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METHODOLOGY

A high-throughput pipeline 
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Abstract 

Background: Bread wheat (Triticum aestivum L., 2n = 6x = 42) is an allohexaploid with a huge genome. Due to the 

presence of extensive homoeologs and paralogs, generating locus-specific sequences can be challenging, especially 

when a large number of sequences are required. Traditional methods of generating locus-specific sequences are 

rather strenuous and time-consuming if large numbers of sequences are to be handled.

Results: To improve the efficiency of isolating sequences for targeted loci, a time-saving and high-throughput pipe-

line integrating orthologous sequence alignment, genomic sequence retrieving, and multiple sequence alignment 

was developed. This pipeline was successfully employed in retrieving and aligning homoeologous sequences and 

83% of the primers designed based on the pipeline successfully amplified fragments from the targeted subgenomes.

Conclusions: The high-throughput pipeline developed in this study makes it feasible to efficiently identify locus-spe-

cific sequences for large numbers of sequences. It could find applications in all research projects where locus-specific 

sequences are required. In addition to generating locus-specific markers, the pipeline was also used in our laboratory 

to identify differentially expressed genes among the three subgenomes of bread wheat. Importantly, the pipeline is 

not only valuable for research in wheat but should also be applicable to other allopolyploid species.
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Background

Reference genome sequences of several major crops have 

been reported and include rice [1], barley [2], foxtail mil-

let [3], maize [4], sorghum [5], potato [6], tomato [7] and 

Brassica napus [8]. Significant progress has also been 

made in recent years in generating reference genomes for 

bread wheat [9] and its progenitor species [10, 11]. �ese 

genome sequences have been extensively exploited in the 

whole spectrum of biological studies ranging from basic 

understanding of crop evolution to applied breeding. 

With the rapid development in sequencing capacity, it is 

anticipated that whole genome sequences should soon 

become available for multiple genotypes for each of the 

species of agronomic importance.

Knowing the origins of specific DNA or RNA sequences 

is essential in numerous applications, such as designing 

locus-specific markers. Although gene duplication is a 

common feature of all plant species including Brachypo-

dium [12], rice [1], and barley [2], developing locus-spe-

cific markers for these diploid species is relatively easy. 

�is suggests that enough variation must exist between 

the majority of duplicated genes in these species. How-

ever, isolating locus-specific sequences for a given sub-

genome of interest from bread wheat or other polyploid 

species is still challenging as two or more homoeologous 

sequences exist in each of these genomes. It can be even 

more daunting when isolating a gene of interest which 

belongs to an orthologous gene set or a gene family.
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Currently several steps need to be taken when isolating 

a specific homoeologous sequence from an allopolyploid 

species. First, web-based blast servers such as National 

Center for Biotechnology Information (NCBI) or Viro-

BLAST in Unité de Recherche Génomique Info (URGI, 

https://urgi.versailles.inra.fr/blast/blast.php) [13] need 

to be employed to search for orthologous sequences 

for a given query sequence. Second, all the orthologous 

gene sequences for a given species need to be manu-

ally retrieved from contigs or scaffold sequences. �ird, 

multiple sequence alignment tools are required to align 

retrieved orthologous sequences to detect locus-specific 

sequences. �is procedure can be used to manage a lim-

ited number of sequences but will become rather strenu-

ous and time-consuming if large numbers of sequences 

need to be handled.

To improve the efficiency of retrieving sequences 

from polyploidy species, we have developed a pipe-

line by streamlining the steps in orthologous sequence 

alignment, genomic sequence retrieving and multiple 

Table 1 Numbers of genes used in blasting against wheat chromosome shotgun sequences (CSSs)

Brachypodium distachyon Triticum urartu Aegilops tauschii

Total numbers of genes 31,029 34,879 43,150

Genes with hits on CSSs 30,028 34,671 43,126

Genes with generated alignments 27,782 32,378 40,961

Fig. 1 Examples of multiple alignments for two (a), three (b), and five (c) homoeologous sequences for identifying allele-specific sequences for 

marker development.

https://urgi.versailles.inra.fr/blast/blast.php
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sequence alignment. �is time-saving and high-through-

put pipeline significantly simplifies the detection of 

locus-specific sequences in allopolyploid species. �e 

pipeline has also been successfully used in differenti-

ating expressed genes among the three bread wheat 

subgenomes.

Results and discussion

�e percentages of query gene sequences which 

detected two or more orthologous sequences from chro-

mosome shotgun sequences (CSSs) were about 90% 

from Brachypodium, 93% from Ae. tauschii and 95% 

from T. urartu (Table  1). Examples of these stringent 

alignments containing two orthologous sequences (e.g. 

Bradi2g16370.1), three homoelogous sequences (e.g. 

Bradi2g33190.1), and more than four homoeologous 

sequences (e.g. Bradi2g14840.1) are shown in Fig.  1. 

Each of the alignments with the suffix ‘.htm’ is easily 

readable by any web browser. �e alignments generated 

and described in ‘Methods’ can be directly used to check 

possible allele-specific loci for isolating genes in hexa-

ploid wheat.

Given that primers designed based on a single nucleo-

tide polymorphisms (SNP) did not always amplify a spe-

cific fragment in our previous studies, primers designed 

in this study were based on two or more SNPs or indels 

(Additional file  1: Table S1). Of the 36 primer pairs 

designed for selected loci, 30 (83%) amplified a product 

on the expected chromosomes, two failed to amplify 

any PCR products, and the other four generated locus-

specific fragments (Fig. 2 and Additional file 1: Table S1). 

Eleven of the 30 pairs of primers were further assessed 

against other bread wheat genotypes (Additional file  1: 

Table S1). Sequence alignments indicated that, with-

out exception, they all amplified sequences homologous 

with those from the expected chromosomes as shown in 

‘Chinese Spring’ (‘CS’) (Additional file 1: Table S1). Four 

of these primer pairs generated polymorphic fragments 

between the parents of the mapping population used 

in this study. �e polymorphic sequences were used to 

develop cleaved amplified polymorphic sequence (CAPS) 

markers. Each of the four CAPS markers was successfully 

mapped to the anticipated chromosome as originally 

detected using ‘CS’ aneuploids (Fig.  3, Additional file  2: 

Fig. S1 and Additional file 3: Fig. S2).

A pipeline for generating SNP markers, PolyMarker, 

was reported recently and it is used to design primers for 

KASP™ (Kompetitive Allele Specific PCR) assay. KASP™ 

is a very unique system in that it uses three primers in 

PCR reactions. Two of them are allele-specific forward 

primers. Sequences from parental genotypes are required 

in designing the two forward primers which make accu-

rate bi-allelic discrimination possible [14–18].

Different from the PolyMarker/KASPTM system, the 

method reported in this paper does not need sequences 

from parental genotypes. Allele-specific primers are 

designed based on sequence alignments from all subge-

nomes of a species. In addition to designing allele-spe-

cific markers as shown in the current study, we have also 

adapted the pipeline to design allele-specific primers for 

reverse transcription quantitative PCR (RT-qPCR) anal-

ysis in wheat. For example, several positions of ortholo-

gous sequences of Bradi1g04060 could be used to design 

RT-qPCR primers in bread wheat (Fig. 4). We have also 

successfully used the pipeline to retrieve conserved 

regions that could be used for differentially expressed 

analysis in bread wheat (not published). Obviously, this 

high-throughput pipeline would be applicable to other 

allopolyploid species such as rapeseed, cotton, or oat.

Conclusion

Here we reported on a high-throughput pipeline which 

integrates orthologous sequence alignment, genomic 

sequences retrieval, and multiple sequence align-

ment. �e pipeline can be conveniently used to identify 

1 kb

1.65 kb

M

Bradi3g43530.1 (6D) 

0.85 kb

0.65 kb

M

AEGTA07578 (6D)

0.85 kb

0.65 kb

M

Bradi3g09870.1 (6D)

Fig. 2 PCR profiles of the hexaploid wheat genotype ‘Chinese 

Spring’ and its nulli-tetrasomic (NT) lines with primers for three genes 

assessed. Locations of the genes detected from the chromosome 

shotgun sequences are given in brackets. 1 kb plus DNA ladder (M) 

was used as the size marker.
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locus-specific sequences for marker development and 

RT-qPCR and transcriptome analyses, especially when 

large numbers of sequences need to be dealt with. Exam-

ples of its application in wheat are given in this publica-

tion but the pipeline would also be valuable for similar 

applications in other allopolyploid species as well.

Methods

Plant materials

�e euploid and selected nullisomic-tetrasomic ‘CS’ lines 

[19, 20] were used to locate PCR-amplified fragments 

to specific chromosomes. Two wheat populations were 

employed to further validate the location of DNA frag-

ments amplified from primers designed in this study. 

One is a doubled haploid (DH) population with 153 lines 

generated from the ‘Batavia’/’Ernie’ cross [21], and the 

other one is an F8 population of recombinant inbred lines 

(RILs) with 92 lines derived from the ‘Lang’/‘CSCR6’ 

cross [22].

Data collection

Gene-coding sequences (CDS) of Brachypodium 

genome version 1.2 were downloaded from http://

www.plantgdb.org/BdGDB [12]. CDS of Ae. tauschii 

(wheatD_final_43150.gff.cds) [10] and T. urartu 

(TRIUR3_120813_filter150_cds) [11] were both down-

loaded from GIGA_DB (http://gigadb.org/). CSSs of ‘CS’ 

were downloaded from https://urgi.versailles.inra.fr/

download/iwgsc/Science/ [9].

Generation of multiple sequence alignments and primer 

design

Alignments of orthologous sequences from Brachy-

podium, Ae. tauschii, and T. urartu were generated fol-

lowing the steps outlined in Fig. 5. First, gene sequences 

from Brachypodium, Ae. tauschii, and T. urartu were 

blasted against CSSs using the BLAST  +  blastn algo-

rithm with the parameters ‘-num_descriptions 10 -num_

alignments 10 -evalue 0.00001’ (i.e. a maximum of 10 hits 

a

b

c

Fig. 3 Validation of marker locations using a DH (doubled haploid) population. Orthologous sequences of Bradi1g54730.1 and Bradi1g55847.1 

were amplified from the two parents of the DH population, B (‘Batavia’) and E (‘Ernie’), and sequenced. The single nucleotide polymorphism (in 

red and green) and restriction enzyme sites (underlined) were identified between B and E for Bradi1g54730.1 with restriction enzyme AciI (a) and 

Bradi1g55847.1 with HaeIII (b). The amplified products of the two parents and 14 of the DH lines were digested and separated on agarose gels. Map 

positions of the two new markers on chromosome 2B (c) were calculated based on the linkage map published by Li et al. [21].

http://www.plantgdb.org/BdGDB
http://www.plantgdb.org/BdGDB
http://gigadb.org/
https://urgi.versailles.inra.fr/download/iwgsc/Science/
https://urgi.versailles.inra.fr/download/iwgsc/Science/
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for each gene query and with E-value threshold of 10−5) 

[23]. Second, an in-house script was used to retrieve the 

coordinates of each hit for a given gene query from the 

blast results. A maximum of 5,000  bp intron and mini-

mum of 200  bp exon were used to limit the retrieved 

coordinates for a given hit. �ird, the 5′ and 3′ flanking 

regions of 300 bp were isolated from each of the contigs 

(hits) according to the coordinates obtained. Fourth, the 

isolated genomic sequences from all the hits for a given 

query were written to a single file. Finally, a script inte-

grated with Gblocks_0.91ba [24] and Clustal W 2.1 [25] 

was used to generate the alignments of all the retrieved 

genomic sequences for a given query (Fig. 5). �e align-

ments and in-house developed scripts are available at 

http://dx.doi.org/10.6084/m9.figshare.1393103; http://

dx.doi.org/10.6084/m9.figshare.1393106; http://dx.doi.

org/10.6084/m9.figshare.1393105.

Validation of primers designed from the alignments

For validating the efficiency of the multiple sequence 

alignments generated, genes that were polymorphic 

between the parental lines of the mapping populations 

Fig. 4 An example of selecting primer sequences for qPCR analysis. Dotted boxes represent regions that could be used for primer design.

http://dx.doi.org/10.6084/m9.figshare.1393103
http://dx.doi.org/10.6084/m9.figshare.1393106
http://dx.doi.org/10.6084/m9.figshare.1393106
http://dx.doi.org/10.6084/m9.figshare.1393105
http://dx.doi.org/10.6084/m9.figshare.1393105
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were assessed. Where possible, sequences differing in 

more than 1 SNP or indel were used to design primers 

targeting specific chromosomes for the selected genes 

(Additional file 1: Table S1).

The euploid and selected nullisomic–tetrasomic 

lines of ‘CS’ [19, 20] were analysed. Genomic DNA 

was extracted from 20-day-old seedlings using the 

hexadecyltrimethylammonium bromide method 

(CTAB) [26]. PCR amplification was performed in 

10 µl reaction mixtures with 50 ng of genomic DNA, 

200 µM of each dNTP, 0.2 µM of each primer, and 0.5 

units of Taq polymerase. The cycling parameters were 

94°C for 5  min to pre-denature, which was followed 

by 35 cycles of 94°C for 45  s, 40  s at the appropri-

ate annealing temperature (ranging from 50 to 70°C 

depending on the primers, see Additional file 1: Table 

S1), 72°C for 1 min, and a final extension at 72°C for 

10  min. Amplification products were separated on 

1.5% agarose gels.

To further confirm the effectiveness of the primers in 

the RIL and DH populations, fragments of interest were 

purified using the QIAquick Extraction Kit (QIAGEN). 

�e recovered PCR fragments were inserted into the 

pGEM-T easy vector (Promega) and transformed into 

Escherichia coli (Top10). At least three independent 

clones for each fragment were sequenced in both direc-

tions by the Australian Genome Research Facility Ltd. 

Sequenced fragments were aligned using by the DNA-

man software package (V5. 2.10; Lynnon Biosoft). To 

identify whether the sequenced fragments were from the 

expected chromosomes as found in the ‘CS’ aneuploids, 

they were aligned with all of the orthologous sequences 

from ‘CS’ for a given gene. SNPs between the parents 

of a given population were exploited to develop cleaved 

amplified polymorphic sequence (CAPS) marker using 

dCAPS Finder 2.0 [27]. PCR products were digested with 

appropriate enzymes from New England Biolabs (NEB) 

based on target sequences differences and separated on 

3% agarose gels. �e genetic linkage map was generated 

using JoinMap 4 [28].

Additional �les

Additional �le 1: Table S1. Details of primers tested.

Additional �le 2: Figure S1. Validation of marker location of 

AEGTA18760 using a RIL (recombination inbred lines) population. Ortholo-

gous sequences of AEGTA18760 were amplified from the two parents of 

the RIL population, C (‘CSCR6’) and L (‘Lang’), and sequenced. The single 

nucleotide polymorphism (in red and green) and restriction enzyme sites 

(underlined) were identified between C and L for AEGTA18760 with restric-

tion enzyme NlaIII (A). The amplified products of the two parents and 13 

of the RIL lines were digested and separated on agarose gels. The map 

position of the new marker on chromosome 3B (B) was calculated based 

on the linkage map published by Ma et al. [22].

Additional �le 3: Figure S2. Validation of marker location of Bra-

di1g07500.1 using a DH (doubled haploid) population. Orthologous 

sequences of Bradi1g07500.1 were amplified from the two parents of 

the DH population, B (‘Batavia’) and E (‘Ernie’), and sequenced. The single 

nucleotide polymorphism (in red and green) and restriction enzyme sites 

(underlined) were identified between B and E for Bradi1g07500.1 with 

restriction enzyme BtgI (A). The amplified products of the two parents and 

13 of the RIL lines were digested and separated on agarose gels. The map 

position of the new marker on chromosome 3B (B) was calculated based 

on the linkage map published by Li et al. [21].

Fig. 5 The pipeline of generating multiple sequence alignments in 

bread wheat. CSSs chromosome shotgun sequences; A, B, and D the 

three subgenomes of bread wheat; C1, C2, and C3 the three contigs 

from the three subgenomes; ‘CS’ euploid wheat ‘Chinese Spring’; 

NATB, NBTA, and NDTB 3 nulli-tetrasomic (NT) lines for chromosomes 

belonging to a given homoeologous group. Asterisks representing 

polymorphic bases targeted in designing primers specific to a subge-

nome. The lack of a PCR product in the lane of nulli-A and tetra-B (or 

NATB) indicates that primers are specific to chromosome A.
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