiple parallel
solutions of these orders are required, for example, in Multiple-Input-Multiple-
Output communication systems using adaptive quantization [7] and in solving
large banded matrices using the algorithm described in [6]. These banded sys-
tems arise in a number of problems including optimal control systems [9].

Taking advantage of hardware parallelization, the required latency for a sin-
gle iteration is reduced from ©(n?) to ©(n), at the cost of increasing hardware
computational utilization from @(1) to ©(n). Since generating each solution typ-
ically requires at least n iterations under finite precision [5] and each iteration
requires n + 3 clock cycles, this design exhibits scalable 1/O transfer rates that
converge to a constant number, as matrix order n increases. Hence, this CG
implementation is exceptionally suited for FPGAs.

This work outlined that with an effective use of parallelism, pipelining, num-
ber system and data-path, FPGAs can greatly outperform the top theoretical
performance of high-end CPUs. The FPGA superiority is further emphasised
when considering the typical CPU cache misses and pipeline stalls, as demon-
strated in Section 5.3 with two CG software implementations. Results for this
implementation, using the Virtex5-330, represented a superior performance of
at least an order of magnitude comparing to a high-performance CPU.

Future work will be focused on the solution of structured systems originating
in [9] and matrix sparsity will also be exploited to accelerate the solutions of
special cases. Problem preconditioning will also be explored in order to optimize
computation time.
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