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Abstract 

Background: The fitness of the rape leaf is closely related to its biomass and photosynthesis. The study of leaf traits 

is significant for improving rape leaf production and optimizing crop management. Canopy structure and individual 

leaf traits are the major indicators of quality during the rape seedling stage. Differences in canopy structure reflect 

the influence of environmental factors such as water, sunlight and nutrient supply. The traits of individual rape leaves 

traits indicate the growth period of the rape as well as its canopy shape.

Results: We established a high-throughput stereo-imaging system for the reconstruction of the three-dimensional 

canopy structure of rape seedlings from which leaf area and plant height can be extracted. To evaluate the measure-

ment accuracy of leaf area and plant height, 66 rape seedlings were randomly selected for automatic and destructive 

measurements. Compared with the manual measurements, the mean absolute percentage error of automatic leaf 

area and plant height measurements was 3.68 and 6.18%, respectively, and the squares of the correlation coefficients 

(R2) were 0.984 and 0.845, respectively. Compared with the two-dimensional projective imaging method, the leaf 

area extracted using stereo-imaging was more accurate. In addition, a semi-automatic image analysis pipeline was 

developed to extract 19 individual leaf shape traits, including 11 scale-invariant traits, 3 inner cavity related traits, and 

5 margin-related traits, from the images acquired by the stereo-imaging system. We used these quantified traits to 

classify rapes according to three different leaf shapes: mosaic-leaf, semi-mosaic-leaf, and round-leaf. Based on testing 

of 801 seedling rape samples, we found that the leave-one-out cross validation classification accuracy was 94.4, 95.6, 

and 94.8% for stepwise discriminant analysis, the support vector machine method and the random forest method, 

respectively.

Conclusions: In this study, a nondestructive and high-throughput stereo-imaging system was developed to quantify 

canopy three-dimensional structure and individual leaf shape traits with improved accuracy, with implications for 

rape phenotyping, functional genomics, and breeding.

Keywords: Stereo-imaging system, Canopy three-dimensional structure, Individual leaf traits, Morphological 

classification
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Background
Oilseed rape (Brassica napus) is an important species 

that is cultivated in many countries for its valuable oil 

and protein [1–5]. �e area planted with oilseed rape 

has rapidly increased in recent decades [6]. �e leaf is of 

fundamental importance to the rape, acting as the power 

generator and aerial environmental sensor of the plant 

[7, 8]. Leaves are primarily involved in photosynthesis 

and transpiration, thereby influencing crop yield [9, 10]. 

�e size, shape, area and number of leaves are of great 

significance to plant science, allowing scientists to dis-

tinguish between different species and even to model 

climate change [11]. Moreover, plant canopy architecture 

is of major interest for plant phenotyping. Variations in 

canopy structure have been linked to canopy function 

and have been attributed to genetic variability as well as 

a reaction to environmental factors such as light, water, 

and nutrient supplies as well as stress [12]. �us, canopy 

structure is an essential variable for plant’s adaptation 

to its environment [13, 14]. It is therefore important to 

study the oilseed rape phenotypic traits of both individ-

ual leaf shape and plant canopy structure.

Many researchers have carried out studies of individual 

leaf traits [15–19]. In many cases, rapeseed species can 

be distinguished by aspects of leaf shape, flower shape, 

or branching structure. Shape is, of course, important in 

many other disciplines [11]. To characterize these prop-

erties, O’Neal et al. [20] applied a desk-top scanner and 

public domain software to extract individual leaf shape 

traits, including leaf height, leaf width. However, the effi-

ciency of this process is problematic: each leaf must be 

removed from the plant and scanned into a digital for-

mat. In addition, some complex traits such as leaf serra-

tion and leaf margin can’t be assessed by this method. In 

an attempt to measure leaf area easier and more accurate, 

the new software namely “Compu Eye, Leaf & Symptom 

Area” was developed by Bakr et al. [21], etc. �e purpose 

of this software is to obtain the symptom area for each 

leaf. But, this method offers no method to quantify leaf 

serration and morphology traits. �us, this software has 

some limitations in practical. Igathinathane et  al. [22] 

designed software that uses the computer monitor as the 

working surface to trace leaf outline and determines leaf 

area, perimeter, length, and width. �is software offers no 

method to quantify leaf serration and inner cavity-related 

traits. Also, this is a semi-automatic program and the 

interactive processes are complex and tedious. Weight 

et  al. [23] reported the development of LeafAnalyser, 

which is an excellent tool to facilitate PCA analysis of leaf 

shape parameters. However, the leaf petiole region did 

not remove when analyzing the leaf traits and the soft-

ware was not released as open source, negating the pos-

sibility of further development by the community. Bylesjö 

et al. [7] designed a tool to extract classical indicators of 

blade dimensions and leaf area, as well as measurements 

that indicate asymmetry in leaf shape and leaf serration 

traits. �is software not only obtains object boundaries 

but also analyzes serration traits. However, it requires 

the user to analyze leaves in vitro and to correctly char-

acterize the blade azimuth for subsequent image analy-

sis, which limits the throughput of the analysis. Dengkui 

et al. [24] designed a tool to acquire plant growth infor-

mation by abstracting the plant morphological char-

acters, size and color of leaves, etc. �e morphological 

operation has been used to remove petiole, which will 

influence the accuracy of leaf margin information extrac-

tion. But, the method offers no method to quantify leaf 

serration and inner cavity-related traits. Yang et  al. [25] 

designed a device “HLS” for assessing leaf number, area, 

and shape. �e device is efficient and can process mul-

tiple blades in parallel. However, all blades must be cut 

from the plant before insertion into the HLS device. Fur-

thermore, the present equipment for extracting serrated 

blade edge traits is insufficient.

�e work described above focuses on the morphologi-

cal traits of individual leaves. However, three-dimensional 

canopy structure also plays an important role in sustain-

ing plant function. �e canopy structure contains useful 

information regarding developmental stage during the 

vegetation period as well as yield-forming parameters [26, 

27]. �ree-dimensional imaging methods can be broadly 

classified into two types: active and passive [14]. Com-

monly used active light projection technologies include 

laser scanning and structured light. Light detection and 

ranging (LIDAR) laser scanners have emerged as a pow-

erful active sensing tool for direct three-dimensional 

measurement of plant height, canopy structure, plant 

growth, and shape responses [28]. �e precision of laser 

scanner systems is very high, but the scanning time is 

very long, reducing the system’s throughput. In struc-

ture light systems, the Kinect Microsoft RGB-depth cam-

era [29] is used as a depth camera to shine light onto the 

object scene. �e light reflected from the scene is used 

to build the depth image by measuring the deformation 

of the spatially structured lighting pattern [30]. �e sys-

tem produces 640 × 480 pixels RGB-depth images coded 

with a 16-bits dynamic that are acquired at a rate of 30 

frames per second [13]. �e imaging speed of these sys-

tems is very high, nearly satisfying the demands of real-

time measurement. However, the measurement accuracy 

exhibits low spatial resolution in comparison with a 

standard RGB camera. One problem with laser-based 

and structured light systems is that they do not work 

well with reflective objects, and it is often necessary to 

coat the surface with a non-reflective layer that can lead 

to the collection of unsatisfactory texture data [31]. In 
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addition, the method used for volumetric reconstruction 

from multiple images has been proposed to be a pas-

sive three-dimensional imaging technology [32–34]. It 

works by obtaining multiple images from different fixed 

angles. Here, a rotated plate is used to achieve multi-angle 

imaging, which will result in time-consuming rotations. 

Moreover, this method requires a significant amount of 

post-processing. Also, binocular/multi-view stereo imag-

ing approach is another major passive three-dimensional 

imaging technology [35, 36]. �ere are some applications 

of using binocular/multi-view stereo vision for plant sens-

ing. For automatic robot or vehicle-mounted system, the 

binocular stereo system is a common component for 

obtaining distance depth information or field plant 3D 

structure [37–40]. Moreover, the binocular stereo is also 

used in small- to medium-sized plant canopies recon-

struction. Ivanov et al. [41] applied film-based stereo pho-

togrammetry to reconstruct the maize canopy, where the 

plant canopy geometrical structure was analyzed and dif-

ferent simulation procedures were carried out to analyze 

leaf position and orientation and leaf area distribution. 

Andersen et  al. [42] designed simulated annealing (SA) 

binocular stereo match algorithm for young wheat plants 

and analyzed height and total leaf area for single wheat 

plant. Biskup et  al. [43] designed a stereo vision system 

with two cameras to build 3D models of soybean canopy 

and analyzed the angle of inclination of the leaves. Also, 

for isolated leaf, Biskup established a stereoscopic imag-

ing system, which quantifies surface growth of isolated 

leaf discs floating on nutrient solution in wells of micro-

titer plates [44]. Müller-Linow et al. [12] developed a soft-

ware package, which provides tools for the quantification 

of leaf surface properties within natural canopies via 3-D 

reconstruction from binocular stereo images. Further-

more, the multi-view stereo 3D reconstruction for plant 

phenotyping is also widely used combining with SfM- 

and MVS-based photogrammetric method. Lou et  al. 

[45] described an accurate multi-view stereo (MVS) 3D 

reconstruction method of plants using multi-view images, 

which takes both accuracy and efficiency into account. 

Several plants, including arabidopsis, wheat and maize, 

are used to evaluate the performance of reconstruction 

algorithm. Rose et al. [46] developed a multi-view stereo 

system to evaluate the potential measuring accuracy of a 

SfM- and MVS-based photogrammetric method for the 

task of organ-level tomato plant phenotyping. �e leaf 

area, main stem height and convex hull of the complete 

tomato plant are analyzed. Miller et al. [47] applied a low-

cost hand-held camera to accurately extract height, crown 

spread, crown depth, stem diameter and volume of small 

potted trees. �e multi-view stereo-photogrammetry was 

used to generate 3D point clouds. From the literatures 

above, the binocular stereo is usually used in small-sized 

plant canopies reconstruction by using two top-view cam-

eras and the multi-view stereo 3D reconstruction method 

is applied for organ-level plant 3D phenotyping.

In this study, we attempt to create a three-dimensional 

surface model of the rape canopy from images taken by 

double top-view cameras, and we estimate geometric 

attributes such as plant height and canopy leaf area. For 

RGB images collected using a stereo-imaging system, a 

novel image analysis pipeline for the accurate quantifica-

tion seedling rape leaf traits was developed. We are thus 

able to perform leaf shape analysis, including contour sig-

natures and shape features.

Results and discussion
Development of a stereo-imaging system

In order to extract canopy leaf area, plant height and 

canopy three-dimensional structure, we developed a 

stereo-imaging system consisting of three major units: 

an imaging unit, a transportation unit and a control unit 

(Fig.  1a). For the imaging unit, we utilized two identi-

cal RGB cameras [AVT Stingray F-504B/F-504C, Allied 

Vision Technologies Corporation, 2452 (H) ×  2056 (V) 

resolution] with 8  mm fixed focal lenses (M1214-MP, 

Computar Corporation), two LED lamps and a lifting 

platform. �e RGB cameras are fixed to ensure that the 

two main optical axes are parallel and that the two imag-

ing planes are located at the same horizontal level. An 

automatic trigger acquires image pairs, and software was 

developed to obtain the color image pairs simultane-

ously. �e lifting platform can be used to adjust the imag-

ing region [537.5 mm (H) ×  449.9 mm (V)] and spatial 

resolution (0.2188 mm/pixel). In addition, the computer 

workstation (HP xw6400, Hewlett-Packard Development 

Company, USA) plays the role of central control unit, 

and utilizes software developed by LabVIEW 8.6 (Nation 

Instruments, USA) to communicate with the two RGB 

cameras. In order to achieve high-throughput measure-

ments, the stereo-imaging system was integrated into an 

automated high-throughput phenotyping facility devel-

oped in our previous work [48]. Two optional processing 

modes were developed to reconstruct the three-dimen-

sional structure of the seedling rape canopy (Fig. 1b) and 

to extract individual rape leaf traits (Fig. 1c).

Three-dimensional structure of the seedling rape canopy

Plant canopy structure can be described by a range of 

complex and variable phenotypic traits that dictate the 

function of plant [49]. Here, canopy three–dimensional 

point cloud data were extracted from pairs of digital color 

images obtained under a constant light environment. �e 

point cloud size for each canopy reconstruction is nearly 

5.5  Mb. �e user-friendly software interface for three-

dimensional reconstruction is shown in Additional file 1: 
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Figure S3, and the final reconstructed seedling rape can-

opy shown in Fig. 2 from three different perspectives.

Leaf area and plant height

From the generated three-dimensional structure, we were 

able to extract two important parameters: leaf area and 

plant height. To evaluate leaf area based on canopy level, 

the Delaunay algorithm was used in the process of three-

dimensional mesh generation. Figure  3 shows the detailed 

process for leaf triangular patches generation. After the 

stereo-imaging for seedling rape canopy, a set of 3D point 

cloud can be obtained (Fig.  3a). Color differences in point 

cloud represents different rape leaf. �e matlab functions 

“trimesh” and “delaunay” based on Lifting Method [50] are 

applied to achieve Delaunay algorithm. �e “delaunay” func-

tion produces an isolated triangulation, which is useful for 

applications like plotting surfaces via the “trimesh” function. 

�e stack of triangular patches forms the 3D leaf region and 

a smoothing mechanism is used to extract smooth triangular 

Fig. 1 Development of stereo imaging system and two optional processing modes. a The inspection unit. b The three-dimensional structure of 

seedling rape canopy. We can extract plant height and canopy leaf area from the three-dimensional structure. c The individual rape leaf morpho-

logical traits, including scale-invariant shape traits, cavity-related traits and margin-related traits

Fig. 2 Three-dimensional reconstructions for seedling rape canopy 

at three different perspectives. a The original two-dimensional rape 

leaf image. b–d There are three types of perspectives for rape three-

dimensional canopy structure
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mesh (Fig. 3b, c). Finally, we can obtain the Delaunay trian-

gulations in rape canopy level and the sum area of all smooth 

triangular meshes is the canopy leaf area (Fig. 3d).

To evaluate the measurement accuracy of leaf area and 

plant height (vertical distance from the edge of a plas-

tic pot to the tip of longest leaf ), 66 rape seedling plants 

were randomly selected for manual measurement. Fig-

ure  4 shows the results of manual observation versus 

automatic observation. �e MAPE values were 3.68% 

for leaf area and 6.18% for plant height, and the squares 

of the correlation coefficients (R2) were 0.984 and 0.845, 

respectively. Detailed experimental data are presented in 

Additional file 2. �e result shows that the stereo-vision 

method has a good potential for accurate measurement.

Individual leaf traits

Shape-based individual leaf traits, such as leaf size, vein 

network and leaf margin, are currently used for plant spe-

cies identification and quantitative trait loci mapping [11, 

16, 51, 52]. �ese shape-based morphological traits can be 

extracted using our image analysis pipeline. However, these 

traits alone do not reflect differences of leave shape due to 

variation in leaf size. We therefore must consider several 

new characteristic parameters that are not influenced by leaf 

size. Here, 19 shape related traits, including 11 scale-invari-

ant traits, 3 inner cavity-related traits, and 5 margin-related 

traits, are proposed (Additional file 3). �e definitions of all 

shape-related traits are shown in Fig. 5 and Table 1, and the 

computational formulas are provided in Eqs. 1–9. 

(1)Aspect Ratio =

Lengthbounding box

Widthbounding box

(2)Rectangularity =

Areaobject

Areabounding box

(3)Area Convexity =

Areaobject

Areaconvex hull

Fig. 3 The schematic diagram for three-dimensional reconstruction based on Delaunay triangulations. a The three-dimensional scatter plot for 

oilseed rape canopy leaf (take an oilseed rape with four leaves, for example). Color differences in point cloud represents different rape leaf. b The 

reconstructed oilseed leaf [the rectangular area in image (a)] based on Delaunay triangulations. Color differences in smooth triangular mesh reflect 

the depth information in different leaf region. c The left part is the smooth 3D triangular mesh, which is projected to xy plane. The triangular patches 

image in the lower-right corner shows the local details in the red rectangle. The right part is the illustration for left oilseed rape leaf in three-dimen-

sional space. d The final result for Delaunay triangulations reconstruction in canopy level. Color differences in smooth triangular mesh reflect the 

depth information in different leaf region
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(4)Perimeter Convexity =

Perimeterobject

Perimeterconvex hull

(5)Sphericity =

4π × Areaobject

Perimeter2convex hull

(6)Eccentricity =

Axis Lengthlong

Axis Lengthshort

(7)

Form Factor =

4π × Areaobject

Perimeter2object

As seen in Fig. 5a, the red and purple circles represent 

the inscribed circle and circumscribed circle, respec-

tively. �e yellow ellipse indicates the result of elliptical 

fitting for a rape leaf. �e green rectangle represents the 

minimum circumscribed box of the blade region. �e 

inner cavities are by definition surrounded by a bound-

ary region that is not connected to the outer boundary of 

the object. As seen in Fig. 5b, the green regions delineate 

inner cavities. In addition, the red lines (Fig. 5c), indicate 

the outer boundary of the individual leaf, while the blue 

lines demarcate the convex hull. �e green points on the 

convex hull lines represent the serration points, which 

reflect to the vertices in all directions. �e intermediate 

region between two serration points defines an indent. 

For each indent region, two serration points can be con-

nected by a straight line, and the depth of the indent is 

measured as the longest distance from an indent point to 

the corresponding straight line. �e effectiveness of the 

indents is calculated using the following Eq.  10. When 

the ratio is greater than 0.3, we consider the indents to be 

effective indents.

where, height and width represent the number of mini-

mum circumscribed box rows and cols, respectively. In 

addition, depth represents the distance from the indent 

point to the corresponding convex hull straight line.

�e software interface for extracting individual leaf 

traits is shown in Additional file 4: Figure S4.

Stepwise discriminant analysis

801 samples were randomly selected and divided into 

two groups: 402 samples with three different leaf shapes 

(mosaic-leaf, semi-mosaic-leaf, and round-leaf ) compris-

ing the training group and 399 samples with three differ-

ent leaf shapes comprising the testing group. According 

to our classification, eleven of nineteen significant traits 

were selected by stepwise discriminant analysis as inde-

pendent variables to construct two decision functions. 

�e final classification using the two decision functions 

is shown in Fig. 6.

�e black square blocks represent the center of the 

three different leaf shapes, which can be calculated 

using two decision functions. In Fig. 6 (red points mean 

round-leaf, green points mean semi-mosaic-leaf and blue 

points mean mosaic-leaf ) and Table  2, the classification 

(8)P/A =

Perimeterobject

Areaobject

(9)Circularity =

Radiusinscribed circle

Radiusexcircle

(10)iseffective =

depth

min(height,width)/2

Fig. 4 The performance evaluation of the leaf area and plant height. 

a The scatter plots of the stereo imaging measurement versus the 

HLS measurement for leaf area. b The scatter plots of the stereo 

imaging measurement versus the manual measurement by a ruler for 

calculating the plant height
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accuracy is given. We found that 92.7% of the tested 

grouped cases were correctly classified. In addition, we 

applied the leave-one-out cross-validation (LOO-CV) 

[54] to assess the accuracy of the classification model and 

found that 94.4% of the cross-validated grouped cases 

were correctly classified.

Stepwise discriminant analysis (SDA) [55] has been 

proven to effectively classify different rape leaf shapes. 

Moreover, in stepwise discriminant analysis, the first 

selected variable carries more weight in classification. In 

this study, the first four selected variables—form factor 

(FF), area convexity (AC), the average depth of effective 

indents (ADEI), and perimeter convexity (PC)—represent 

nearly 97% of the classification ability, as shown in Fig. 7. 

As we can see from Fig. 7, introducing a new variable will 

have little impact on the classification results after the 

selection of the first four variables. For FF, the round-leaf 

always has small perimeter for a given area, so the FF for 

the round-leaf shape is smaller than that of the mosaic-

leaf and semi-mosaic-leaf. AC represents the ratio of the 

leaf area to the leaf convex hull area, which is an impor-

tant parameter that reflects leaf morphology. For mosaic-

leaf, the serrate border feature increases the convex area 

of the leaf. �us, the duty ratio relative to its convex hull 

decreases markedly in comparison with the two other leaf 

shapes. Due to its serrated edge, the mosaic-leaf exhibits 

deeper indents compared with other two shapes.

Support vector machine (SVM)

Support vector machine (SVM) is a standard classifica-

tion technique that has been shown to produce state-

of-the-art results in many classification problems [54, 

56]. To apply SVM to our rape seedling leaf classifica-

tion, nearly half of the 801 rape samples (402 samples) 

were used as training parameters and the other samples 

(399 samples) without labels were divided into a testing 

group for comparison of the results. We found that 94.7% 

of the tested grouped cases were correctly classified. In 

addition, the leave-one-out (LOO-CV) accuracy is 95.6% 

for the cross-validated group. �e specific classification 

accuracy is shown in Table 3.

Random forest

In essence, the random forest (RF) model is a multiple 

decision trees classifier, and it is widely used in regression 

analysis and multi-classification [57, 58]. In this study, 

402 samples with three different shapes were used to con-

struct random forest model. �e other 399 samples with 

category labels as testing group were applied to evaluate 

the performance of classification. �e final classification 

accuracy for a test group is 91.7%, and the leave-one-out 

cross-validation accuracy is 94.8%. �e specific classifica-

tion accuracy is shown in Table 4.

Fig. 5 The extraction of individual leaf traits. a The extraction of the 

inscribed circle, circumscribed circle and minimum circumscribed 

box. b Analysis of the inner edges and cavities. c Calculate the leaf 

margin and indents by using the convex hull algorithm
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A comparison of the performance of the three methods 

of classi�cation

As shown in Table  5, all three methods were able to 

satisfactorily classify leaves. �e final classification accu-

racy for test group (399 samples) is 92.7, 94.7, 91.7% for 

stepwise discriminant analysis (SDA), support vector 

machine (SVM) and random forests (RF), respectively. 

In addition, the leave-one-out cross validation classifica-

tion accuracy is 94.4% for SDA, 95.6% for SVM and 94.8% 

for RF algorithm. Among them, the stepwise discrimi-

nant analysis has a better prediction effect on round-

leaf, while the support vector machine classifier is the 

most sensitive to mosaic-leaf. From the perspective of 

predicated group accuracy and the leave-one-out cross-

validated results, the most reliable forecasting model was 

established by SVM algorithm.

The performance of e�ciency and accuracy

In this work, the stereo-imaging system is integrated 

to the high-throughput phenotyping facility. Each pot-

grown rape would be transported by the conveyor, and 

the image pairs were acquired by the two top-view cam-

eras at the same time. �e inspection procedure is fully 

automated and highly efficient (45  s per plant) [48]. All 

the image processing works are carried out after the 

completion of image acquiring. Here, the time for image 

processing consists of two parts: canopy 3D reconstruc-

tion and individual leaf traits extraction. Usually, the time 

for canopy three-dimensional reconstruction is closely 

linked to the size of oilseed rape. After evaluated with 

10 different size seedling rape samples, the average pro-

cessing time for each canopy 3D reconstruction and data 

Table 1 De�nitions of nineteen leaf shape-related traits

Classi�cation Variable De�nition

Scale-invariant traits AA The aspect ratio of leaf minimum circumscribed box

R The ratio of leaf area to minimum circumscribed box area

AC The ratio of leaf area to leaf convex hull area

PC The ratio of leaf circumference to leaf convex hull perimeter

S The ratio of leaf area to the square of leaf convex hull perimeter

E The ratio of long axis of ellipse to short axis of ellipse

FF The ratio of leaf area to the square of leaf perimeter

PAR The ratio of leaf circumference to leaf area

SFD Reflect the effectiveness of the occupies space without image cropping [53]

IFD Reflect the effectiveness of the occupies space with image cropping [53]

C The ratio of inscribed circle radius to circumscribed circle radius

Cavity traits NIC The number of inner cavities

APIC The average perimeter of inner cavities

AAIC The average area of inner cavities

Margin related traits TNI Total number of indents

ENI Effective number of indents

ADI The average depth of indents

ADEI The average depth of effective indents

AVE The average calculated value of effectiveness

Fig. 6 Stepwise discriminant analysis classification results. The 

abscissa and ordinate represent two classification functions, which 

were built by stepwise discriminant analysis algorithm. The black 

squares reflect the center of different groups, which can be calculated 

with two decision functions. The red, green and blue points represent 

round-leaf, semi-mosaic-leaf and mosaic-leaf, respectively
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extraction of leaf area and plant height is about 43.46 s; 

for manual interaction, the time for each individual leaf 

extraction is about 8 s. �e detailed description for man-

ual part is shown in video (Additional file 5). Moreover, 

the two independent parts could run in parallel to save 

time. In this way, the total processing time depends on 

the longer part. So, the manual interaction does not 

lag the efficiency of the high-throughput platform. In 

addition, the manual interaction method can extract 

individual leaf with more accuracy compared with auto-

matic segmentation, and the efficiency is also satisfactory. 

Assuming that the system can work 8 h a day, then, about 

660 pots can handle just one day, which is an acceptable 

number for high-throughput.

From the view of measurement accuracy for rape seed-

ling leaf area, a comparison result of two different meth-

ods is shown in Fig. 8a. �e red scatter points represent 

the leaf area result of two-dimensional projective method 

by only use one top-view image. After the rape was seg-

mented from the background in the top-view image, the 

area of each rape is calculated by multiplying the pixel 

area and average  spatial resolution, while blue scatter 

points indicate the result of three-dimensional stereo 

measurement by analyzing canopy structure. �e MAPE 

values were 3.68% for three-dimensional stereo measure-

ment and 11.44% for two-dimensional projective meas-

urement, and the square of correlation coefficients (R2) 

for three- and two-dimensional measurements was 0.984 

and 0.938, respectively. Obviously, compared with two-

dimensional imaging, the stereo measurement consid-

ering more spatial information of rape leaf can indicate 

more accuracy of leaf area in real world. Moreover, the 

area errors are almost below eight percent by using the 

stereo measurement method (Fig. 8b).

The overlapping situation in stereo-imaging

�e overlap of oilseed rape leaves is surely a difficult issue 

for binocular stereo-imaging. In this study, the oilseed 

rapes are at the seedling stage, which have less overlap-

ping situation. Actually, for some situation (round-leaf ), 

the overlap can be solved and recovered. �e following 

Table 2 Stepwise discriminant analysis classi�cation results

96.0% of trained grouped cases correctly classi�ed

92.7% of tested grouped cases correctly classi�ed

94.4% of cross-validated grouped cases correctly classi�ed

a Cross validation is conducted only for those cases in the analysis. In cross 

validation, each case is classi�ed by the functions derived from all cases other 

than that case

Leaf type Predicted group membership Total

Mosaic Semi-mosaic Round

Trained group % Mosaic-leaf 98.3 1.7 0 100.0

Semi-mosaic-
leaf

1.4 90.3 8.3 100.0

Round-leaf 0 0 100.0 100.0

Tested group % Mosaic-leaf 97.5 2.5 0 100.0

Semi-mosaic-
leaf

7.6 88.9 3.5 100.0

Round-leaf 0 7.4 92.6 100.0

Cross-vali-
dateda

% Mosaic-leaf 95.9 4.1 0 100.0

Semi-mosaic-
leaf

2.1 89.3 8.7 100.0

Round-leaf 0 1.5 98.5 100.0

Fig. 7 The performance analysis of traits in stepwise discriminant 

analysis. The screening results of the stepwise discriminant analysis. 

The traits from top to bottom reflect the order of characteristics 

screening. The value of Wilks’ Lambda statistic represents the discrimi-

nant ability after entering current traits

Table 3 SVM classi�cation results

99.8% of trained grouped cases correctly classi�ed

94.7% of tested grouped cases correctly classi�ed

95.6% of cross-validated grouped cases correctly classi�ed

a Cross validation is conducted only for those cases in the analysis. In cross 

validation, each case is classi�ed by the functions derived from all cases other 

than that case

Leaf type Predicted group membership Total

Mosaic Semi-mosaic Round

Trained group % Mosaic-leaf 100.0 0 0 100.0

Semi-mosaic-
leaf

0 99.3 0.7 100.0

Round-leaf 0 0 100.0 100.0

Tested group % Mosaic-leaf 100.0 0 0 100.0

Semi-mosaic-
leaf

6.2 92.4 1.4 100.0

Round-leaf 0 7.4 92.6 100.0

Cross-vali-
dateda

% Mosaic-leaf 96.7 3.3 0 100.0

Semi-mosaic-
leaf

3.1 93.1 3.8 100.0

Round-leaf 0 2.6 97.4 100.0
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part only considers the round-leaf (Fig. 9a). �e detailed 

implementation steps are as follows: In the first step, we 

need to segment the overlapped leaf binary image. Sec-

ondly, the contour of overlapped leaf is extracted by using 

the front binary image. �en, the polygonal approxima-

tion [59] is used to represent the overlapped contour. �is 

is an important step to trim away the small-scale rough 

fluctuations. Next, we need to detect the concave points 

[60] and segment the polygonal contour (Fig. 9b). Finally, 

the ellipse fitting [61] is chosen to recover the overlapped 

leaf region for round-leaf (Fig. 9c). �e detailed algorithm 

description can refer to Additional files 6 and Additional 

File 7: Figure S5. �e key for above algorithm is based on 

a priori knowledge: the oilseed rape leaf is approximate 

circle. �us, for mosaic-leaf and semi-mosaic-leaf, the 

above method is useless.

Conclusion
In this study, we establish a nondestructive and high-

throughput stereo-imaging system for screening leaf 

canopy three-dimensional structure and individual leaf 

phenotypic traits. Compared with manual measure-

ments, the squares of the correlation coefficients (R2) for 

leaf area and plant height are 0.984 and 0.845, respec-

tively. Moreover, 19 morphological traits were applied 

in morphology classification of three different rape leaf 

shapes. �ree classifiers (SDA, SVM, and RF) were used 

and compared, and the better classification accuracy with 

SVM is 94.7% for 399 test samples. In conclusion, we 

developed a high-throughput stereo-imaging system to 

quantify leaf area, plant height, and leaf shape with more 

accuracy, which will benefit rape phenotyping, functional 

genomics, and breeding.

Methods
Plant materials and measurements

In total, 801 Brassica napus with three different shapes, 

including mosaic-leaf, semi-mosaic-leaf and round-leaf 

(Additional file 8: Figure S2), were analyzed in this study. 

Seeds were sown and germinated, and plants were grown 

up to the seedling stage. All plants were cultivated in 

plastic pots of 23.5 cm diameter with approximately 6 L 

of experimental soil. All pots were randomly distributed 

over a glasshouse compartment to control the growth 

conditions. Approximately 30  days after sowing, three 

experienced agronomists recorded the leaf shape using 

the visual method. �e final statistical classification result 

would abide by the majority rule. All the experimental 

samples were measured with our stereo-imaging sys-

tem to obtain image pairs. Among them, 66 rape plants 

were randomly selected to reconstruct the canopy three-

dimensional structure, extract leaf area and calculate 

plant height. To estimate the accuracy of measurement, 

the plant leaf area was measured with the HLS [25] and 

plant height was measured manually by well-trained 

worker. In order to evaluate the extraction of individual 

leaf traits, a biological classification for three different 

leaf shapes was proposed. All samples were divided into 

two groups: one group consists of 402 samples with three 

labels (mosaic-leaf, semi-mosaic-leaf and round-leaf ) as 

the training group. �e other group consists of 399 sam-

ples without labels as the testing group. All the train-

ing group samples are selected randomly to balance the 

number of different shapes.

Table 4 Random forest classi�cation results

100.0% of trained grouped cases correctly classi�ed

91.7% of tested grouped cases correctly classi�ed

94.8% of cross-validated grouped cases correctly classi�ed

a Cross validation is conducted only for those cases in the analysis. In cross 

validation, each case is classi�ed by the functions derived from all cases other 

than that case

Leaf type Predicted group membership Total

Mosaic Semi-mosaic Round

Trained group % Mosaic-leaf 100.0 0 0 100.0

Semi-mosaic-
leaf

0 100.0 0 100.0

Round-leaf 0 0 100.0 100.0

Tested group % Mosaic-leaf 99.2 0.8 0 100.0

Semi-mosaic-
leaf

8.3 87.5 4.2 100.0

Round-leaf 0 10.4 89.6 100.0

Cross-vali-
dateda

% Mosaic-leaf 96.7 3.3 0 100.0

Semi-mosaic-
leaf

3.5 91.0 5.5 100.0

Round-leaf 0 3.0 97.0 100.0

Table 5 A comparison of three classi�cation methods

Fixed half selected for training (402), and the other half (399) for testing

Methods of classi�cation Predicted group accuracy Leave-one-out cross-validated (LOO-CV)

Mosaic Semi-mosaic Round Total (n = 399)

Stepwise discriminant analysis 98.3% 90.3% 100.0% 92.7% 94.4%

Support vector machine (SVM) 100% 92.4% 92.6% 94.7% 95.6%

Random forests classifier 99.2% 87.5% 89.6% 91.7% 94.8%
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Fig. 8 The comparison of two different methods for leaf area. a The red scatter points represent the leaf area result of the two-dimensional projec-

tive method by only using one top image. The blue scatter points indicate the result of three-dimensional measurement by using stereo imaging 

algorithm for leaf area. b The distribution of percentage error with two different methods
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Image analysis for canopy three-dimensional 

reconstruction

�e main content of this part is to describe the specific 

image processing steps of canopy 3D reconstruction 

for seedling rape. �e first step is camera stereo cali-

bration. To achieve this step, a black and white calibra-

tion pattern [31] pasted on a plastic plate was used to 

obtain 20–25 image pairs. To ensure the accuracy of 

the calibration, the imaging angles should have obvious 

differences. For original image pairs (Fig. 10a), the cor-

responding feature in the left and right original image 

is not on the same horizontal baseline. Here, Bouguet 

algorithm [62] was used to rectify two original images. 

�e final rectified image pairs were shown in Fig.  10b. 

Considering the influence of environmental light, an 

automatically segmenting method [63], adopts nor-

malized RGB component to get binary image of blade 

region (Fig.  10c). Considering the slender characteris-

tics of the stem, the morphological opening operation 

is used to remove the stem, and connected component 

mark technology is used to distinguish different leaves 

(Fig.  10d). �e next work is to match the correspond-

ing feature points in the left and right rectified images. 

Here, the library for efficient large-scale stereo match-

ing [64] is used to compute the left and right disparity 

map. In the actual situation, two thorny situations might 

happen [65, 66]. �e first one is mismatch, which means 

that there are no matching pixels or wrong matching 

pixels. �e second thorny situation is occlusion, which 

means that some pixels appears only in an image, and 

can’t see in another image (Additional file  9: Figure 

S6). If we don’t take some special measures to focus on 

region where the mismatched and occluded situations 

are serious, there will have some wrong in the process of 

3D point clouds extraction. So, it is important to rectify 

the disparity map. �e specific process is described in 

Additional file  10 and the rectified left disparity image 

is shown in Fig.  10e. According to the principle of tri-

angular range (Additional file  11: Figure S1), we can 

extract the three-dimensional point cloud data of the 

canopy leaves. After removing the isolate points, trian-

gle patches are used as the surface of canopy leaves by 

using Delaunay triangulation algorithm [50]. �e final 

result of canopy reconstruction is shown in Fig.  2b–d. 

Detailed processing for canopy 3D reconstruction and 

triangle patches generation has been described in Addi-

tional file  10 and Fig.  3. �e code for Delaunay algo-

rithm is shown in Additional file 12.

Image analysis for individual leaf

�e main content of this part is to describe the specific 

image processing steps for individual leaf extraction. 

Firstly, the user needs to click the left mouse button and 

drag it to choose a rectangular box. In this rectangular 

box, the individual leaf must be typical and representa-

tive (Fig. 11a). All selected rectangular images are saved 

in PNG format for subsequent analysis. Usually, the 

selected individual leaf has a long petiole part, the exist-

ence of which will seriously impact the analysis of blade 

traits. So, the next step is to remove petiole. �e differ-

ence between blade and petiole in color and texture is 

tiny. But from the view of shape, petiole region is more 

slender than blade. With that mechanism we can remove 

petiole. �e detailed operating processing includes the 

following steps: (1) Marking two points on the petiole 

(Fig. 11b) and rotating the rectangular image so that the 

direction of the petiole is downward (Fig.  11c). (2) Seg-

menting rotated rectangular image to obtain binary leaf 

image (Fig. 11d). Here, the excess green vegetation (ExG) 

[67] and excess red vegetation (ExR) indices [68] were 

used to extract binary leaf image. (3) From the bottom 

to top search binary image to remove the pixel width 

less than a specified threshold area (Fig. 11e). Here, the 

area threshold is set to 25, which is an appropriate value 

determined by lots of preliminary experiments. After 

removing the petiole, the next step is to remove con-

nected components that were erroneously selected. �e 

situation that other partial leaf region might be chosen in 

Fig. 9 Recovering the overlapped leaf region for round-leaf. a The original overlapped round-leaf. b The concave points (red) and polygonal bound-

ary (white) of overlapped round-leaf. c The ellipse fitting is chosen to recover the overlapped leaf region for round-leaf
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the rectangular region was always happened. Usually, the 

target leaf region had the largest area. So, only thing we 

need to do is to keep the largest connected component as 

the target individual leaf. In addition, because of the bina-

rization segmentation error, small holes might appear on 

the target blade region (the red square in Fig. 11e). Usu-

ally, these holes have a small number of pixels compared 

with other real holes. An area threshold is used to fill 

the small area holes. �e final individual leaf is shown in 

Fig. 11f. �e detailed processing flow and computational 

formulas are in Additional file 13.

Three di�erent classi�cation methods

Stepwise discriminant analysis statistical method

For stepwise discriminant analysis (SDA), the spe-

cific operating approaches are as follows: All traits are 

selected as the input variables of the algorithm. �en, 

the SDA algorithm will select a variable that has the most 

significant discriminant ability. Next, the selecting for 

second variable based on the first variable, which indi-

cates that combining the first and second variables will 

have the most significant discriminant ability. By that 

analogy, the third variable will be selected. Because of 

the mutual relationship between different variables, the 

previous variable may lose significant discriminant abil-

ity after inputting the new variable. �en, we will inspect 

the discriminant ability of all previous selected variables 

to find the disabled variables, remove them, and go on 

to find new variables until no significant variables can 

be removed. In this study, stepwise discriminant analysis 

training was achieved using (SPSS v.22 software), which 

is a proven technique for meaningfully classifying dif-

ferent shapes [69]. �e detailed description is shown in 

Additional file 14.

Support vector machine statistical method

�e support vector machine (SVM) is a common super-

vised learning algorithm that has been shown to pro-

vide state-of-the-art performance in many classification 

problems. �e main thinking of the SVM is to establish a 

classification hyperplane as the decision curved surface, 

which maximizes the gap of positive samples and nega-

tive samples. �e LIBSVM-matlab toolkit [70] was used 

here to conduct SVM model. All the 801 samples with 

Fig. 10 The primary image analysis procedures for seedling rape canopy three-dimensional reconstruction. a The same feature region in the left 

and right original image was not on the same horizontal baseline. b The same feature region in the left and right rectified image was at the same 

horizontal baseline. c The segmentation of rape leaf region. d The stems are removed, and the leaf region is marked. e A local rectification for dis-

continuous regions and false matching regions. f The main software flow chart
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three different leaf shapes were randomly divided into two 

groups (402 samples for training and 399 samples for test-

ing). Firstly, we should limit all data into a certain range. 

Here, the interval from 0 to 1. �e purpose for data nor-

malization [71] is to ensure the convergence of the SVM 

algorithm. At the same time, it will improve the accuracy 

of classification. Next, we can train the model. Here, the 

kernel function is generated to use polynomials and the 

kernel parameter is set to 1.5. Also, the penalty parameter 

is set to 2. �e genetic algorithm (GA) was used to choose 

the best value of kernel parameter and penalty parameter. 

�e detailed algorithm process refers to Additional file 14 

and the code is shown in Additional file 15.

Random forest statistical method

�e random forest (RF) classifier is a combination of 

multiple decision trees. In this study, the open source 

randomforest-matlab toolkit [72] was adopted to build 

random forest classifier. Abhishek Jaiantilal, of the Uni-

versity of Colorado, Boulder, is the primary developer. 

Here, the number of decision trees in my random for-

est is 1000 and the other parameters adopt the default 

value. 801 samples were randomly selected and divided 

into two groups: 402 samples comprising the training 

group and 399 samples for testing group. When the test 

samples enter into the random forest, every decision 

tree will independently classify the category it belongs 

Fig. 11 The primary procedure for individual leaf traits extract. a The original rape leaf image. b The selected single rape leaf region. c Select two 

points on the image. The first point is the intersective region of stem and leaf and the second point is used to decide the direction of rotation. d 

The rotated oilseed rape leaf image. e Using normalized EG and ER to segment the leaf region. f Remove the petiole region and connected region 

screening
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to. �e final statistical classification result will abide by 

the majority rule. �e detailed algorithm process refers 

to Additional file 14 and the code is shown in Additional 

file 16.
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of indents; ADI: the average depth of indents; ADEI: the average depth of 
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